Research interests

My current research covers four main related areas: complex systems, data interpretation, sensor networks, and blended approaches to learning. I’m interested both in the core computer science of these areas, but also increasingly in how they work across the traditional disciplinary boundaries.

Complex systems

I’m especially interested using complex networks to model real-world phenomena like disease epidemiology and flooding. In particular I’m interested in adaptive and coupled networks, where several independent networks are coupled together somehow so that they affect each others’ behaviours, and whose connections can change in response to events.

As part of this work I've written an accessible introduction to modelling epidemics on networks and I’m writing a textbook to make the subject more accessible to computer scientists. I'm also building and a library for simulating epidemic (and other) network processes

Sensor analytics and data interpretation

Sensor data provides a picture of the real world, but one that’s limited and error-prone. Interpreting the data is very challenging, and I work extensively on situation and activity recognition techniques that fuse multi-model data together to draw conclusions about what’s happening in the area under observation.

Sensor networks

Sensors collect data, and sensor networks allow very precise and long-lived observations to be made of phenomena that are otherwise hard to observe. I work on error management to reduce noise and other problems in the data stream. This has led to an interest in using algebraic topology for these problems, which in turn led me to write a library for simplicial topology.

I'm also interested in sensor network software design, especially building scientific-standard systems using off-the-shelf components so that experimental groups can deploy more and better sensing capabilities. Most of my work in this area is directed through the Science of Sensor Systems Software programme grant on which I’m a Principal Investigator along with colleagues from Glasgow, Liverpool, and Imperial College.

Blended learning

As a university we currently serve the a cohort of “digital natives” who’ve grown up with the internet and digital technology. How does this change teaching? How do we use technology to improve learning, to make students more capable of being engaged and creative citizens? I’m experimenting with blended approaches to my own teaching, with some slightly surprising results.

(My research interests have changed over the years.)