
Applications considered harmful for ambient systems

Simon Dobson

Department of Computer Science, Trinity College, Dublin, Ireland
simon.dobson@cs.tcd.ie

Abstract. The notion of application – a single, bounded piece of functionality presented to users – goes
almost unquestioned. However in the context of highly adaptive and ambient systems it is not clear that
pre-building and pre-packaging functions is useful, and it may be that a more dynamic model of provid-
ing functionality is required. We re-assess the traditional notion of packaged applications, and instead
explore a dynamic model of component composition. The model is naturally adaptive in the sense that
services “self-assemble” in direct response to user needs, environmental factors and information rela-
tionships. We explore some ways in which this might change the way we think about adaptability in
ambient systems, and sketch some directions for the future.

Introduction

Applications are almost synonomous with computing. Users often conceptualise their computing environ-
ment as being composed of a suite of frequently-used applications (web browser, e-mail reader, word pro-
cessor, CD player etc). An application offers a convenient artifact for marketing purposes, making it easy
to highlight the functions on sale Even highly document-centric environments are based heavily on appli-
cations.

From a technical perspective applications also have desirable features. Applications are pre-selected, pre-
built and pre-packaged: a development team picks the functions to be provided, combines existing libraries
and components with bespoke code to create a stand-alone executable, and then packages this executable
with appropriate documentation and supporting data. Even most free or open-source software is designed
and delivered in this way.

Much of this activity has a single purpose: to create a targeted, self-contained entity that can be presented
to users. Most applications have only minimal interactions with other applications on the user’s desktop.
This emphasis on the stand-alone is a little perplexing in the face of the prevailing mainstream development
methodologies that stress the re-use of components. The combination of components is only really accepted
up to compile-time: deployed systems remain largely static. This means that the benefits of component-
based methodlogies – easy adaptation, customisation, incremental alternation, familiarity and so forth[12]
– accrue to the developer but not to the user.

In desktop situations this observation might simply be an idle curiosity. In the case of ambient systems,
however – where the computing infrastructure can sense and react directly to its environment – the idea
that one can pre-select what a user can use, and how, seems rather tenuous. An ambient system must
by definition be adaptive at its core, and needs a distraction-free “flow” that is profoundly different to a
traditional environment[4].

In this paper we begin to address the idea that pre-packaged applications may not be suitable for ambient
systems – may, indeed, be fundamentally ill-adapted and harmful to the creation of truly adaptive envi-
ronments. For the purposes of discussion, we describe instead some early ideas for a model of dynamic
run-time composition driven from an underlying context model that causes applications to “self-assemble”
in reponse to contextual factors such as user, task and environment. This builds on our previous experiences
in building ambient systems, both academically and commercially. The model is intrinsically adaptive, in
the sense that the environment naturally tailors the construction of the services it offers. We explore how
this might change the way in which we think about adaptability for ambient systems, and sketch some future
directions.

The problem

Ambient systems are perhaps the most adaptive IT solutions it is possible to conceive: a computing and
information system that senses its users’ needs, tasks, information and environment and attempts to provide
a seamless IT service tailored to them. A good overview can be found in [11].

The development process for a traditional environ-

Fig. 1. Information and tools combined

ment is well-studied. Best practices centre around
object-oriented analysis and design methodologies
such as RUP[6], with their focus on domain-level
understanding through use cases. The use case ap-
proach involves studying the tasks users will per-
form with the system being developed, and then
using these articulated needs as a basis for design.
The intention is that each use case captures a user
task as the user perceives it, which is then trans-
lated into a conceptual design, concrete design, and
finally to code. Tool support can help ensure con-
sistency at each stage of the process. Some devel-
opers – and users – find such top-down approaches
prescriptive. Rather than trying to articulate a com-

plete application up-front, “agile” methods such as XP[2] seek to extend applications piecemeal as new
capabilities are required, adding functionality within a lightweight framework. These methods differ for the
developer, but not for the user: the aim is to create a largely packaged, largely stand-alone solution1.

To see what impact this such packaging has, con-

Fig. 2. A more conceptual view

sider a typical desktop environment (figure 1). A
wide variety of information from a variety of sources
– manually-entered appointments and to-dos, web
pages visited, documents generated etc – is ma-
nipulated through a small suite of common desk-
top tools. The tools typically provide a single view
onto the information, with few if any cross-links.
Even in a state-of-the-art environment it is impos-
sible to (for example) relate a to-do item to the sev-
eral meetings at which it is discussed, or relate a
URL to the contact details of its author, or explore
what URLs were visited in the course of writing a
particular project deliverable – or any of a range of
other possible views.

Diving behind the scenes, we find that the infor-
mation base being used by the desktop environ-
ment is split across a number of files, each with
its own format, each separate from the others, and
each closely coupled with a tool. This remains true even when – as with the environment being shown here
(KDE) – all the tools use open (and generally public standard) file formats. The applications define the in-
formation structure. However, for most people information is not structured this way. One might equally –
and more logically, from a user perspective – structure information based on the projects to which it applies
(figure 2).

Now, an obvious response is: “Oh, well, you’ve brought us a suite of new use cases that different users
might want. For those that can’t learn how to work the right way, we could build a new set of views into the
tools – or a new tool – to let them look at things this way too.” However, this completely misses the point,
which is that no single set of tools will capture all the possible views, especially when there is an extensible

1 Even the word user seems vaguely pejorative, somehow: someone who is supposed to consume software rather than
create or modify it....

information model with rich cross-links, and especially not in the presence of real-world cues and triggers
such as occur in ambient systems.

The reason for focusing on ambient systems is sim-

Fig. 3. Multiple views in a rich structure

ply that they show into sharp relief the whole no-
tion of what it means to be “user friendly”. An
ambient system is intended to fit seamlessly into
a user’s daily activities – both physically (in the
sense of being always available) and cognitively
(in the sense of “doing the right thing” without dis-
tractions). This is not accomplished by simply al-
lowing a user to access information wherever they
are: the presentation of information must fit the use
to which the information is being put[10].

An information base – the set of available docu-
ments, contacts, URL, appointments etc – can be
viewed as a graph with facts as the nodes and rela-
tionships as the edges (figure 3). Using the tools of
the “semantic web”, and especially the Resource
Definition Framework (RDF)[7], we can view and
represent this graph as a collection of hyperlinks

within and between XML entities. The tool-centric view from figure 1 breaks this conceptual graph into
separate sub-graphs, destroys some of the edges that link the information, and then presents each using a
separate tool. While there are advantages to this approach, a more sensible strategy is to retain the knowl-
edge base as a single entity within a layered collaborative architecture[8,9].

Information is mostly neutral, in the sense that it can be viewed from many viewpoints. Each “projection”
gives a user a different sense of what is important and how it relates to other information. Conversely, a
tool encapsulates a single viewpoint (or occasionally a small number of viewpoints), generally somewhat
isolated from others. Moreover, each tool dictates an interface that the user has to the information, and also
typically makes assumptions about the capabilities of the interface being used to view it.

What are the alternatives to the static application? One well-known approach is the highly interactive graph-
ical environments targeted at children and associated with Seymour Papert and (most especially) Alan Kay.
Various environments have demonstrated that it is possible to build systems without building applications,
by giving users a rich toolbox of components and a flexible way of combining and re-combining those
components themselves2. Some developers would argue that most users do not want this degree of con-
trol over their desktops. While we might dispute this claim in general, it is undoubtedly true that standard
presentations can be easier to learn and less distracting. However, this does not excuse presentations that
confuse or hinder useful operations, and this is especially true for ambient systems in which useful, seamless
operations are the raison d’être.

Using information to control information

However, we may make an observation that provides an interesting alternative to full dynamism. The infor-
mation base we have been discussing is very rich, in the sense that information is heavily hyperlinked and
the hyperlinks (and hence the anchors) have well-defined semantics. Because the information is well-typed
we can use it to affect how it is used.

2 “...we realized [when designing Smalltalk at PARC] that you really wanted to freely construct arbitrary combinations
(and could do just that with (mostly media) objects). So, instead of going to a place that has specialized tools for
doing just a few things, the idea was to be in an "open studio" and pull the resources you wanted to combine to you
... all the other objects that intermingle with each other should have very similar UIs and have their graphics aspect
be essentially totally similar as far as the graphics system is concerned – and this goes also for user constructed
objects.”[5]

This is in itself quite an interesting departure: many IT systems act as simple filing cabinets and do not
make much use of the information they store. A diary, for instance, generally limits itself to allowing the
user to specify a single simple alarm before an appointment. However, a diary entry goes through a whole
sequence of possible states in its relationship to the user – from far-away, through needing-action and
needing-immediate-action, to current and finally to completed. What the user needs from the appointment,
and any information associated with it, change accordingly. With a sufficiently rich knowledge base we
might send reminders to other participants3, collect together the documents relating to the appointment,
generate an agenda from the to-dos of a previous related meeting, and so forth. – all functions that are
impossible without understanding the meaning of an appointment.

If we addressed this problem directly, the result would be another application suite – perhaps well-suited
to a particular domain. However, we want to be able to adapt behaviour to need without re-writing or re-
compiling; ideally we want to be able to use whatever information and tools are to hand when the user
needs the information. In order to accomplish this we need to provide intelligence over the knowledge
base. It is relatively straightforward to connect a rules engine to a knowledge base and then use the normal
tools of knowledge manipulation – notably Horn clause logic and resolution, but also including temporal
logic[1] and other non-standard techniques – to represent the way in which information should be handled
dynamically. Essentially we create “mini-workflows”, difering from the traditional kind in that they repre-
sent fragments of a larger process and concern real-world events, with all that entails for accuracy and error
handling.

Adaptability is usually discussed as a question such

Fig. 4. Two approaches to adaptability

as “how can we match this application to these cir-
cumstances?”. Ambient systems modify this ques-
tion to be “what does the user need to accomplish
her tasks?”. In the new model we modify the ques-
tion further to be “what components should I se-
lect to best match the user’s needs?”. Adaptabil-
ity is intrinsic to this model: rather than present-
ing a pre-built application and then trying to cus-
tomise it (figure 4(a)), we can instead select the
information we want to manipulate and use what-
ever components are available for manipulating it
(figure 4(b)).

A number of factors can influence component se-
lection including task, available information, deadlines, user identity, user location, component affordances.
The point is that we want all these rules and the information in which they depend to be represented uni-
formly. This does not necessarily imply a single physical knowledge base, which can be unwieldy to search
and reduces the chances of using existing components: it is possible to build federated knowledge bases
whose elements present a common interface with queries being brokered across them. This unifies the tool-
and web-based views of figure 1 and 2.

For example, suppose we have a knowledge base that includes simple project information (such as in figure
2). We can define a use case for (for example) a quarterly project meeting which will discuss progress
during the period, re-assess the project timetable, review any documents and code submitted, and so forth.
This in turn might give rise to a “workflow-let” of definitions and rules such as the following:

1. The “period” covered by the meeting runs from the last project meeting up to this one
2. Remind everyone that the meeting is coming up
3. Collect together any documents submitted in the period
4. Make the project manager aware of the project plan, for review before the meeting,
5. Collect together any management e-mails in the period
6. Circulate all documents and collate comments
7. Send urgent reminders the day before the meeting to anyone we haven’t heard from since the first

reminder
3 Some collaborative diary systems do this, but generally only within a single organisation.

How does this help with applications? If we regard an application as a set of components, two core decisions
for a developer are (a) what components should be included and (b) how they will fit into the process of a
user’s tasks. If we have sufficient richness in the knowledge base – both in terms of information relationships
and relevance and other rules – we can replace both decisions by using the relevant information to drive
component selection and presentation. For example, rule 3 might give rise to a web page with the documents
linked, which then turns up on the user’s desktop as “something to look at”; rule 4 might give rise to a link
on the desktop plus a to-do in the diary (which can itself be highlighted on the desktop); rule 7 might
generate an SMS message, or an e-mail, depending on the target user; and so forth.

In this new model (figure 5) a set of components

Fig. 5. A new model

make their affordances available as interfaces cou-
pled with descriptions of their appropriateness to
various environments. A set of rules is used to “ac-
tivate” parts of the knowledge base (the circled parts
of the diagram), marking certain tasks and certain
information as relevant in the current context. In
the example above we used a time-based relevance,
but one could equally use a location-based rele-
vance metric, or some more complex derivative of
the network of relationships. These information and
tasks then need to be matched against the available
affordances. In general there will be several can-
didate components, which may then be brokered
using another rule set. Note that the same mecha-
nism – information and rules – can be used at all
levels, making it easy to build complex derivatives
(and also making it easy to tie oneself in knots).

Adaptability comes (firstly) from determining what
is relevant and (secondly) from deciding what com-

ponent should be used to present it. A user might encounter the project management application several
times before a meeting and have it appear differenrly each time: once because new information has arrived,
then because her palmtop device is supressing information she cannot reasonably interact with on the move,
and finally because shae has installed a new component that provides additional functions.

The net result is a subtly different view of both applications and desktops or mobile devices. The desktop
contains information presented through appropriate tools rather than tools themselves; the “project manage-
ment application” is just a collection of information, accessed as appropriate. Moreover the “application”
can co-exist with other applications completely seamlessly: the user has things to do and the components
with which to do them, selected using rules of relevance from a shared information base.

We do not end up with “normal” applications under this model – and that might be a good thing. Instead
we have a system that is driven by knowledge activated by some mechanism. We need not know the infor-
mation, the mechanisms or the individual components a priori: what we are providing is an environment
in which components can be described and capabilities accessed uniformly and extensibly. In effect the
application self-assembles from the set of available components as required, and dis-assembles when the
task is complete.

Many of the usual architectural features turn out to be available. For example, one may compose two
components so that the result of one is passed to another by having the first insert its results into the
knowledge base in such a way that they will be marked as active, which will then automatically invoke the
second component on them. There are also some extremely interesting novel architectural possibilities: by
way of illustration, a shared knowledge base and components on running multiple devices form the basis
for a collaborative application without any additional development beyond high- and low-level concurrency
control.

Several component-based engineering approaches (notably [12]) take a very dynamic view of components
and emphasise dynamic interface acquisition. This is also a feature of many distributed software systems

including EJB and CORBA. There is a growing understanding of the issues involved in building large sys-
tems of this type and successfully evolving them. All this knowledge may be deployed to address adaptive
applications under our model.

However, many aspects of successful development remain under-explored. The approach relies heavily on
being able to structure the relevance of information over time: if information remains relevant the desktop
will be unusably crowded (or the SMS message box very full). Controlling relevance is both a matter of
defining suitable rule sets and of having them compose together constructively – not a problem that is well-
understood. One solution might be to adopt some of the techniques suggested by Fogg[3] to structure how
users deal with large information bases and task sets.

Equally importantly, we need to populate and maintain the knowledge base, and do so without requiring
additional effort. A lightweight approach is to capitalise on existing components and provide instrumented
versions of others. Experience suggests that some structures seem to appear of their own accord – many
project managers maintain a directory and a mail folder per project, and any information inserted into either
is immediately classified. However, some degree of user involvement is inevitable, at least in the early
stages, to capture and classify information.

Conclusion

We made the argument that the traditional approach to packaging IT functions as pre-built applications may
not be optimal for developing ambient systems. We outlined an alternative variation on accepted component-
based software in which component composition occurs at dynamically at run-time in response to user
needs, interface capabilities and environmental factors. We suggested some possible technical avenues to
explore in order to realise this model.

We pointed out at the start that our model is still very early. We still need to address a number of vital
issues, with perhaps the two most critical being the ways in which we can capture such complete contextual
information and the effects of missing or noisy data on system behaviour. Initial experiments are being
performed within a framework that allows us to extract contextual information from user interface gestures,
explicit information and simple task-based models. We hope to use the lessons learned to formulate a theory
and toolkit for dynamic component composition and the self-assembly of adaptive, extensible ambient
systems.

References
1. James Allen and George Ferguson. Actions and events in interval temporal logic. Journal of Logic and Computa-

tion, 4(5):531–579, 1994.
2. Kent Beck. EXtreme Programming EXplained. Addison-Wesley, 1999.
3. B.J. Fogg. Persuasive technology – using computers to change what we think and do. Morgan Kaufman, 2003.
4. David Garlan, Daniel Siewiorek, Asim Smailagic, and Peter Steenkiste. Project Aura: towards distraction-free

pervasive computing. IEEE Pervasive Computing, 1(2):22–31, 2002.
5. Alan Kay. Posting to the OpenCroquet mailing list, April 2003.
6. Philippe Kruchten. Rational Unified Process: an introduction. Addison-Wesley, 2000.
7. Ora Lassila and Ralph Swick. Resource Description Framework model and syntax specification. Technical report,

World Wide Web Consortium, 1999.
8. Paddy Nixon, Simon Dobson, Sotirios Terzis, and Feng Wang. Architectural implications for context-adaptive

smart spaces. In Proceedings of the International Workshop on Networked Applicances, pages 156–161. IEEE
Press, 2002.

9. Paddy Nixon, Gerard Lacey, and Simon Dobson. Smart environments: challenges for the computing community. In
Paddy Nixon, Gerard Lacey, and Simon Dobson, editors, Managing interactions in smart environments. Springer
Verlag, 2000. Introduction to the book.

10. Donald Norman. The invisible computer. MIT Press, 1998.
11. Debashis Saha and Amitava Mukherjee. Pervasive computing: a paradigm for the 21st century. IEEE Computer,

36(3):25–31, March 2003.
12. Clemens Szyperski. Component software: beyond object-oriented programming. Addison Wesley, 1998.

