
Architectural Implications for Context Adaptive Smart Spaces

Paddy Nixon1,2 Simon Dobson2 Sotirios Terzis1 Feng Wang1
1Global and Pervasive Computing Group

Department of Computer and Information Sciences
TheUniversity of Strathclyde

GLASGOW, Scotland.
{Paddy.Nixon, Feng.Wang}@cis.strath.ac.uk

2Aurium
Clifton House,

 Lower Fitzwilliam Street, Dublin 2
Ireland

 Simon.Dobson@aurium.net

Abstract: Buildings and spaces are complex entities
containing complex social structures and interactions. A
smart space is a composite of the users that inhabit it, the
IT infrastructure that supports it, and the sensors and
appliances that service it. Rather than separating the IT
from the buildings and from the appliances that inhabit
them and treating them as separate systems, pervasive
computing combines them and allows them to interact.
We outline a reactive context architecture that supports
this vision of integrated smart spaces and explore some
implications for building large-scale pervasive systems

1. Introduction

Buildings and spaces are complex entities containing
complex social structures and interactions. Organisations
increasingly look to their buildings to fulfil a function
more complex than simple accommodation: there is an
increased awareness that the "logic of space" can be used
to aid organisational goals such as increasing
communication. Architects, of course, have long
appreciated these issues and applied them to create
structures that can be simultaneously beautiful and highly
functional[27].

Buildings also contain increasing amounts of computing
infrastructure ranging from cabling, through sensors such
as burglar and fire alarms, up to environmental and other
controls. The decreasing cost of devices and the increased
desire for monitoring and control has led to a number of
companies to develop building control systems and
networks, allowing a central operator to observe the
building and affect aspects of it.

It is clear, however, that a largely "passive" building will
not always be suitable for its changing uses and users.
Someone visiting a building for the first time often
becomes lost or disoriented. Disabled users can have
difficulty navigating around buildings in which not all
routes may be accessible to them. Despite the availability
of IT services within the building, users cannot interact
with the building itself.

By contrast a smart building or smart space - a user
environment which is reactive to its surroundings and
occupants - can be viewed as a space that has been
designed and constructed with user interaction in mind.
Contextual use of space
Rather than separate IT from buildings and from the
appliances that inhabit them, and treating them as separate
systems, why not combine them and allow them to
interact? Why not provide a building that is sensitive to its
users, their locations, interactions and tasks - the context
within which they use the building's spaces and service -
and can provide seamless, autonomous support for their
activities? We believe in computer applications that react
to what users are doing in the real world, and provide the
only source of tools and expertise to making this happen.

In this paper we outline a reactive context engine that
supports this vision of integrated smart spaces.

What is Context?
Historically, the use of "context" grew from roots in
linguistics [6]. The term was first extended from implying
inference from surrounding text to mean a framework for
communication based on shared experience [7,8]. The
importance of a symbolic structure for understanding was
embraced in other fields such as
[9,10,11,12,13,14,15,16,17] and subsequently developed
from a purely syntactic or symbolic basis to incorporate
elements of action, interaction and perception.

More recently, in the setting of mobile computing,
"context aware" was at first defined by example, with an
emphasis on location, identity and spatial relationships
[18,19,20,21,22]. This has since been elaborated to
incorporate more general elements of the environment or
situation. Such definitions are, however, difficult to apply
operationally and modern definitions [23,24] generalize
the term to cover "any information that can be used to
characterize situation".

Current work in the field addresses issues including:

mailto:Simon.Dobson@aurium.net

2

• developing new technologies and infrastructure
elements, such as sensors, middleware,
communication infrastructures to support the capture,
storage, management and use of context.

• increasing our understanding of form, structure and
representation of context;

• increasing our understanding of the societal impact of
these new technologies and approaches and directing
their application;

A more detailed retrospective of the academic history of
context can be found in [25,26].

Tiered architectures

Modern enterprise systems architecture is built around a
"tiered" model. There is much discussion as to exactly
how many tiers should be used in an application, the
details of what each tier provides, etc. However, the
common theme is that each tier represents a level of
abstraction in the design of the system, allowing
developers to focus their attention at one level (for
example business logic) without having to worry about the
details of other levels (such as storage management). For
this approach to function, each tier needs to export an
agreed set of interfaces exposing its functions to its
neighbouring tiers. The implementation of these interface
functions may be changed freely, and these changes will
not affect other tiers accessing them through the interface.
A typical model is the five tier architecture shown below:

Figure1: A five-tier architecture

This industry accepted architectural style has evolved,
most recently in areas such as webservices, because it
supports a stable and appropriately partitioned design
approach. However, consider this approach from the
perspective of providing dynamically adaptive systems
which are:

• User centred – configured on the fly for the user;

• Supporting dynamic aspects;
• Respnsive to the changing environmental

characteristics; and
• Responsive to the different networked appliances in

the proximity.

Such systems must take account of changing and varying
contextual information. In the rest of this paper we
consider the industrial needs for architectures that support
context as a core concept.

Adding context

As organisations deliver context-enhanced applications to
their users, context services will be integrated into the
tiered, web-service-based enterprise architectures that are
becoming recognised as best practice. Imagine that you
can monitor your users physical activity and location and
then tailor the response of the local appliances to that
users needs. This is what context can do for a system.
Context enhancement brings together a collection of
information streams - location, diaries, preferences, time,
appliances characteristics, access policies and situation -
the context - and reacts to combinations of this
information based on a simple scripting interface. It is true
to say that most context solutions can be achieved by
developing point solutions: however these become
complex very quickly. In this paper we outline a single
platform based development solution that can be used to
transform software components and applications into
context aware solutions.

The impact of context on architecture

The first question to ask is: how does the use of context
affect the purpose the architecture is intended to serve?
The most obvious impacts of context are in the front tiers
- presentation and session. An application may wish to
change its presentation based on a user's context, for
example by moving automatically from an instant message
to an SMS when a user leaves their office.
However, we may also see contextual changes on other
tiers. For example, some processes may be intrinsically
"easier" in some contexts than others, and could be
streamlined. Alternatively a system might adapt the
processes available in a session to avoid those that would
be inappropriate for whatever reason, or provide monitor
service delivery and react to potentially costly breaches in
service-level agreements.
This cross-tier impact is what differentiates full-on
contextual enhancement from simple location-based
services, device transcoding or personalisation. A simple
presentation tier add-on such as transcoding, for example,
may allow applications to target the user's device but

3

cannot capture and express the business implications of
this choice - such as a reduction in security or attention, or
the reduction in detail in the services being provided. A
context-enhanced application, by contrast, can draw
application-level implications from the low-level
information about devices, allowing adaptation across the
whole application. This removes context enhancement
from the "gimmick" category and moves it to the status of
an infrastructural service with enterprise impact.

Context: conditioning the layers

In general, one may view context as conditioning the
behaviour of the tier in an architecture. That is to say, the
way the tier provides its functions will be affected by the
context in which those functions will be used.

Figure 2: Context Presentation

The effect of context is to inform the way in which tiers
dispatch their exported functions to the objects and
services used to provide them. For example,
contextualising the presentation tier above may cause a
single user interface function (such as "show the user this
alert") to be implemented differently whether the user is
using a workstation or a small device, or in one location
rather than another.
However, context can affect more than simply
presentation, and it is here that the differences between
context and simple location services or user preferences
becomes apparent. An interface might change because of
device or location - but also because of task, or the
presence of other people, or some other high-level trigger.
By maintaining a contextual model of users, applications
can leverage contextual triggers across their entire
operation rather than simply as add-on personalisation or
location adaptation in the front tiers. The model is
uniform and can be used, and make use of, elements

deriving from anywhere in the architecture, not simply
from user interface cues.

Integrating contextual services into a tiered
architecture

The philosophy behind tiered architectures is to separate
concerns in a system into different levels of abstraction
and then encapsulate each level behind its own interface
within its own distributed service. There is a degree of
"linearity" implicit in the approach, in that tiers interact
with their neighbours and do not "jump" to use tiers
arbitrarily. This preserves the abstraction boundaries.
Contextual modeling has an end-to-end impact, however,
and so is not a "neighbour" of any tier. For maximum
effect a contextual model should accept information from
anywhere and be used everywhere.

Figure 3: Integrating Context

One way to resolve this is to situate context modeling
outside the normal tier structure. This does not violate the
attractive properties of the tiered approach, as the context
model can present a uniform, well-encapsulated interface
to every tier.

The model takes input from the environment of each tier
affected. For the presentation tier, this might include the
user's device, preferences and location; for the business
logic tier their tasks and roles within the application. It
unifies these environmental factors into a model of the
systems users' that may then be used to inform the
selection of services within each tier.

4

Implications for tier design

This approach - providing a uniform model accessible
across the architecture - does have some implications for
tier interface design and function selection.

The most important factor is that context forces
abstraction upon tiers. This is most obvious in the
presentation tier: if the details of the interface can be
changed by context, then the tier interface can only expose
abstract functions rather than detailed access to the
individual component objects that might be used. The
reason for this is simple: if the details are exposed and
then change, all tiers accessing those detailed functions
are impacted.

More subtly, the tier cannot allow any assumptions about
interfaces to propagate across its interface. This is
sometimes more difficult. Consider, for example, the case
where the application wants to "alert" the user to some
event. Not all interfaces have obvious alert capabilities:
HTML pages, for example, are not typically "pushed" at
the client. Providing the alert function may have
implications for the design of the exposed functions in the
interface.

Conclusion

This paper sets out to provide a guide to adding context-
enhanced mobile services to existing IT architectures,
highlighting the importance of such an architecture for
smart spaces.

We identify that context affects architecture by providing
a uniform and well-founded framework within which to
control and adapt the behaviour of a system to changing
user circumstances. There are implications in the design
of tiers and their interfaces needed for these benefits to be
fully realised, but these changes reflect good software
engineering practices and have other benefits anyway.

Many development tools provide the basics of context,
mainly focused on the presentation tier of an architecture.
However, the major benefits accrue from the end-to-end
use of context throughout an enterprise architecture. The
architecture described in this paper directly addresses this
end-to-end problem.

References

[1] Software Process Modeling and Technology, edited
by A. Finkelstein, J. Kramer and B. Nuseibeh,
Research Studies Press, John Wiley and Sons Inc,
1994.

[2] J. Estublier, P.Y.Cunin, N. Belkhatir, "Architectures
for Process Support Ineroperability",
ICSP5,Chicago, 15-17 juin, 1997.

[3] J. L. Crowley, "Integration and Control of Reactive
Visual Processes", Robotics and Autonomous
Systems, Vol 15, No. 1, décembre 1995.

[4] J. Rasure et S. Kubica, “The Khoros application
development environment “, in Experimental
Environments for computer vision and image
processing, H. Christensen et J. L. Crowley, Eds,
World Scientific Press, pp 1-32, 1994.

[5] M. Shaw and D. Garlan, Software Architecture:
Perspectives on an Emerging Disciplines, Prentice
Hall, 1996.

[6] T. Winograd, “Architecture for Context”, Human
Computer Interaction, Vol. 16, pp401-419.

[7] R. C. Schank and R. P. Abelson, Scripts, Plans,
Goals and Understanding, Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1977.

[8] M. Minsky, "A Framework for Representing
Knowledge", in: The Psychology of Computer
Vision, P. Winston, Ed., McGraw Hill, New York,
1975.

[9] M. R. Quillian, "Semantic Memory", in Semantic
Information Processing, Ed: M. Minsky, MIT Press,
Cambridge, May, 1968.

[10] D. Bobrow: "An Overview of KRL", Cognitive
Science 1(1), 1977.

[11] R. Brooks, , "A Robust Layered Control System for
a Mobile Robot", IEEE Journal of Robotics and
Automation, RA-2, no. 1, 1986.

[12] A. R. Hanson, and E. M. Riseman, , VISIONS: A
Computer Vision System for Interpreting Scenes, in
Computer Vision Systems, A.R. Hanson & E.M.
Riseman, Academic Press, New York, N.Y., pp.
303-334, 1978.

[13] B. A.Draper, R. T. Collins, J. Brolio, A. R. Hansen,
and E. M. Riseman, "The Schema System",
International Journal of Computer Vision, Kluwer,
2(3), Jan 1989.

[14] M.A. Fischler & T.A. Strat. Recognising objects in a
Natural Environment; A Contextual Vision System
(CVS). DARPA Image Understanding Workshop,
Morgan Kauffman, Los Angeles, CA. pp. 774-797,
1989.

[15] R. Bajcsy, Active perception, Proceedings of the
IEEE , Vol. 76, No 8, pp. 996-1006, August 1988.

[16] J. Y. Aloimonos, I. Weiss, and A. Bandyopadhyay,
"Active Vision", International Journal of Computer
Vision, Vol. 1, No. 4, Jan. 1988.

5

[17] J. L. Crowley and H. I Christensen, Vision as
Process, Springer Verlag, Heidelberg, 1993.

[18] B. Schilit, and M. Theimer, “Disseminating active
map information to mobile hosts”, IEEE Network,
Vol 8 pp 22-32, 1994.

[19] P. J. Brown, “The Stick-e document: a framework
for creating context aware applications”, in
Proceedings of Electronic Publishing, ’96, pp 259-
272.

[20] T. Rodden, K.Cheverest, K. Davies and A. Dix,
“Exploiting context in HCI design for mobile
systems”, Workshop on Human Computer
Interaction with Mobile Devices 1998.

[21] A. Ward, A. Jones and A. Hopper, “A new location
technique for the active office”, IEEE Personal
Comunications 1997. Vol 4. pp 42-47.

[22] K. Cheverest, N. Davies and K. Mitchel,
“Developing a context aware electronic tourist
guide: Some issues and experiences”, in Proceedings
of ACM CHI ’00, pp 17-24, ACM Press, New
York, 2000.

[23] J. Pascoe “Adding generic contextual capabilities to

wearable computers”, in Proceedings of the 2nd
International Symposium on Wearable Computers,
pp 92-99, 1998.

[24] Dey, A. K. “Understanding and using context”,
Personal and Ubiquitous Computing, Vol 5, No. 1,
pp 4-7, 2001.

[25] J. L. Crowley 1 , J. Coutaz , G. Rey and P. Reignier,
“Perceptual Components for Context Aware
Computing”, Proceedings of Ubicomp 2002,
Sweden, September 2002.

[26] P Nixon, S Dobson, and G Lacey (Eds), Managing
Interaction in Smart Environments, Springer Verlag
Press, pp. 220, 1999.

[27] W Hillier, Space is the machine, Cambridge
University Press, 1996.

6

	Contextual use of space
	Tiered architectures
	Figure1: A five-tier architecture
	Adding context
	The impact of context on architecture
	Context: conditioning the layers
	Figure 2: Context Presentation
	Implications for tier design

