Creating programming languages for (and from) the
internet

Simon Dobson

Department of Computer Science, Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

Abstract. Programming language design is essentially a quest for appropriate ab-
stractions. Each new application domain brings new issues that may suggest new
abstractions. The challenge for the language designer is to match abstraction to issue
in a way that is minimally disruptive. We explore the ways in which one might build a
language framework that is truly internet-centric, in the twin senses of leveraging the
internet to construct languages dynamically, and of improving the programmability of
internet applications using such dynamically-constructed languages. We suggest that
internet programming may not simply be facilitated by such technology but may actu-
ally depend upon it for building the next generation of pervasively-connected devices
and applications.

1 Introduction

The internet is growing to accommodate a range of non-standard devices and applications,
including mobile devices, embedded sensors and context-aware systems. Each new applica-
tion domain or platform introduces new issues which may suggest new abstractions. This
is an ideal scenario for domain-specific languages, and — since many concerns may usefully
be shared across languages — one might consider a system in which the constituent abstrac-
tions of domain-specific languages were located and combined dynamically. Such a language
framework would utilise the internet at its most basic level, as a source of challenges and a
mechanism for addressing them.

In this paper we present an initial motivation and architecture for such a language frame-
work, and argue that it can be used both to simplify the development and improvement the
deployment of domain-specific languages by leveraging the strengths of the internet. Section
2 motivates the need for building languages from components and reviews existing work
on component-based language design. We use this as a base for describing a new model in
section 3 that embraces a fully internet-centric development and deployment model. Section
4 concludes with some forward directions.

2 Motivation

The evolution of programming languages could be characterised as a search for the most
appropriate mode within which to express the range of problems that developers encounter.

Although the priority given to different problems changes over time, the core notion of a
“notation as a tool of thought” that both reflects and conditions the developer’s conceptual
models of those problems has remained[1].

There is a sense in which the search for such abstractions conflicts with the needs of
everyday programming: a better abstraction may not offer sufficient incremental benefit to
warrant re-training and re-tooling development teams. Many people would argue that the
form of object-oriented programming exemplified by Java or C# represents a successful
balancing of these two forces and the culmination of language development.

Many other people would disagree with this assessment — and not just language devel-
opers. No one language can optimally represent all the ways in which a problem can be
conceptualised, implying different languages will be best suited to different tasks. Moreover
the notion of a single language suggests that the important concepts have somehow already
been articulated, neglecting the new concepts that arise from each new development in (for
example) highly mobile computing, sensor networks, pervasive systems and so on.

Instead of searching for a single solution, we should perhaps focus on simplifying the
development, deployment and integration of new, domain-specific novel languages. A number
of approaches have addressed this requirement.

Aspect-oriented programming|[2, 3] takes the approach of allowing the various concerns in
a program to be separated and developed separately, with the aspects being “woven together”
late in the development cycle. Typically a single language is used to develop all aspects,
although recent work[4] goes a long way towards addressing this issue. The population of
aspects is fixed at language design-time.

The alternative approach is to allow languages to be constructed from smaller elements,
allowing simpler construction of domain-specific systems. Intensional programming[5] re-
gards languages as composed of simpler “intentions” with a shared common run-time rep-
resentation. The Vanilla framework|[6, 7] adopts a similar concept with individual fragments
being constructed as Java components deployed within a run-time harness.

There is however an even more dynamic possibility. A program (in source code form, at
least) implicitly refers to the language in which it was developed. If we were to make this
reference explicit, and provide machine-readable descriptions of languages, we would achieve
a situation in which a client wanting to execute the program could identify the language in
which it was written, download the evaluator for it and execute the program — essentially
“discovering” the new language as required. Furthermore we could extend the component
ideas of Vanilla and intensional programming so that it is the language’s components that
are discovered and assembled. In this way the fragments of domain-specific languages could
be re-used as required, without having to commit to the complete form of the final language
ahead of time.

3 An internet-centric language framework

How do these ideas relate to the internet? More precisely, we can split this question into
two parts: (a) can the internet assist in or improve the creation of domain-specific languages

from components?, and (b) is internet programming itself improved or facilitated by such as
approach?

3.1 Using the internet to compose languages on demand

The first question is essentially one of re-usability and architecture. For a language built from
components to be useful, there needs to be a population of component to draw upon and
sufficient breadth of difference to make it worthwhile not linking them statically. Experience
suggests — but does not conclusively prove — that both these constraints are met.

Architecturally, the internet allows components making up a single language to be
sourced from different servers. The impact of the internet is that it allows a distributed col-
lection of language-component-developers to co-operate in a decentralised fashion to build
the component population. As long as there is a framework within which the components
can be deployed, these individuals components can be developed largely independently. Seed-
ing the population with an initial set of features providing the well-recognised functionality
assists developers in focusing on what makes their language or feature unique and reduces
duplication of effort.

Implementationally, the diversity of the internet is something of a barrier in the sense
that individual components may have platform dependencies that would prevent them being
used on particular clients. There are two approaches to this issue.

The first approach is to use a platform-neutral language such as Java. (This was the
approach taken by Vanilla.) A component will then function on any client with a Java virtual
machine. While this encompasses all server and desktop machines, and an increasing number
of PDAs and smart cellphones, it should be noted that it does not include all devices that
might be targets for domain-specific languages. In particular embedded systems and smart
sensors are obvious candidates for special-purpose programming abstractions but typically
have size and power requirements that would preclude a Java implementation.

The second approach is to step back from implementing languages by composing com-
ponents and instead think about composing component specifications. A typical component
might include abstract syntax, concrete syntax, type rules, re-write rules and (perhaps)
supporting libraries. Libraries need implementations, but the other four elements can be
specified declaratively. Moreover there are well-accepted notations for all four: type and re-
write rules are written in the familiar natural-deduction style, concrete syntax uses a variant
on EBNF abstract syntax can use ASN1, and so forth. Each of these notations is in principle
powerful enough to allow an implementation to “compiled” from it, allowing us to specu-
late that a complete language can be compiled (largely) from specifications of its individual
components.

This task is facilitated somewhat — although not, it must be said, to any great degree —
by the development of standard XML applications such as RuleML that target re-writing
systems and other rule sets. We may, however, speculate that a language component can
be provided by specifying its various facets in one or more documents that then drive the
creation of executable code client-side. This also abstracts away from the language used on
the client, which accords well with the basic internet philosophy.

wif
Program construct “nt*
A program comes with type
an associated description rules
of the language in which it
is written \/\
Language
definition
\ “int*
re-write
! rules
|
|~ | Y
Server A Server B Server C
| ~ N |
I N I
I ~ I
Client | ~ The language definition locates | Companents describe individual
A ~ the descriptions of the components language features in terms of
! ~ _ ofthe final language | the types, type and re-write rules
~
| ~ |
\% SN !
|
|
|
Language
Frogram definition !
|
|
|
| |
v v \%
[wrowse | |
Program The type and re-write rules are

sufficient to build a working
interpreter or compiler at
the client

abstract
syntax
tree

| type rules

I re-write rules

| "int" type

Execution
The program executes on a purpose-built
platform (interpreter or compiler) - the client
effectively "discovers" the language at
\L load-time

Fig. 1. An architecture for internet language discovery

We can summarise these ideas using figure 1, which outlines the basic components of an
internet-centric language construction system. A program comes equipped with a machine-
readable definition of the language in which it is written. This definition refers to the com-
ponents making up the language, which may be stored on a variety of servers. When down-
loaded to the client the language definition is used to locate the documents describing the
components — type rules, re-write rules etc — which are then downloaded and “compiled” (in
whatever sense) to create executable components on the client. The components are then
combined within a language framework to produce an evaluator (interpreter or compiler)
that can be passed the original program to execute.

Downloading a program therefore implicitly downloads the evaluator for that program.
Put another way, the client “discovers” the programming language that the program requires
at load-time, creating an evaluator for that language only when required.

3.2 The internet as an ecosystem of domain-specific languages

The second question from above — does component-orientation assist internet programming
— is perhaps even more interesting than the technology from section 3.1 that one might use
to implement it.

Programming language design, as has been mentioned already, is chiefly a search for
abstractions appropriate to the task at hand. As more devices are connected to more networks
to do more things, one might reasonably expect the range of appropriate abstractions to
broaden. This further suggests that internet connectivity will be a major driver of domain-
specific language research.

The richness of the internet arose in part because its simple underlying base could be
extended easily as new applications arose. While it may be possible to implement an appli-
cation on the existing base, it is often desirable to extend the base with new concepts suited
to the application itself. One may draw the analogy with software: it will often be desirable
to extend the programming framework with new concepts matching particular domains.

However, the internet is not like the environments typically targeted by programming
languages. This is true both in the low-level and high-level senses: the low-level issues are
well-captured by Cardelli and Davies[8,9] with the observation that long-latency, insecure
communication requires different abstractions to the more familiar local-area interactions ad-
dressed by remote method/procedure call. The high-level issues raised by the various strands
of the semantic web initiative — and perhaps especially by pervasive and context-aware com-
puting — suggest that the manipulation of semantic information with complex relationships
and meta-data annotations will be a more appropriate target than the traditional issues of
typing and polymorphism.

Manipulating semantic information combines programming with reasoning — both of
which can be aided by the targeted abstractions of a domain-specific language. Spatial infor-
mation, for example, may require some form of “spatial conditional” expression (“while a is
in z do p”) and a spatial logic to infer behaviours that are not explicitly specified. Given the
range of possible semantic information, it seems unlikely that a single language and a single
logic would be provide an acceptable platform, theoretical sufficiency notwithstanding.

However, many concerns are not simply localised to particular devices or domains. One
might, for example, want to develop two components of an application, one on a server
and one on a sensor. The detailed concerns of these two components will be different, which
suggests the use of different languages; they may also share a concern in the need for a spatial
representation. We could therefore re-use the same component in different languages. This
both reduces development overhead and reduces the “surface area” of abstractions exposed to
programmers: a common feature set is re-combined as required to target problems accurately
while retaining enough commonality for programmers to gain the requisite experience with
them. This is vital for productivity.

This “ecosystem” encourages re-use, both in the normal sense and in the sense of allowing
new concepts to be developed and experimented with with minimal overheads.

4 Towards a realisation

In this paper we have made two key arguments:

1. That there is a technical case for constructing domain-specific languages from component
specifications acquired dynamically from the internet

2. That such languages provide a key enabler for building applications for internet-connected
systems, especially when deployed as part of the semantic web

We believe that such an approach would simplify the development, distribution, de-
ployment and acceptance of domain-specific languages by reducing (to almost nothing) the
client-side effort required to use them. Furthermore we believe that it would provide an
ecosystem of language features that could be independently populated and re-used (both
literally and as a specification for new features) in way that maximises flexibility while
maintaining sufficient stability and re-use for programmers.

We are currently developing these ideas within a new component language framework —
NIRVANA — with a view to developing language abstractions for pervasive computing and
semantic web applications.

References

1. Iverson, K.: Notation as a tool of thought. Communications of the ACM 23 (1980) 444-465 1979
ACM Turing Award lecture.

2. Kiczales, G.: The art of the metaobject protocol. MIT Press (1991)

3. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: Proceedings of the European
Conference on Object-Oriented Programming. Volume 1241 of LNCS. Springer-Verlag (1997)
220-242

4. Lafferty, D., Cahill, V.: Language-independent aspect-oriented programming. In: Proceedings
of the ACM Object-Oriented Programming Systems, Languages and Applications Conference
(OOPSLA’03), ACM Press (2003)

5. Simonyi, C. Interviewed in The Edge (1998)

6. Dobson, S., Nixon, P., Wade, V., Terzis, S., Fuller, J.: Vanilla: an open language framework.
In Czarnecki, K., Eisenecker, U., eds.: Generative and component-based software engineering.
LNCS. Springer-Verlag (1999)

7. Farragher, L., Dobson, S.: Java Decaffeinated: experiences building a programming language
from components. Technical Report TCD-CS-2000-22, Department of Computer Science, Trinity
College Dublin (2000)

8. Cardelli, L.: What is the web’s model of computation? Invited presentation at the workshop on
Programming the Web, 5th International World Wide Web Conference, Paris (1996)

9. Cardelli, L., Davies, R.: Service combinators for web computing. In: Proceedings of the USENIX
conference on domain-specific languages. (1997)

