
Human-Behaviour Study with Situation Lattices
Juan Ye

CLARITY: Centre for Sensor Web Technologies
University College Dublin

Dublin, Ireland
juan.ye@ucd.ie

Simon Dobson
CLARITY: Centre for Sensor Web Technologies

University College Dublin
Dublin, Ireland

simon.dobson@ucd.ie

Abstract—Most research in the area of smart environments
focuses on improving the accuracy with which human activities
can be recognised. Relatively little research has been done into
how designers can gain insights into the behaviours their systems
are observing, and feed these insights back into improving systems
design. We describe a mathematical structure, the situation lattice,
and show how it can be used to discover knowledge about
activities and the way in which they can be sensed. We show
how this knowledge can be used to improve activity recognition,
using the example of a real-world smart home data set.

Index Terms—Smart home, Human Behaviour, Knowledge
Discovery

I. INTRODUCTION

Studying human behaviours in a smart environment has
been a popular research area over years. One of the typical
topics in this area is activity recognition; i.e., recognise human
activities from raw sensor data. It has been shown that the
ability to correctly identify the day-to-day activities of subjects
may have significant implications and applications in human-
beneficial areas; e.g., healthcare [1].

Raw sensor data collected in a smart environment include
environmental information (e.g., temperature or humidity),
interaction information between a subject and objects being
used or accessed by the subject (e.g., Radio-frequency IDen-
tification, called RFID), and personal information about the
subject (e.g., heart rate). The daily activities are pre-defined
with developers’ common sense knowledge in a descriptive
manner. For example in the PlaceLab data set [2], an activity
“using phone” is defined as using a portable phone or the phone
on the fax machine in the office; and an activity “grooming”
is defined as getting dressed or undressed, or styling hair.
Following these definitions, developers (or the third party or
the subject) annotate what a subject is doing from recorded
video [2] or audio [11], which will serve as the ground truth
for the evaluation of an activity recognition technique; e.g., its
accuracy or efficiency.

Activity

Recognition
Activities

Sensor

Data

input output

Feedback on sensors:
Contribution of sensors on

recognising an activity

Feedback on activities:
1. Accuracy of activity definitions

2. Activity Pattern

3. Semantics between activities

Fig. 1. Activity Recognition

The process of activity recognition is encapsulated in a
black box, where sensor data are input and human activities
are inferred as output (shown in Figure 1). The main research
focuses on how to efficiently and accurately infer activities.
Beyond this research, we are also interested in the underlying
research questions:

1) What is an activity pattern from the perspective of sen-
sors; that is, what do sensors (or sensor data) contribute
to determining this activity? This question will build up
experience for other smart home set-ups.

2) Are activities accurately defined? An accurate definition
of an activity means that the pattern of this activity can
be described in characterised sensor data according to
this definition. A daily activity is intrinsically imprecise
so it is difficult to be described precisely. In the above
example, “grooming” is not accurately defined, since
it covers “styling hair”, which is hardly captured by
sensors and thus is not related to any distinguishable
sensor data. The imprecise definition of an activity
could make unidentifiable some more specific activities
that should be recognisable (e.g., getting dressed or
undressed). It could also undermine the effect of an
activity recognition technique since the technique might
try to extract characteristics of an activity that are hardly
tractable. Developers need an approach to evaluate their
description on activities.

3) What activity does a subject usually conduct given
particular sensor data (e.g., the subject is detected in the
kitchen)? This question is about deriving the usual pat-
tern of a subject’s everyday activities, which will help to
spot abnormal behaviours. For example, a subject could
be inferred “sleeping” in the kitchen, which violates his
activity patterns, so the subject might actually pass out
–in an emergent situation.

4) What relationships do exist between different activities;
That is, what activities are subsumed by an activity,
or what activities the subject cannot conduct simulta-
neously? This question can improve the accuracy of
a recognition process, and can provide guidance on
designing activity-aware applications.

This paper will describe a situation lattice that can be
used to address the above research questions by making
transparent the knowledge in the activity recognition process.
The situation lattice has been used in recognising activities in a

978-1-4244-2794-9/09/$25.00 c© 2009 IEEE SMC 2009

smart home environment and the produced evaluation result is
promising [3]. This paper will demonstrate the use of the lattice
in exploring human activity patterns. The demonstration will
use the lattice built on the PlaceLab data set, the public data set
that is gathered in the real-world smart home environment [2].
This lattice [3] covers the following sensors: the wireless infra-
red motion sensors, electrical current, water, and gas flow
sensors, switch sensors, RFID, and object motion sensors.

This paper is organised as follows. Section II reviews the
literature in the activity recognition area. Section III introduces
the basic theoretical concepts in a situation lattice, which
are used to extract activity pattern and explore semantics of
activities in Section V. Section VI concludes with some future
directions.

II. RELATED WORK

Machine learning (or data mining) techniques have been
widely used in activity recognition, including decision tree [4],
[2], [5], Bayesian inferencing [6], [7], Hidden Markov Models
(HMMs) [8], [9], and Conditional Random Fields (CRFs) [10],
[11].

Bao et al [4], [5] use decision trees to learn user body
motions (such as bicycling, shaking hands, or typing) from
the raw sensor data provided by accelerators on the human
body. Van Kasteren et al [7] carry out activity recognition using
a Bayesian framework. They use a static Bayesian model to
learn the relationship between different sensor data and human
activities, and also use a dynamic Bayesian network to model
the temporal aspects of activities. Bui et al [6] use a multi-
layer Bayesian dynamic structure, called an Abstract HMM,
to track an object and predict its future trajectory in a wide-
area environment. This structure is used to explicitly encode
the complex and scalable spatial layout; i.e., the hierarchy
of connected spatial locations. Trained with coordinate-based
location data, it can predict the evolution of the object’s
trajectory at different levels of detail.

Modayil et al [12] use interleaved HMMs to recognise
multi-tasked activities where a person switches frequently
between steps of different activities such as making a stir-fry,
making a jello, and drinking a glass of water. The interleaved
HMM records the last object observed from wrist-worn RFID
sensors for each activity as a hidden state.

Liao et al [10] employ CRFs to construct models of high-
level activities such as work, leisure, and visit. They use a
person’s GPS data to learn his activities over a few weeks,
and then determine the relationship between the activities and
places that are important to this person.

All these works make effort on improving the accuracy of
inferring human activities from a number of advanced sensors
(mostly on-body motion sensors). However, the knowledge
discovered in these techniques is barely usable other than
inferring activities. For example, decision tree is assumed
to be able to represent the knowledge into rules, but the
rules are sometimes not understandable since they could be
contaminated by much noise in the sensor data. Our earlier
work has used the C4.5 decision tree in Weka software [13] to

learn human activities from raw sensor data [3]. The derived
rules do not follow the human natural understanding of the
activities. The reason is that decision tree learns the knowledge
simply based on the characteristics of data while no domain
knowledge is involved. When the data are imperfect, then the
knowledge would be inaccurate.

In contrast, the situation lattice will allow developers to
represent their domain knowledge; that is, the knowledge about
sensors and environments. Incorporating this knowledge in a
training process, the lattice can learn more knowledge about
sensor data and human activities. Since the newly discovered
knowledge is constrained by domain knowledge, it will make
more sense and be useful in studying human behaviour pat-
terns.

III. INTRODUCTION TO SITUATION LATTICES

This section will briefly introduce the basic concepts in
a situation lattice, which provides the foundation for the
following sections. A more detailed theoretical description can
be found in our earlier work [14], [3].

A. Theoretical Model of Situation Lattices
A situation lattice is built on the basic concepts of lattice

theory. It is used to study the relationship between sensor
data, and relationships between activities and different types
of sensor data. Within a situation lattice, sensor data are
abstracted in characteristic functions, called context predicates
in our work. The lattice consists of a set of nodes, each of
which represents a logical description of context predicates,
which takes context predicates as input and applies the logical
conjunction on them. Each node is associated with a set of
activities, which implies that when the logical description on
this node is satisfied by the current sensor data, a user is
possibly conducting any of the activities in this set.

All nodes are organised with a specialisation relationship.
A node ni is considered more specific than another node nj ,
labelled as ni " nj , if and only if the logical description on
ni entails that on nj . The specialisation relationship implies
that a node will be activated if and only if all its more general
nodes are activated.

Context predicates can have rich relationships, including
different levels of abstraction level, conflicting, and over-
lapping [15]. A situation lattice supports representing these
relationships and uses them to explore semantic relationships
between human activities.

Given two context predicates pi and pj and their corre-
sponding nodes ni and nj such that ni.l = pi and nj .l = pj ,
where ni.l represents a logical description on a node ni,

• If pi is finer grained than pj , then ni " nj . The different
levels of granularity is defined as: a context predicate
pi is finer grained than another predicate pj , if any
sensor data that satisfies the former context predicate
also satisfies the latter one. For example in Figure 2 (a),
the context predicate inLivingRoom is finer grained
than the predicate inHouse, since the living room is
contained in the house.

SMC 2009

inHouse

inLiving

Room

inLiving

Room

inBed

Room

inLiving

Room

inDining

Room

inFoyern!

House
living room

dining room

living

room

bed

room

living

room

foyer

(a) different levels of

granularity
(c) overlapping (b) conflicting

Fig. 2. Semantic relationships between context predicates

• If pi conflicts with pj , then ni # nj = n⊥, where # is
the meet operator and the bottom node n⊥ is the unique
node whose logical description is the logical contradiction
FALSE [3]. The conflicting is defined as: two context
predicates are conflicting if any sensor data that satisfies
one of them cannot satisfy the other. For example in
Figure 2 (b), the context predicate inLivingRoom is
conflicting with the predicate inBedRoom, since they
are spatially disjoint.

• If pi is overlapping with pj , then ni#nj = nk, where nk.l
is the overlapped predicate. The overlapping is defined
as: two context predicates are overlapping if they can
be satisfied at the same time by certain sensor data, but
there exists sensor data that satisfies one of them but not
the other. For example in Figure 2 (c), the context pred-
icate inLivingRoom overlaps with another predicate
inDiningRoom, since they share a common location –
the foyer. If two context predicates are overlapping, the
more specific node under their corresponding nodes is
the node with their overlapped logical description; e.g.,
inFoyer.

With these predicates and their semantics, a situation lat-
tice can be completed [3]. A built situation lattice organises
the context predicates and their combinations in an ordered
hierarchy. Each of them is labelled with activities and their
occurrence ratio: when a combination of context predicate
is satisfied by the current sensor data, then any associated
activity can be occurring with a certain likelihood. For ex-
ample, a set of activities {“watching TV” 0.8, “reading”
0.7} could be associated on the node inLivingRoom ∧
elecCurrentInLivingRoomOn, which means that when
these predicates are satisfied, then the subject is watching TV
with the possibility 0.8 and is reading with the possibility
0.7. Figure 3 represents part of a situation lattice built on the
PlaceLab data set.

In the lattice, the basic semantics between context predi-
cates are automatically preserved on nodes that contain them.
Given two predicates at different levels of granularity; e.g.,
their preliminary nodes ni " nj , when combined with another
node nk whose predicate has no relationship with these two,
then their compound nodes1 ni ⊗ nk and nj ⊗ nk preserve

1Given two nodes ni and nj , their compound nodes is labelled as ni⊗nj
such that (ni ⊗ nj).l = ni.l ∧ nj .l.

different levels of granularity: ni ⊗ nk " nj ⊗ nk. If two
predicates conflict, then any two compound nodes that contains
each of them will conflict with each other.

IV. QUERYING ACROSS MULTIPLE LEVELS OF
ABSTRACTION

A situation lattice can be used to observe human activities
from the perspective of sensors, which can help developers to
understand activity patterns of the user and thus spot abnormal
activity (e.g., “passing out”). To achieve this, the lattice sup-
ports a broad range of queries that involve characteristic sensor
data in single or different types and across different levels of
abstraction, such as “what does the subject usually do in the
living room?”, “what does he do at 21:00 in the living room
with its light on and its current flow off ?”, and even “what
does he do in the foyer (part of the living room)?”.

Situation lattices facilitate answering these queries. The
process is similar to the activity recognition process in the
lattice [3]. In a query, characteristic sensor data are mapped
to a preliminary node, and a compound node whose logical
description matches all the sensor data will be located. Devel-
opers can check the activities that are associated on the node.
For example in the PlaceLab data set, the query “what does the
subject usually do in the living room?” can be simply answered
by checking the preliminary node whose context predicate is
inLivingRoom. The result will contain activities and their
occurrence likelihood; that is, {“watching TV” 0.5, “eating”
0.46, “using phone” 0.23, “using computer” 0.08, “reading”
0.08, “grooming” 0.14 }. This result provides the insight about
the subject’s activity pattern: when he is in the living room,
he is more likely to watch TV, eat, or use phone, but he does
not sleep or prepare a meal there.

Take another example of a query “what does he do at 21:00
in the living room with its light on and its current flow off ?”.
This query consists of four parts: a time predicate – 21-22, a
location predicate – inLivingRoom, and two current pred-
icates – lightInLivingRoomOn and elecCurrentIn-
LivingRoomOff. A compound node will be located, which
represents the conjunction of these four predicates. Its activities
are {“using phone” 0.03, “using computer” 0.002, “reading”
0.007, “eating” 0.005}. Combined with the result on the former
query, this result uncovers that the subject is impossible to
watch TV when the electrical current in the living room is off.

The situation lattice is an effective tool to observe human
activity pattern from the view of sensors by supporting these
rich queries. A query with a single type of sensor data or
multiples types of sensor data will be easily executed on the
lattice. It does not need to re-train the structure or execute
any other complicated process, while most machine-learning
techniques and rule-based system will do.

V. DERIVING SPECIFICATIONS AND RELATIONSHIPS
BETWEEN ACTIVITIES

Section IV studies the typical activity recognition process
by observing activities from sensor data: what activity does a
user usually conduct given the sensor data?. This section will

SMC 2009

inLivingRoom
elecCurrentInLi
vingRoomOn

elecCurrentInLivingRo
omOn ! inLivingRoom

remoteControllerAccessed

remoteControllerAcce
ssed ! inLivingRoom

elecCurrentInLivingRoomOn
! inLivingRoom !

remoteControllerAccessed

n"

elecCurrentInL
ivingRoomOff

remoteController
Accessed!

elecCurrentInLivingRoom
Off

elecCurrentInLivingRoomOff
! inLivingRoom !

remoteControllerAccessed

remoteControllerAcc
essed !

elecCurrentInLiving
RoomOn

elecCurrentInLivingRo
omOff ! inLivingRoom

n#

Fig. 3. Part of a situation lattice built on the PlaceLab data set

explore activity patterns by observing sensor data from partic-
ular situations: how sensor behaves when a user is conducting
this situation?. A more specific question could be “what time
does a user usually prepare a meal?”. The activity pattern will
be helpful in accumulating experiences on choosing sensors
to build a smart home environment, providing feedback on
defining activities, and studying semantics between activities.

A. Specification of Activities

A situation lattice supports deriving a specification for an
activity. An activity’s specification is a logical description that
takes context predicates as input and applies logical operators
(disjunction, conjunction, and negation) on them. An activity
is considered being conducted, if its specification is satisfied
by current sensor data.

Given a built situation lattice with N nodes, there exists
a set of the most specific nodes (except the bottom node)
Ns ⊆ N whose activity set contains a certain activity s.
The specification of this activity s is generated by applying
the logical operator OR on the logical description of these
nodes Ns. That is, a specification of s is

∨i=m
i=1 ni.l, where

{n1, n2, . . . , nm} = Ns. Algorithm 1 describes the procedure
of locating the most specific nodes related to a situation. To
check whether a node is the most specific node, we simply
check that no other node except the bottom node is more
specific than this node. Algorithm 2 applies the OR operator
on all the logical descriptions from the most specific node set.

Algorithm 2 works when the size of a situation lattice is
small. When the size is relatively large, a specification of an
activity can be tedious. For example, the situation lattice built
on the PlaceLab data set consists of 27647 nodes, among
which 3423 are the most specific nodes. Thus, an activity’s
specification might contain a disjunction of conjunct context
predicates from hundreds of the most specific nodes. Among
these nodes, it is possible that a subset of them are all the
immediately more specific nodes from a more general node.
The specification can be simplified by replacing these subset
of nodes with the more general node. For example in Figure 4
(a), for an activity, a subset of its most specific nodes n1, n2,
. . . , ni are all the children nodes under the same more general

Algorithm 1: Locating all the most specific nodes for a
situation
input : a situation s and a trained lattice (N,")
output: a set Ns of the most specific nodes that

contributes to identify s

Ns = ∅
foreach Node n ∈ N do

if s ∈ n.S then
IsMostSpecific = TRUE
foreach Node n′ ∈ N do

if n′)= n ∧ n′)= n⊥ ∧ n′ " n then
IsMostSpecific = FALSE

if IsMostSpecific then
Ns.add(n)

return Ns

Algorithm 2: Defining a specification for a situation
input : a set Ns of the most specific nodes that

contributes in identifying s
output: a specification of s

specification = FALSE
foreach Node n ∈ Ns do

specification = specification ∨ n.l
return specification

node nj , then in this activity’s specification l, the subset of
nodes can be replaced with nj ; while in (b), they cannot since
the subset nodes do not cover all the children nodes of nj .
Algorithm 32 describes the process of refining an activity’s
specification from its most specific node set.

Algorithm 3 simplifies the expression of a situation’s spec-
ification greatly with increased complexity O(n3), where n is
the size of Ns. We use these algorithms on the situation lattice
of the PlaceLab data set, and derive specifications of activities.

2In this algorithm, n! # np means that n is the immediately child node
under np.

SMC 2009

n1 n2 ni nm...

nj

l= n1.l ! n2.l ! ...! ni.l !nm.l = nj.l !nm.l

all the most specific nodes

are associated to an activity

(a)

n1 n2 ni nm...

nj

l= n1.l ! n2.l ! ...! ni.l !nm .l ! nj.l !nm.l

all the most specific nodes

are associated to an activity

(b)

Fig. 4. Examples of refining specification of situations

Algorithm 3: Improvement on defining a specification for
a situation

input : a set Ns of the most specific nodes that
contributes in identifying s and a trained lattice
(N,")

output: a specification for s

repeat
stop =TRUE
foreach n ∈ Ns do

foreach np ∈ N such that n ! " np do
containsAllChildren =TRUE
children = ∅
foreach n′ ∈ N such that n′ ! " np do

if n′ ∈ Ns then
children.add(n′)

else
containsAllChildren =FALSE
break

if containsAllChildren then
Ns.removeAll(children)
Ns.add(np)
stop =FALSE

until stop
specification = FALSE
foreach Node n ∈ Ns do

specification = specification ∨ n.l
return specification

Some of the activities have a relatively small number of nodes
in that they have a tractable activity pattern. For example of
the activity “hygiene”, its specification is listed as follows3:

3As stated in [3], the PlaceLab involves a couple of subjects and non person-
specific sensors, which introduces extra noise in the data set. Also only the
activities on the male subject have been annotated. To compromise the noise,
a most specific node is chosen for an activity only if the activity ratio on this
node is beyond a certain threshold. Therefore, some nodes could be removed
from the specification due to the low occurrence ratio of the activity on them.

hygiene =(inPowderRoom ∧ 18-19
∧waterInPowderRoomOff
∧lightInPowderRoomOff
∧ nothingInPowderRoomAccessed)
∨(inBedroom ∧ 23-24
waterInBathroomOff ∧
lightInBathroomOn))

Some of the activities are associated with a large number
of the most specific nodes. For example, “using phone” has
245 most specific nodes, since the subject could use phone
anywhere at any time. Part of its specification is listed as
follows:

using phone =inLivingRoom ∧
((elecCurrentInLivingRoomOff∧
nothingInLivingRoomAccessed ∧
16-18) ∨ (lightInLivingRoomOn
∧ (((18-19 ∨ 20-21)
∧ remoteControlAccessed)
∨ (nothingInLivingRoomAccessed
∧ 18-20))))
. . .

By examining the specifications of the activities, developers
can have an intuition on what sensors are useful in recognising
an activity. For the activity “hygiene”, the most effective sensor
is probably a positioning sensor that could detect the subject
in the powder room or the bath room. Also the number of
most specific nodes on each activity can reflect the accuracy
of its descriptive definition; that is, a large number of nodes
suggests that either this activity occurs frequently (e.g., the
activity “using a computer” has 395 most specific nodes, and it
occurs in 20.14 hours, 42.9% of the time through the data set.)
or this activity is less tractable. Under the latter circumstance,
developers might need to refine its descriptive definitions by
removing trivial activities (e.g., styling hair) or split the activity
into sub activities.

SMC 2009

B. Semantics of Activities

Based on specifications of activities, we can explore se-
mantic relationships between activities: type-of and conflicting.
These two relationships can be inferred from the specifications
of activities based on their corresponding most specific node
sets. One activity si is a type of another activity sj , if when a
subject is conducting si he is also considered conducting sj .
It requires that for any of the most specific nodes on si, there
exists at lease one most specific nodes on sj such that the
node on si is more specific than the node on sj (as presented
in Definition 1). Thus if a specification of si is satisfied, then
the specification of sj will be satisfied as well.

Definition 1: si is a type of sj , iff ∀nk ∈ Nsi , ∃n′k ∈ Nsj ,
nk " n′k.

One activity si conflicts with another activity sj , if it is
impossible for a subject to conduct both activities at the same
time. It requires that any of the most specific nodes associated
with si conflicts with any of the most specific nodes associated
with sj (as presented in Definition 2).

Definition 2: si conflicts with sj , if ∀nk ∈ Nsi , nl ∈ Nsj ,
nk # nl = n⊥.

If two situations share some of the same most specific
nodes, then they are likely to occur at the same time when
any of these nodes are activated. However, this leads to another
question: if one of these nodes are activated, it is possible that
both the situations occur, or one of them is occurring while the
other is not. For example in the PlaceLab data set, “watching
TV” and “eating” can share the same most specific node,
whose context predicates are 19-20 ∧ inLivingRoom.
When this node is activated, the subject can be “watching TV”
and “eating” simultaneously, or he can be either “watching
TV” or “eating”. This issue is related to the discernability
of sensors in precisely identifying situations, which has been
covered in more details in [3].

We apply the above two definitions on the lattice of the
PlaceLab data set. There are no specialisation relationships
between the activities. Since the location predicates on each
individual rooms conflict with each other, the activities that
occur in different rooms should conflict, such as “dishwashing”
and “hygiene”. Due to the imprecision of the positioning
sensors, the activities that should be conflicting are not inferred
as conflicting, such as “watching TV” (in the living room) and
“meal preparation” (in the kitchen).

VI. CONCLUSIONS

This paper has demonstrated how the situation lattice is used
to study human behaviour patterns. The lattice supports a range
of rich queries, which is useful in observing typical activities of
a subject such as to spot abnormal activities. The specifications
of activities derived from the lattice help to uncover the activity
pattern of the subject and indicate the sensors (or sensor
data) that contribute to identifying an activity. Based on the
specification and semantics of predicates, developers can also
extract semantic relationships (i.e., type-of and conflicting)
between different activities. The discovered knowledge will

provide guidance for other developers on choosing sensors and
defining activities in building a smart home environment.

At the current research stage, the situation lattice only
supports the conjunction of context predicates, which limits
its ability in representing expressive logical descriptions. In
the future, we will look into how to make a lattice scale
with the other two logical operators: disjunction and negation.
Following this, the technique in deriving specifications and
semantics of activities will be updated to support more efficient
and complicated reasoning.

ACKNOWLEDGMENT

This work is partially supported by Science Foundation
Ireland under grant numbers 07/CE/1147 “Clarity, the centre
for sensor web technologies” and 05/RFP/CMS0062 “Towards
a semantics of pervasive computing”.

REFERENCES

[1] H. Zheng, H. Wang, and N. Black, “Human activity detection in smart
home environment with self-adaptive neural networks,” in Proceedings
of IEEE International Conference on Networking, Sensing and Control
(ICNSC 2008), April 2008, pp. 1505–1510.

[2] B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. S. Intille, “A
long-term evaluation of sensing modalities for activity recognition,” in
Proceedings of Ubicomp 2007, Innsbruck, Austria, September 2007, pp.
483–500.

[3] J. Ye, L. Coyle, S. Dobson, and P. Nixon, “Using situation lattices in
sensor analysis,” in Proceedings of PerCom 2009, Mar. 2009, pp. 1–11.

[4] L. Bao and S. S. Intille, “Activity recognition from user-annotated
acceleration data,” in Proceedings of the second International Conference
on Pervasive Computing, Vienna, Austria, Apr. 2004, pp. 1–17.

[5] K. Kunze and P. Lukowicz, “Dealing with sensor displacement in
motion-based onbody activity recognition systems,” in Proceedings of
UbiComp ’08. ACM, 2008, pp. 20–29.

[6] H. H. Bui, S. Venkatesh, and G. West, “Tracking and surveillance in
wide-area spatial environments using the abstract hidden markov model,”
Hidden Markov models: applications in computer vision, pp. 177–196,
2002.

[7] T. van Kasteren and B. Krose, “Bayesian activity recognition in residence
for elders,” in Proceedings of the third IET International Conference on
Intelligent Environments, Sep. 2007, pp. 209–212.

[8] M. K. Hasan, H. A. Rubaiyeat, Y.-K. Lee, and S. Lee, “A hmm for
activity recognition,” in Proceedings of ICACT 2008, vol. 1, 2008, pp.
843–846.

[9] D. Minnen, T. Starner, J. Ward, P. Lukowicz, and G. Troster, “Recog-
nizing and discovering human actions from on-body sensor data,” in
Proceedings of ICME 2005, July 2005, pp. 1545–1548.

[10] L. Liao, D. Fox, and H. Kautz, “Extracting places and activities from
gps traces using hierarchical conditional random fields,” International
Journal on Robotics Research, vol. 26, no. 1, pp. 119–134, 2007.

[11] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate
activity recognition in a home setting,” in Proceedings of UbiComp ’08.
New York, NY, USA: ACM, Sep. 2008, pp. 1–9.

[12] J. Modayil, T. Bai, and H. Kautz, “Improving the recognition of
interleaved activities,” in Proceedings of UbiComp ’08, 2008, pp. 40–43.

[13] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2005.

[14] J. Ye, L. Coyle, S. Dobson, and P. Nixon, “Representing and manipu-
lating situation hierarchies using situation lattices,” Revue d’Intelligence
Artificielle, vol. 22, no. 5, pp. 647–667, 2008.

[15] J. Ye, S. McKeever, L. Coyle, S. Neely, and S. Dobson, “Resolving
uncertainty in context integration and abstraction,” in Proceedings of the
international conference on Pervasive Services. New York, NY, USA:
ACM, July 2008, pp. 131–140.

SMC 2009

