
Self-Managing and Self-Organising Mobile Computing
Applications: a Separation of Concerns approach

ABSTRACT
Self-organising systems are being developed in an ad-hoc
way, without reusing functionalities, thus producing a soft-
ware di�cult to maintain and to reuse in other applications.
The development of self-organising applications and a for-
tiori the one of self-organising mobile applications is lim-
ited to developers who are experts in specific self-organising
mechanisms. This paper discusses the notion of self-organising
mechanisms provided as services for building higher level
functionality in a modular way, reusing functionality and
thus, providing separation of concern. Additionally, be-
cause of the dynamic and heterogeneous nature of mobile
networks, services need to adapt themselves, in order to en-
sure both functional and non-functional requirements. This
paper discusses as well whether the self-management of self-
organising mobile applications can be achieved in a mod-
ular fashion through the self-management of low level self-
organising services it employs, rather than considering the
management of the complex system as a whole. We em-
pirically investigated two non-functional aspects: resource
optimisation and accuracy.

1. INTRODUCTION
Devices with wireless communication capability and com-

putational power such as mobile phones, tablets, and, more
recently, cars are gaining the capability to build large, dense,
opportunistic infrastructures, such as MANETS and VANETS,
over which a wide range of novel applications will be deploy-
able.

Amongst the challenges facing these infrastructures is the
need to support application requirements such as robust-
ness, scalability and adaptability in the face of dynamic be-
haviour: node mobility and churn, variable node densities,
host heterogeneity and network segmentation.

A promising approach to architecting services for such
infrastructures is provided by self-organising systems [37].
Self-organising systems consist of a set of autonomous enti-
ties – software agents, in this case physically distributed –
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that collaborate to provide emergent and collaborative be-
haviour without global state or control. Self-organisation
principles can be applied at several levels, from self-organising
design patterns that describe re-usable solutions for recur-
rent problems in engineering self-organising systems [13, 12,
15], to execution models that provide new paradigms for
computing self-organising applications [33, 10, 14], and self-
organising methodologies [31]. These bottom-up techniques
are based on local interactions between neighbours, which
contribute to achieving both desired functionality and non-
functional properties such as robustness, scalability, and adapt-
ability. However these are not automatic outcomes of their
application and although obtained as a result of the self-
organisation process are limited in their scope [7]. Rather,
many self-organisation techniques must be optimised for their
operating environment and are not meant to overcome all
possible environmental situations. Additionally, self-organising
systems are being developed in ad-hoc way, without reusing
functionalities, producing a software di�cult to maintain
and reuse in other applications.

We identify three key issues:

• There is a lack of separation of concern and reuse of
functionality in engineering self-organising systems.

• Self-organising algorithms are very sensitive to their
parameters, which need to be tuned both at design
time and run-time based on perceived context.

• It is generally the case that no single implementation
of a basic self-organising mechanism, even finely tuned,
is capable of handling all possible operating environ-
ments, thus it may be desirable to switch between
di↵erent implementations based on context perceived
from an agent’s operating environment. This allows
the targeting of, in addition to specified non-functional
requirements, results accuracy, performance optimisa-
tion, availability or accessibility of a service.

How to engineer self-organising mobile applications in a
modular way, using operator as building blocks for building
higher level functionalities is still an open challenge. Addi-
tionally, if we think about builiding blocks acting as services
for composing higher level services or application, these ser-
vices should ensure not only functional requirements, but
also non-functional ones, by adapting their behaviour de-
pending on contextual information (e.g. network mobility,
speed of nodes, or density of nodes).

Such self-organising services then require self-management
in order to flexibly handle dynamic environments with min-
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Figure 1: The Self-organising Design Patterns catalogue [15]

imal human intervention and allowing higher-level applica-
tions to reuse them.

We take a larger view here and consider it is important
to separate the concerns in the following ways: (1) self-
organising mechanisms - previously identified as building
blocks from which higher level self-organising systems and
applications can be constructed [12] - are provided as (reusable)
services; (2) any application requiring the use of such a self-
organising service relies on that service to self-manage and to
provide non-functional aspects corresponding to the applica-
tion’s requirement and available contextual information; (3)
a self-organising service relies on its operating environment
to handle part of its non-functional behaviour.

Rather than considering the management of the complex
system as a whole, this paper investigates instead whether
the self-management of complex self-organising systems can
be achieved in a modular fashion: through the use of reusable
self-organising services and through the self-management of
the self-organising services. In this paper we focus on two
non-functional aspects: resource optimisation and accuracy
of spatial structures in a mobile environment.

The paper is structured as follows. Section 2 discusses
related works. Section 3 highlights separation of concerns,
and discusses the notions of self-organising mechanisms as
services, non-functional aspects and self-management as a
responsibility of the underlying environment. Section 3.4
shows how self-management acts hand in hand with self-
organisation. Section 4 discusses implementation aspects,
before Section 5 shows a proof of concept and experimental
results on a mobile applications, highlighting three levels
of self-organising services, each level using the level below:
from spreading, to dynamic gradient to chemotaxis. Section
6 concludes the paper.

2. RELATED WORK
This section briefly reviews the state of the art related to

the engineering of self-organising systems in a modular way,
as well as current approaches to non-functional aspects such
as optimisation and adaptation to mobile conditions.

2.1 Separation of concerns in self-organising
systems

Separation of concerns in engineering self-organising sys-
tems has not been widely addressed in the literature. Fernandez-
Marquez et al. [14] propose the use of low level self-organising
mechanisms to build higher-level self-organising mechanisms
and functionalities. However, this work does not discuss how
these low level mechanisms have to be implemented in order

to deal with di↵erent scenarios and how they can actually be
reused by applications under di↵erent environmental condi-
tions. Pursuing this idea, Giovanna Di Marzo Serugendo et
al.[8] present the notion of self-organising services actually
proposing self-organising mechanisms as services that can
be reused many times and by many applications. This work
does not discuss self-manageming and non-functional issues.
In this paper, we leverage from these works: we focus on the
implementation of these self-organising services and on their
self-management and adaptation to di↵erent environmental
conditions, such as node speed, densities, or availability of
contextual information.

2.2 Optimisation and adaptation in self-organising
systems

We start from the one of the first and most relevant self-
organising systems, Ant Colony Optimisation (ACO), which
was proposed in 1999 to find shortest path problems on
a graph for instances of the Travelling Salesman Problem
(TSP) [9]. It demonstrates that each instance of the TSP
requires ACO parameters to be tuned in order to achieve
e�ciency. Extensions of ACO algorithms such as [17] and
[38] have proposed di↵erent approaches to make the system
more adaptive, able to deal with di↵erent problems with-
out requiring human intervention to reset the parameters
and perform well. Gaertner et al. [17] consider the inter-
dependencies between parameters and conduct a correlation
study which leads to a quicker convergence for parameter
settings. Yoshikawa et al. [38] introduce a new type of ant
called crankyant to prevent trapping at local optima; that
is, the cranky ant explores the path which has not been
selected and thus enables to change the search area. Pa-
rameter updates are based on the reinforcement of positive
feedback.

Many self-organising mechanisms have been proposed since
ACO including Particle Swarm Optimisation (PSO) [19],
Chemotaxis [25], Flocking [27], and Morphogenesis [21]. Most
of these are similarly challenged to handle di↵erent scenar-
ios, with their optimal parameterisation dependent on the
specific problem being targeted. Many extensions of the al-
gorithms have been proposed in order to mitigate this con-
cern, resulting in a large number of di↵erent implementa-
tions that are di�cult to evaluate and compare because of
their context dependent behaviours.

Some examples of extensions of these self-organising algo-
rithm in order to improve their performance in a wider set
of scenarios include: Dasgupta et al. [5] propose an optimi-
sation for adaptive computational chemotaxis in bacterial
foraging. Folino et al. [16] propose an adaptive multi-agent
algorithm to cluster spatial data.

In this paper, analogously to the above related work, we
target the adaptation of self-organising systems in order to
improve non-functional aspects, such as their performance
and behaviour adaptation in di↵erent scenarios. Instead
of extending specific high-level self-organising mechanisms,
such as chemotaxis, flocking or morphogenesis, we first build
such high-level mechanisms in a modular fashion and in the
form of services. Chemotaxis is built from using a gra-
dient and spreading service. Second, we tackle the self-
management issues (performance and adaptation) by pro-
viding self-management at each level, i.e. at each self-organising
service, from spreading to gradient to chemotaxis itself.



3. SEPARATION OF CONCERNS
In this section we expand on our main points for address-

ing separation of concerns in mobile computing applications:
self-organising mechanisms provided as services; complex
self-organising high-level services or applications depend on
them and are modularly designed; low-level self-organising
services need to exhibit functional characteristics but also
non-functional characteristics as requested by the services
or applications that use them; the self-management aspect
is the responsibility of the operating environment. We il-
lustrate our discussion using three self-organising mecha-
nisms: Spreading, Gradient (using Spreading and Aggre-
gation), and Chemotaxis relying on Gradient. These three
mechanisms are also the subject of our proof of concept and
experimental analysis detailed in Section 5.

The choice of these mechanisms for mobile computing ap-
plications is motivated by previous work in mobile, pervasive
and context-aware scenarios [3], where spatial structures [2,
1] spread among mobile devices and maintain themselves de-
spite the mobility or changing density of the nodes. These
spatial structures are then used for developing applications
such as steering groups of people in crowded areas [24],
querying and retrieving information among mobile nodes.

3.1 Self-organising mechanisms as services
Fernandez et al. [15] identified a catalogue of self-organising

mechanisms and described the relations between them, as il-
lustrated in Figure 1. This catalogue shows the boundaries
between mechanisms and how basic mechanisms are used to
compose more complex ones. Leveraging this observation,
self-organising mechanisms can clearly be delineated and dis-
tinguished from each other, paving the way towards modular
designs and separation of concerns in the engineering of self-
organising complex applications. Contrastingly, we could,
for instance, implement an Ant Colony algorithm where the
responsibility of Spreading, Aggregating and Evaporating
pheromones are embedded in the agents (ants). However,
that prevents reuse of code and modular design of the ap-
plication.

Following this idea, a middleware for engineering self-
organising systems [39] has been developed in which, the
basic mechanisms are provided as “core” services. Higher-
level self-organising mechanisms and applications rely on
these low-level mechanisms, use and activate them as op-
erators in order to build modular self-organising systems.
Here, the responsibility of the middleware is to provide a
set of low level services (e.g. spreading, aggregation, evap-
oration, etc.) that higher level services and application can
reuse to design and implement self-organising behaviours.

To illustrate these ideas in more depth, we now consider
how the three patterns Spreading, Gradient and Chemotaxis
are linked to each other and how they can be designed in a
modular way, and provided as services.

Spreading. A spreading mechanism, also called flooding
or propagation is a mechanism where a piece of information
is periodically sent by nodes, and eventually reaches all the
nodes in the infrastructure.

Spreading algorithms have been widely used as a basis for
implementing routing protocols in mobile networks, such as,
DSR [18] and AODV [29]. There are many di↵erent schemes
for implementing propagation: probabilistic, counter based,
distance based or position based propagation [26, 36]. Each
scheme has the goal of reducing the number of messages
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Figure 2: Chemotaxis Pattern - adapted from [6]

transmitted and thus, the chance of collision and contention.
Spreading is a key pattern in self-organising systems be-

cause almost all self-organising algorithms use it to imple-
ment inter-entity communication. It is provided as a service
or as an operator ready to be used by the underlying middle-
ware, and has the responsibility of propagating or di↵using
data for higher-level services or applications.

Gradient. The Gradient Pattern [15] is an extension
of the Spreading Pattern where information is propagated
in such a way that it provides an additional information
about the sender’s distance: either a distance attribute is
added to the information; or the value of the information
is modified such that it reflects its concentration - higher
concentration values meaning the sender is closer, such as in
ants pheromones.

The Gradient Pattern has been used in problems such as
coordination of swarms of robots [28], coordination of agents
in video games [23], or routing in AD-HOC networks [30].

In terms of services, the Gradient service makes use of the
Spreading service in order to di↵use itself in a distributed
environment.

Chemotaxis. The Chemotaxis Pattern, initially pro-
posed by Nagpal [25], provides a mechanism to perform mo-
tion coordination in large scale systems. The Chemotaxis
Pattern extends the Gradient Pattern: agents use the gradi-
ent direction to decide the direction of their next movements.

The concentration of a gradient guides the agents’ move-
ments in three di↵erent ways, as shown in Figure 2: (1)
attractive movement, where agents change their positions
by following higher gradient values, (2) repulsive movement,
where agents follow lower gradient values, incrementing the
distance between the agent and the gradient source, and (3)
equipotential movement, when agents follow gradients be-
tween thresholds.

Chemotaxis has been used by Mamei et al. [22] to coordi-
nate the position of a swarm of simple mobile robots, Viroli
et al. [34], where chemotaxis is applied to route messages in
pervasive computing scenarios, and Fernandez-Marquez et
al. [11] to find di↵use event sources in noisy wireless sensor
networks.

In terms of services the Chemotaxis service uses the lower-
level Gradient service (triggered previously by other parts
of the system or the application), which in turn uses the
Spreading for its own propagation.

3.2 Self-organising services: non-functional as-
pects and tradeoffs



Self-organising systems have been shown to adapt in re-
sponse to environmental changes, be scalable and fault tol-
erant. However, each self-organising algorithm faces those
problems partially and not for all possible environmental
conditions. Many proposals have been presented to improve
the performance of self-organising systems by tuning the al-
gorithms, allowing the algorithms to converge faster or to
deal with a wider number of problems, de facto improving
the adaptiveness of the algorithms.

Services that provide functionality achieved through self-
organising algorithms regularly must ensure a certain qual-
ity of service, when dealing with dynamic environment, and
thus satisfy both functional and non-functional requirements.

For example, in the case of Spreading, a service could
employ a probabilistic propagation scheme fixed with a low
propagation probability in a very dense network, ensuring
that all nodes receive the information. However, the same
probability in a less dense network can reduce dramatically
the reachability of the spread, preventing many nodes from
receiving the information. Alternatively we could use a
location-based spreading algorithm, but if not all nodes have
GPS information, the algorithm’s performance will decrease.
Thinking modularly, a Spreading service is responsible for
ensuring that all connected nodes receive the information.
It must control its own behaviour, i.e. the probability of
propagation, or the choice of algorithm in order to deliver
the correct functionality and e�ciently use resources when
dealing with dynamic and heterogeneous environments.

A self-organising service should contain self-management
properties in order to adapt parameters when the environ-
mental conditions require it, and also to switch among algo-
rithms depending on contextual information available.

As another example, we consider a Dynamic Gradient that
maintains and updates a spatial structure that provides an
estimation about the direction and distance from the gra-
dient source. It has been demonstrated that dynamic gra-
dients are able to deal with network mobility, however, its
parameters play a key role. If a dynamic gradient is updated
at a high frequency, its bandwidth usage is high, however if a
dynamic gradient is updated at a low frequency and the net-
work is highly dynamic, the gradients paths will frequently
not accurately reflect the true state of the world, potentially
a↵ecting the quality of service characteristics of the applica-
tions or higher-level services that use it. When a gradient is
provided as a service, the application requesting the service
must not be in charge of setting the update frequency, nei-
ther should it decide on the best gradient implementation.
A gradient provided as a service must be able to control its
own behaviour in order to allow applications to rely on it.

The trade-o↵s between parameter values is also highlighted
in the design pattern catalogue mentioned above, under the
Forces field of the pattern description. Forces refers to the
important parameters or trade-o↵s that must be taken into
account during the implementation (usually contextual in-
formation). Forces are extremely important in order to en-
sure functional and non-functional aspects of each pattern.
Although the forces can be established at application design
time, in the experimental section we demonstrate that forces
need to be adaptive depending on contextual information.
This is where self-management plays a key role—controlling
the selection of di↵erent implementations and tuning of their
parameters in order to increase the performance of the sys-
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Figure 3: Self-management at di↵erent levels

tem and therefore satisfy service, application, and user re-
quirements.

3.3 Self-managing self-organising services: a
responsibility of computational environments

Weyns et al. review the responsibilities of the environ-
ment in multi-agent systems and define the computational
environment as: “. . . a first-class abstraction that provides
the surrounding conditions for agents to exist and that me-
diates both the interaction among agents and the access to
resources” [35]. They emphasise that all responsibilities that
are not managed by the environment (i.e. by the middleware
infrastructure) need to be addressed by the agents. Thus,
the computational environment plays a key role as an active
agent in the engineering of multi-agent systems.

As we have seen above, in addition to the functional as-
pects of these services, it is also important to consider non-
functional requirements, such as bandwidth usage, scalabil-
ity, resource consumption, and fault tolerance. This is why,
in the same way that low-level self-organising mechanisms
are provided as services by the middleware, the middleware
must also be in charge of ensuring non-functional require-
ments and of optimising the use of resources to guarantee
the scalability of applications running on top of it.

3.4 Layered Self-Management
We identify and analyse two di↵erent ways of managing

the adaptation of low-level self-organising services to im-
prove the non-functional aspects of our layered self-management
framework for which the middleware is responsible: (1) pa-
rameter adaptation - almost all self-organising algorithms
need to tune their parameters depending on the environ-
mental conditions. Here, we propose that the middleware,
as a first class entity, is in charge of managing the adaptation
of parameters in order to optimise the performance of the
services it runs and guarantee the harmony (i.e., balance) be-
tween di↵erent applications running on the middleware; (2)
service switching - di↵erent algorithms can satisfy similar
functional requirements (e.g., spreading can be configured to
be location based or probabilistic), however the performance
of non-functional requirements may be di↵erent.

The solution presented in this paper can be extended to all



patterns presented in Figure 1. Here, we focus on one design
pattern at each level: Spreading, Gradient, and Chemotaxis,
as shown in Figure 3.

Services proposed at di↵erent levels come with di↵erent
implementations. The computational environment automat-
ically switches between them in order to satisfy functional
and non functional requirements.

As we described in the previous section, Spreading can be
implemented with di↵erent algorithms such as probabilistic
or location-based approaches, and thus provided by di↵er-
ent instances; each instance being the optimal choice for
a specific scenario. Based on contextual information, the
middleware switches among the di↵erent instances of the
Spreading service depending on the situation. Additionally,
each instance of the service (i.e., each implementation) must
be able to adapt its own parameters. For example, a prob-
abilistic propagation must be able to adapt the probability
in order to reduce the number of messages sent and to keep
a high reachability.

A Gradient service must be able to switch between static
and dynamic gradients depending on the perceived mobility
of the network. Moreover, the dynamic gradient implemen-
tation should be able to adapt the frequency of gradient
updates accordingly with the speed of the nodes.

4. IMPLEMENTATION
The above proposal for self-managing and self-organising

services has been implemented as an extension of the SAPERE
middleware [39], developed by the SAPERE EU Project 1.

The SAPERE middleware runs in two di↵erent platforms:
(1) A JAVA middleware for laptops and mobile Android de-
vices (i.e. tablets and mobile phones), and (2) in an oppor-
tunistic network environment simulator called The ONE [20]
where each simulated mobile device executes an instance of
the actual SAPERE middleware.

This extension of The ONE with the SAPERE middle-
ware, so called, The ONE-SAPERE plays a key role in pro-
totyping and validating new functionalites before they are
released for its use in real mobile devices.

4.1 The SAPERE middleware
The SAPERE middleware provides an active computa-

tional environment where information injected by agents is
subject to chemical reactions. The active computational
environment, implemented as an active tuple space, is in
charge of executing environmental tasks, such as, Spread-
ing, Evaporation, and Aggregation of information (i.e. low-
level self-organising mechanisms provided as core services by
the middleware). These services are implemented as chemi-
cal reactions and they act on the tuples stored in the tuple
space depending on their properties. Thus, to propagate an
information through the network, it su�ces to inject a tuple
containing that information and a property “SPREAD”.

Notice that each mobile device contains a tuple space, so
information stored in the tuple space is local to each node,
and it is the Spreading service that propagates the informa-
tion among tuple spaces (i.e. among nodes).

We developed the di↵erent services shown on Figure 3.
In each node and depending on local conditions, the mid-
dleware adapts parameters of core services (e.g. Spreading
more or less quickly, or to more or less neighbours) and

1http://www.sapere-project.eu/

switches algorithms (e.g. switching from a Static Gradi-
ent when nodes are stationary to Dynamic Gradient when
nodes are moving). More details about the management of
the Spreading service are given below.

Detailed information about the architectural design or
how the code is computed in the SAPERE middleware can
be found in [14, 39]. Additional details about the work pre-
sented in this paper can be found in [4].

4.2 Spreading service - Implementation
We discuss here the di↵erent variants we implemented for

the Spreading service.
We focused the optimisation of propagation in two dif-

ferent directions: (1) to reduce the number of nodes that
re-send the information by a given probability; or (2) to re-
duce the number of nodes that resend the information based
on their positions, which requires information about their
position in the system.

We describe first three baseline schemes towards which we
later compare our results: Pure, Probabilistic, and Location-
based Spreading as described in [26]. We then present two
new propagation schemes proposed by us: Adaptive proba-
bilistic, and Switching propagation.

Pure Propagation, also called pure flooding or blind
flooding is a basic algorithm for propagating information.
Basically each node that receives the propagation informa-
tion for the first time re-send it to all neighbouring nodes.

Pure propagation produces a high number of messages
involving network overload, in addition to collisions, con-
tention and redundancy.

Probabilistic propagation. In order to reduce the num-
ber of messages, consequently reducing the chance of con-
tention and collision, an intuitive approach is to govern the
decision as to whether or not to send a message with a spec-
ified probability [32].

Notice that the same probability may not work for all dif-
ferent scenarios, i.e., scenarios with very low density of nodes
would need to propagate information with higher probability
than scenarios with high density of nodes.

Location-based propagation is a family of algorithms
that take into account the position of neighbouring nodes, in
order to decide which nodes should re-send the information.
The main idea is to reduce the number of nodes that re-send
the information based on the nodes’ positions.

Location-based approaches present very good results com-
pared with pure and probabilistic propagation schemes, how-
ever, the computation carried on at each node is more com-
plex, and relies on nodes providing their positions accurately.
Location-based implementations can be extended by taking
into account neighbouring nodes of 2 hops distance, further
optimising the reduction in the number of messages sent,
but increasing dramatically the computation at each node.

Adaptive probabilistic propagation is an extension
of the probabilistic propagation where the probability is a
parameter adapted on-the-fly (by the middleware) depend-
ing on contextual information (i.e. number of neighbouring
nodes).

Switching propagation is the result of combining Adap-
tive probabilistic and Location-based propagation. Namely,
we add a self-management policy that switches between these
two algorithms depending on the availability of positional
information.



4.3 Policies
We present here the policies that the middleware applies

when managing the Spreading service. They are as follows:
Policy 1: If neighbouring nodes have access to location

information, the middleware switches to a Location-based
approach for propagating the information.

Policy 2: If neighbouring nodes do not have location
information, the middleware uses a probabilistic approach.

Policy 3: In case of adaptive probabilistic approach, the
probability of propagating the information at each nodes is
adapted based on the number of neighbouring nodes. This
probability follows an equation calculated o↵-line and based
on simulation results.

5. PROOF OF CONCEPT
In this paper, as a proof of concept to validate our ap-

proach to self-managing and self-organising services, we im-
plemented and evaluated the Spreading service (as described
above), we then implemented the Gradient Service that uses
the Spreading service, and finally the Chemotaxis Service us-
ing the Gradient service. Notice that the results below only
the Spreading service is self-managed by the use of policies.
We used Dynamic Gradient and Chemotaxis (token-based).

The major aspects that we highlight are: (1) It has been
demonstrated in the literature (see [26]) and in our exper-
imental results that the parameters of the di↵erent propa-
gation algorithms can cause failures if they are not set up
accordingly to the environment conditions; (2) the dynamic
adaptation of parameters reduces the probability of failure,
and improves the performance (adapting the probability of
the probabilistic propagation according to the density of
nodes); (3) some algorithms performs better than others,
but they require information that sometimes is not avail-
able (i.e. Location-based scheme provides better results, but
it requires all nodes to provide their position information.)
Thus, the need for switching from one algorithm to another
depending on the contextual information available; finally,
(4) a Spreading service should be able to provide an e�-
cient implementation to higher level services or applications
independently of the environmental conditions.

In these preliminary experiments we have used The ONE-
SAPERE simulator. The main setting of the simulations
are: a bidimensional space (500m x 500m), a number of
nodes between 150 and 600 moving at 2-4m/s, communica-
tion range of 80 meters, and a random walk mobility pat-
tern. This simulator uses the actual SAPERE middleware
and code in the nodes. What is simulated is the nodes move-
ments and communication collisions.

Figure 4 shows the number of messages used to create and
keep updated a Gradient, when that Gradient service uses
di↵erent propagations schemes provided by the Spreading
Service. The worst results regarding the number of messages
are provided by the Pure propagation (i.e. no policies are
applied and every node broadcast the information). The
best results are provided by both the Adaptive propagation
using the policy that adapts the probability depending on
the density of nodes, and also by the Switching propagation
since it combines all cases and exploits all policies discussed
above.

In this experiment only 50% of nodes are providing loca-
tion information. Thus, the Location-based algorithm is not
performing better than the Adaptive propagation.
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Figure 5: Gradient using di↵erent propagation algorithms -
Accuracy

Figure 5 shows the accuracy of the dynamic gradient at
each simulated second. The accuracy is the percentage of
nodes (x100) that are properly updated, thus, accuracy equals
to 1 implies a perfect gradient. We observe that the variants
of the Spreading service that are less e�cient (in terms of
message consumption) naturally support the Gradient ser-
vice in reaching higher accuracy. Through self-management
we improve the number of messages used to build and main-
tain a Dynamic Gradient. This involves a slightly deterio-
rated quality in the accuracy of the Gradient (at each point
in time and in average). At the level of the Chemotaxis
service, that uses Gradient, we observed the quality of the
accuracy has no significant e↵ect on the Chemotaxis quality.
Indeed, Chemotaxis experiments involved one node send-
ing messages to the source of the gradient. We measured
the percentage of messages properly delivered and the to-
tal number of messages sent. Results showed that messages
were properly delivered (100%) to the gradient source and
that the number of messages needed for routing the informa-
tion was similar for the di↵erent spreading implementations.
Thus, the Chemotaxis service routes information e�ciently
while the number of messages for creating and maintaining
the gradient structure is lower when self-managed spreading
is used.

Figure 6 shows the propagation of a gradient among the
nodes. The black lines represent the shortest path for reach-
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Figure 6: Gradient Creation - 200 nodes

ing the gradient source.
We conclude that the self-management of the Spread-

ing service, allows the implementation of the Gradient and
Chemotaxis services in an e�cient way, while keeping sim-
ilar performances in terms of accuracy. A major aspect of
this approach is the fact that neither the Gradient service
nor Chemotaxis are in charge of deciding how the informa-
tion must be propagated in the system. Thus, delegating
the responsibilities on the Spreading Service.

6. CONCLUSIONS
In this paper we showed how self-organising mechanisms

can be provided as services that other higher-level services
or applications can use and rely on. We also stated that
the computational environment needs to be in charge of
both providing those mechanisms as services and guaran-
teeing non-functional aspects. Self-management is achieved
in two ways, either through seamless switching among di↵er-
ent instances of the same service or by tuning parameters at
run-time. We implemented this approach on a tuple based
middleware (i.e. each mobile device contains its own tuple
space) and showed how to develop e�cient high-level self-
organising services (Chemotaxis and Gradients) in a modu-
lar way that relies on lower-level ones (Spreading), and how
to tackle two non-functional aspects, accuracy and resource
optimisation. We believe that this opens a new door in en-
gineering reliable and controllable self-organising systems.

In future works, we will consider methods to request a
quality of service from lower-level services, and how this can
be propagated to and guaranteed by lower-level services. We
also plan to explore the use of machine learning techniques
in order to allow the low level self-organising services to
adapt their behaviour in order to satisfy quality requests
and ensure an e�cient usage of resources.
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