
A taxonomy for thinking about location in
pervasive computing

Simon Dobson

Department of Computer Science, Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

Abstract. Virtually all pervasive computing systems use location as a
major factor in controlling their behaviour. Simple representations do
not however account for the richness in humans’ perception of location
which – if leveraged – can greatly improve applications’ ability to use
and reason about location, allowing

1 Introduction

Virtually all pervasive computing systems use some form of location for affect-
ing the system’s behaviour. Location-based services are available commercially,
albeit in a primitive form, from many mobile telecommunications providers.

Despite this, location is a remarkably subtle concept to reason with. There are
a huge number of possible answers to what is superficially a simple question:
each kind of answer reveals something about the way in which we conceptualise
location and any services based upon it.

This may seem like a trivial observation, but it cuts to the heart of the devel-
opment of programming environments for pervasive computing. Software design
is the process of mapping concepts to programming structures, whether one is
developing object models or complete programming languages. A system is easy
to program when the developer can express his concepts directly or with min-
imal mental gymnastics; conversely, the developer takes on a considerable load
when using a system without the requisite concepts. Handling location is a basic
requirement for many pervasive computing systems: but what kind of location
will we provide in a programming environment? If we choose the “wrong” rep-
resentation we will end up with an awkward (or unusable) environment.

In this paper we try to exhaust the ways one may answer a simple location
question in a pervasive computing system, to develop a taxonomy of answers
that an application might want to receive. We deliberately stray beyond the
bounds of traditional location systems and the information typically at hand in
order to see how a “really pervasive” computing system might view location.
We analyse the space of answers to see what conclusions can be drawn for the
development of semantic models and programming environments.



2 Thinking about location

When we speak of location we typically mean determining where some person or
artefact is located in the real world. This can be used for a range of applications
including adapting behaviour, controlling appliances, surveillance and health
care[7].

Location sensor systems typically work in one of four ways[4]:

1. By directly tracking an item, for example using image processing over video
images

2. By having an infrastructure that can track transponders attached to devices,
for example as used in [3]

3. By having a device track something in the environment, for example the
GPS satellites or local fixed transponders such as “crickets”[6]

4. By inference from actions, such as a user logging-in at a computer console
or turning on the lights in a room

Each approach has its strengths; all suffer from noise, occlusion and missed
events. Rather than engaging in a critique of particular sensor technologies, we
can instead start from the other end of the development spectrum and ask two
questions: what are the conceptual models that a developer might use to reason
about applications? and to what extent can these models be realised directly
within a development environment?

Suppose for a moment that we are trying to locate our friend Waldo
without the use of any significant information technology – for ex-
ample by ringing his home or office and asking where he is. We
can imagine a whole host of ways in which this question might be
answered. Each is a plausible and correct answer to the location
question, and – assuming a certain degree of optimality in human
languages – should identify a conceptual “space” in which humans
reason about location.

2.1 Absolute location

Geography, maps and geometry provide an idealised view of space, and it is
natural that this should be the most obvious way to talk about location in
computer systems.

At 53◦4′N, 1◦17′W (absolute position) Absolute physical location systems
typically use the Global Positioning System (GPS), a constellation of satellites
used the triangulate a receiver on the ground. The result is a latitude/longitude
position accurate to a few metres.



GPS location has no immediate connection with the real world, implying that
a detailed map needs to be constructed of the features of interest. Behaviour is
unlikely to be conditioned by co-ordinates per se, but rather by what (else) is at
these co-ordinates.

GPS is both not precise enough and too precise. Imprecision comes from the
natural error in locating using satellites and commercial-quality receivers. How-
ever, location to with a few metres is often actually too precise in that one must
always work in terms of what is “near” the person rather than what is exactly
“at their position”.

Suppose I am in a room – GPS is often unusable indoors, but this doesn’t affect
the argument – and the location system has correctly ascertained this. I then
move closer to the door but remain inside the room. Errors in location may place
me outside; “nearness” calculations may determine I am nearer the corridor; and
both will cause the system to locate me outside the room.

A GPS system is no panacea, and must be used with care. GPS hardware is
relatively large, has relatively large power requirements, and must be combined
with considerable information that is hard to gather and maintain.

2.2 Structured naming

We tend to assign names to anything perceived to have a unique identity, and
spaces are no different. We can use these names to refer to locations, effectively
providing the location system with a map based on human-meaningful names.

In OR3.16 (named space) Most “structured” spaces have sub-spaces with
names – offices, streets, squares, the penalty area etc – which relate directly to
a user’s conception of both the layout and usage of space.

Using these terms within a location system has the huge advantage that any
behaviour that a user expresses will probably be couched in terms of the space
names, and so can be translated directly into the internal representation used
by the location system.

Logical naming is particularly well-suited to systems that infer location from
other clues such as use of a computer keyboard. The location of the clue can
typically be expressed quite neatly using a logical space name.

There are of course some unstructured spaces that do not have meaningful
names, and it is probably better to resist the temptation to invent them.

In a conference room (named class) This is a variation which identifies a
class of spaces rather than a space itself. Such names are generally functional (as



in this case), although it is conceivable that some other naming scheme might
be used (“in a red room”?).

This is an example of an uncertain location, in the sense that the possible loca-
tions not only have physical extent (which is true for most cases) but typically
have disconnected physical extent.

2.3 Relative naming

By “relative” naming we mean spaces identified by their relationship to some
other object, space, location or artefact.

In his office (subject static space) This answer relates a person’s location to
a place they have a know relationship to. The difference between this and literal
naming is that Waldo may move his office to another space. This introduces
another problem of the stability of location references over time, which we discuss
more fully in section 3.6.

In his car (subject dynamic space) This is superficially the same as the
previous case, but the space is different. From one perspective a car is a space
that a person or artefact occupies; however, it is a space that follows a path
and has a dynamic interconnection with other spaces. So is it a location? – few
would argue for a definite “no”, but it is clearly a location of a different order
to others. We return to this point in section 3.5.

In Widget and Sons’ offices (related space) There is a variation on the
theme of a related space where the space is related to some other entity, not
to the user. In this case the location system needs to be able to navigate the
relationship graph to locate the entity the space relates to. One could reasonably
assume that there will typically be a relationship between Waldo and this entity.

With Willard (related association) Both the previous
answers use spaces as their referent, which are at least rea-
sonably fixed. However, a common answer might be that
Waldo is “with Willard”. If Willard’s location is known,
then so is Waldo’s; of Willard’s location is not known,
then neither is Waldo’s – although we know that they are
together, so locating one locates the other.

There is an obvious recursion if one asks where Willard is
and receives the answer “with Waldo”. However, a sufficiently rich set of possible
location approaches should reduce the possibility of this happening in practice.



2.4 Approximate answers

As mentioned above, no location system is completely precise – nor would we
generally want it to be. However, while many systems make the pretence of
precision, others expose the uncertainty of their answers.

At 1000 he will be . . . (in the future) Suppose it is 0900. We do not know
Waldo’s location now, but we know what it will be in the near future.

This is important, as many applications will ask for location in order to prepare
for a future event, and so this answer may be completely adequate: if the appli-
cation is trying to arrange things for Waldo’s 1000 meeting, then it is probably
not germane that he is currently on a particular street. Indeed, this points to a
weakness in many services conceived as location-based: it is not the exact cur-
rent location that counts, but the next relevant location for the application. We
return to this point later.

At 0800 he was . . . (in the past) The dual of where Waldo will be is where he
was. Again, some applications may be adequately served by knowing someone’s
recent location.

We might make educated guesses about Waldo’s range of possible locations based
on how far he can have travelled since his sighting. The further we get from 0800,
of course, the less reliance can be placed on this method.

Another subtlety is whether the time refers to the time he began to be at the
location, or the last time he was there.

Near/Within . . . metres of . . . (in vicinity) One can make imprecision
explicit by stating the “error bars” of the location statement.

“Near” is a highly subjective term, but might typically be interpreted as meaning
“close enough to still be of relevance”. Providing a harder bound, such as a radius
(as is done with location using cellphones), can be more useful but can also be
distracting.

Between . . . and . . . (on path) Suppose we have access to Waldo’s schedule,
and so know where he was at 0800 and where he will be at 1000. At 0930 we
can reasonably infer that he is between these two locations.

The interest of this form of answer is that it locates someone on a path rather
than in a place.



His badge/phone was last seen at . . . (by proxy) It is worth making ex-
plicit that most location systems do not see Waldo, but rather see some artefact
closely associated with Waldo. The assumption – which may be false – is that
the artefact will never stray far from Waldo.

That this assumption of flawed is obvious: Waldo may have leant his cellphone
to a friend, or may have been robbed of his badge. This entwines the location
problem with an identity problem – which can be just as subtle. In applications
that use artefacts as a surrogate for a person the identity is often split between
“something you carry” and “something you know” – ATM cards are the most
familiar example.

2.5 Task-based answers

Yet another form of location is task-based: we capture someone’s location by
capturing the task they are engaged in. The assumption is that the task somehow
relates to the location, and this remains true even when the task is not concretely
located in space.

Meeting Widget and Sons (task) This form of answer essentially dodges
the question: instead of answering with where Waldo is, it answers with what he
is doing. There may or may not be a location associated with this task.

However, few people would argue that this answer is incorrect, even though it
does not actually refer to location at all. This is another example of location
being tied-up with other aspects of context.

At this time he is usually . . . (by default) Absent any other information we
may use default logic (in the formal or informal sense) to locate Waldo. People
are far more regular than is generally realised – experiments reported in [2] show
a frightening regularity in some specific cases – so the use of defaults can be very
powerful.

2.6 Negative answers

The final class of approaches inverts the problem. Rather than stating where
someone is (with some degree of precision) they instead narrow down the possible
locations by removing some.



Not . . . (by negation) Perhaps the least expected form of answer – and the
most confusing from a computer science perspective – would be to answer a
question of where someone is with an answer about where they aren’t : surely
this doesn’t constrain the possible locations enough to be of any use at all. This
turns out not to be the case.

We encountered this answer in designing a system for a user with a mild physical
disability, where action could be triggered by knowing that the individual had
left home (to go to work), without actually being able to locate them otherwise.
This style of response can be much easier to generate than any of the others,
as it is inherently limited to a small scale. Nevertheless, many systems that are
are conceived as location-dependent may actually be “non-location”-dependent,
in the sense that they behave according to someone’s non-presence in a location
regardless of their actual location elsewhere.

Out/on holiday (non-located task) This is similar to the task-centric an-
swers (section 2.5) but with a twist: while those answered specified location in
terms of task, this form does not necessarily have an associated location (or least
not one that is known),

However, even with such limited information one may conclude something about
where Waldo isn’t, with some degree of precision or confidence. One can therefore
also regard this answer as a variation on the one above.

No idea (unknown) We (finally!) come to the possibility of someone being
un-locatable by any means.

Most designers would expect this answer some (if not most) of the time. However,
it should be clear from the foregoing that it can be made almost arbitrarily
unlikely in practice by combining fragments of knowledge from other sources.
Some of these may have little obvious relevance to location but – with enough
information and (admittedly uncertain) reasoning – can be used to contribute
to at least some form of answer.

3 Discussion

The full taxonomy of 17 answers is shown diagrammatically in figure 1. The
diversity of answers suggests that modeling location in a system that aspires to
generality will be a major challenge. In this section we try to tease-out some of
the underlying forces at work to see what (if any) conclusions can be drawn for
systems development.



where?

known

absolute
location

absolute
position

structured
name

named
space

named
class

relative
location

relative to
subject

subject
static
space

subject
dynamic
space

relative to
other

related
space

related
association

task

approximate

approximate
temporal

in the
future

in the past

by default

approximate
spatial

in vicinity

by proxy

on path

negative

negation

non-
located
task

unknown

Fig. 1. A taxonomy of location in pervasive computing



3.1 More information than we think

Perhaps the most surprising result of the foregoing is that there is a huge po-
tential well of information about location. “Potential” is the operative word, of
course: it requires information to be held in machine-readable form in an acces-
sible location and kept up-to-date. However, it is also clear that one could in
principle build a location-based service without any dedicated location hardware
at all.

More importantly, maintaining a richly-connected context opens up the possi-
bility of getting multiple answers to the same question. If these agree, we have
increased our confidence and reduced the effects of noise; if they disagree, we
can use this disagreement constructively to make a decision informed by proba-
bilities.

Finally, even the most ambitious pervasive computing can realistically be ex-
pected to have “gaps” in its sensor coverage, whether permanent or through
partial failures. One could address this by adding more sensors, but this may
not be possible and may be an unnecessary expense for many applications which,
when thought of correctly, do not actually need good physically-based location
at all. Having multiple sources of information can act to plug these gaps quite
effectively.

3.2 Is the application location-based anyway?

We mentioned earlier than most pervasive computing applications have at least
some component of location-awareness, and that location is a fundamental part
of a context model. However, the requirements that applications place on their
location-awareness varies rather more than might be expected.

Some applications undoubtedly require real-world co-ordinates, either directly or
to drive a logical naming scheme. However, as the examples we used above have
shown, one can conceive of a host of applications whose requirements are rather
different. Behavioural variation may bind to a dynamic space such as a car, or
to a task, or to someone not being somewhere – none of which necessitates GPS
levels of precision.

We gave an example of a location-based service that was actually “non-location”-
based. We conjecture that many other services – perhaps a majority – can be
conceived in similar ways by taking a broader view of location.

3.3 The uses of inference

Clearly a complete model might also maintain several different models of the
space it was interested in: physical, ownership, names, etc. This is the essence



of mapping and Geographical Information Systems (GIS)[5]. The mapping be-
tween layers can be seen as a mapping between semantic domains, for example
from physical co-ordinates to a well-known name, membership of a class, and its
ownership.

Many of the approaches identified above specify location relative to some other
phenomenon such as a person or task. This suggests that a maximally flexible
pervasive location system would function as part of a larger contextual system
where it could acquire information from other layers of the contextual model,
using “layer” to refer to a single aspect of context. The relationships between
location layers and other contextual layers are clearly very rich, but it is this
richness that is potentially the strength of pervasive computing.

Making use of this rich interconnection requires significant reasoning and infer-
ence over fundamentally uncertain data, informed by knowledge of what each
layer means and what default behaviours can be expected. This is rather more
information than is usual at present: most diaries, for example, are free-form,
do not typically contain regular tasks such as lunch and coffee, and so could not
be used reliably to determine a user’s task. Viewing location – and context in
general – in this way suggests possible improvements in application design for
use in such systems in the future.

3.4 Space and extent

Several approaches discussed above do not tie location down precisely, but in-
stead reduce the possible spaces a person might be in. This is often sufficient
for applications that react to broader contexts rather than narrowly to location,
even if they are generally considered location-based services.

Two answers are particularly interesting. The named class answer (section 2.2)
identifies a set of spaces sharing a common (usually functional) class. The path
answer (section 2.4) identifies a path through space that the user is following
(called a trail by some groups). In both cases location is widened to encompass a
“bounding box” – possibly not contiguous in space – that can be usefully applied
to pervasive computing.

3.5 Dynamic reconfiguration

The topology of spaces can also change. A car or train is a classic example –
a “space that moves”, and which has a dynamic connection with other spaces
while at the same time having a distinct identity of its own1.If we admit “mobile”
spaces to a location model, we introduce dynamism into the map in terms of
physical location and the accessibility of spaces from one another.

1 There are also examples of this dynamism in buildings – see [1]



One could of course simply remove the notion of a car as a space and only allow
“static” spaces, but this has two disadvantages. Firstly it is an unnatural and
somewhat arbitrary decision to allow one kind of named space but not another.
Secondly (and more importantly) there are useful behaviours a system might
take when a person is in this space – switching a cellphone to hands-free, for
example. These activities emphatically bind to the mobile space, not to the
succession of static spaces the user may occupy.

3.6 The effects of time

Location changes with time. When we ask someone’s location we might aspire
to receive an up-to-date answer, but will often have to cope with an answer that
refers to a time in the past (or indeed in the future, as in section 2.4).

Which is better: a precise answer that is fifteen minutes old, or an imprecise
answer reflecting what is happening now? One cannot answer this question a
priori, and it is easy to come up with pathological applications if either one is
chosen without the other.

Any location statement is therefore time-bounded, in the sense that it “ages” to
a point when it is virtually useless. Just as one can make over-strong assumptions
about the precision of an answer, one must be equally careful about an answer’s
timeliness..

We can even devise scenarios in which we do not want up-to-the-minute loca-
tion. Suppose we are writing a restaurant guide, and Waldo asks about for a
recommendation while on the train to his 1000 meeting. We do not care that the
train is in (for example) Co Laoise: what we care about is that the meeting –
the next time Waldo is in a position to use a restaurant – is in Co Cork, and this
should be the location we use. In other words, the answer we want is intimately
connected to the application we are building and the relationships with other
contextual layers.

Time has another, more insidious effect. Space is not fully stable, and especially
the names and uses of spaces change over time, as do the exact bounds of spaces
and their relationships to people and each other.

A GPS location reference is “temporally stable” in the sense that it its referent
will not change through time. The name of a room, however – and even more
Waldo’s office – will change over time. If one were to archive a temporally unsta-
ble location reference, its referent might have changed when one later examined
it. In the presence of rich interconnections and inference this might cause a cas-
cade of problems, for example inferring that Waldo could see into Willard’s office
from his own then simply because he can now.



4 Conclusion

If you only have one representation of something, you have a poor one –
Marvin Minsky

We have identified 17 different, plausible and potentially correct ways to answer
what appears to be one of the simplest questions one might ask of a perva-
sive computing system: someone’s location. This multiplicity of possible ways to
conceptualise location gives rise to a multiplicity of possible representations and
programming interfaces.

While location is undoubtedly a subtle issue, it is unlikely that it is unique
among contextual parameters – it seems implausible that all other context one
might account for will be trivial. This suggests that the problem of representing
contextual information within a pervasive computing system is somewhat more
challenging than might have been thought.

Moreover it is clear that there is no single canonical representation of location
that will be uniformly useful for all possible applications. If one can constrain
the application domain sufficiently then it may be possible to extract a “best”
answer; however, as pervasive computing spreads it is inevitable that applications
will need to be composed together unexpectedly, so the prospects for finding a
single answer that will work across the expected spectrum of applications is
not good. We are therefore drawn to the conclusion that multiple simultaneous
representations of location – the bugbear of traditional systems analysis – are all
but inevitable for pervasive computing applications. And we doubt that location
is uniquely subtle in this respect.

We can easily find applications which “prefer” certain answer formats to others,
and these preferences are often conditioned by the use the application will make
of the answer it receives. The restaurant guide mentioned in section 3.6 is a good
example of where a GPS location alone would be essentially useless. Location
must therefore be taken holistically as a layer of context linked to other layers –
and once again we doubt location is unique in this.

We conclude that the focus of context-aware computing is not the individual
layers but the concurrent, consistent, synchronised relationships between them,
and especially in matching the application’s view of contextual information to its
conceptual view of the application domain. This is a major challenge for systems
design, but one that – if addressed properly – will do much to improve both the
usability and compositionality of pervasive computing systems.

References

1. Michael Fox and Bryant Yeh. Intelligent kinetic systems in architecture. In Paddy
Nixon, Gerard Lacey, and Simon Dobson, editors, Managing interactions in smart
environments, pages 91–103. Springer-Verlag, 2002.



2. Richard Greenane. Managing interactions in smart environments. Master’s thesis,
Department of Computer Science, Trinity College Dublin, 2002.

3. Andy Harter, Alan Jones, and Andy Hopper. A new location technique for the
active office. IEEE Personal Communications, 4(5):42–47, October 1997.

4. Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous comput-
ing. IEEE Computer, 34(8):57–66, August 2001.

5. Paul Longley, Michael Goodchild, David Maguire, and David Rhind. Geographic
information systems and science. Wiley, 2001.

6. Nissanka Priyantha, Anit Chakraborty, and Hari Balakrishnan. The Cricket
location-support system. In Proceedings of MOBICOM 2000. 2000.

7. Debashis Saha and Amitava Mukherjee. Pervasive computing: a paradigm for the
21st century. IEEE Computer, 36(3):25–31, March 2003.


