
Abstraction and Implementation of a Lightweight
Distributed Termination Protocol

D.M. Goodeve , C.M. Tofts and S.A. Dobson

Department of Computer Science, University of York, UK
School of Computer Studies, University of Leeds, UK

Department of Computer Science, Trinity College Dublin, Eire

Abstract

Termination detection is a significant problem in applications whose state is distributed
across a machine, thus making synchronisation on this state costly. Many parallel applica-
tions are structured such that termination occurs when some work-containing data structure
becomes exhausted. This view of termination gives rise to a novel abstract model for termi-
nation detection. This paper investigates this model and its implementation using a novel
scalable protocol on a distributed memory parallel system. A process algebraic model of
the protocol is developed for which correctness arguments and proofs are given, using
mechanical verification techniques. Results are presented to demonstrate the low resource
utilisation of the protocol in practical application.

Keywords: Termination detection, termination protocols, distributed data structures,
process algebra.

1 Introduction

The distributed termination detection problem has been widely studied[3,8]. The
problem is to efficiently detect when the global state across a distributed compu-
tation reaches a stable termination state, providing notification of this to the ap-
plication or system. This state might be explicit in that each process knows when
it has finished, allowing the construction of a global conjunction predicate. More
usually the problem is that all processes are co-operating in some manner and may
transiently be idle before recieving more work. To detect termination therefore it
must be ascertained that the entire system of processes are simultaneously in the
idle state.

Many task-oriented parallel algorithms either terminate or move from one behaviour
to another on the exhaustion of the supply of work from some pool. Detecting this

exhaustion in a distributed system is not trivial as it involves the execution state
of the application, which may spontaneously generate new work, and the state of
an underlying data structure. Ring-based protocols have been a popular means of
detecting termination in this type of system, for example[7,11].

The motivation in this work has been the study of algorithms based on shared ab-
stract data-types[5]. This abstraction technique allows the details of data manage-
ment to be effectively removed from application code. A significant issue in the
design of such types is how they can be used to support and expose useful dis-
tributed control mechanisms at their interfaces in ways meaningful to application
code.

This paper has three specific contributions. Firstly, a characterisation of the termi-
nation problem in terms of operations on a task pool data structure is presented.
This motivates the design of an elegant embedding technique for this and similar
protocols underlying shared abstract data-type implementations. The third contri-
bution is a novel and formally analysed scalable termination protocol.

The layout of this paper is as follows. Section 2 outlines the task pool exhaustion
model for termination and compares this with conventional formulations of the
termination problem. Section 3 discusses the embedding of the termination mech-
anism within the implementation of a shared abstract data-type. In section 4 the
design and analyis of the protocol is presented. Section 5 presents a simple perfor-
mance argument for the protocol and practical results obtained from a distributed
application running on a network of workstations. Some concluding remarks are
given in section 6.

2 Task Pool Exhaustion

An application employing task parallelism typically uses some pool data structure
that contains all tasks to be processed. This pool may be centralised or implicitly
or explicitly distributed. Processes typically both remove tasks for the pool and add
new ones as execution proceeds. For example, a node of some tree may be removed
from the pool and expanded to produce its children which are then re-inserted so
that another process may access them. Termination should be signalled when the
pool becomes exhausted so that either the application may exit, or this mode of
process behaviour may be changed.

In a system where there is only one process, detecting that the pool has become
empty is straightforward. When there is nothing in the pool, any further get opera-
tion, attempting to remove a task, should return an exceptional value indicating that
the operation cannot be completed. If there is more than one process operating, this
semantics is no longer adequate. If the pool is empty, it may just be a transient con-

2

dition before another process inserts some tasks. Processes cannot therefore rely on
an exceptional return value to signal termination. These two situations are depicted
in figure 1.

Multiple Process

NIL
Get pool

Get

Single Process

NIL
Get pool

Put

NIL

Fig. 1. Single and multiple processes accessing a task pool data structure.

As the return of an exceptional value in the multiple process case merely indicates
a transient state, an alternative semantics is that all get operations return valid data.
If no valid data is available therefore, a get operation cannot complete, forcing the
calling process to block. The system can be externally observed to have terminated
when all processes are in the blocked state.

2.1 Solutions

The simplest solution is to argue that termination detection is a system issue, not
an algorithmic one. Rather than internal to the algorithm, the supporting system
may be left responsible for detecting when all processes have reached the blocked
state. After a period of inactivity, detected through some consensus mechanism
such as the probing mechanism of [3], it may be concluded that the algorithm has
terminated.

This scenario is typical of Linda systems. To enable Linda programs to detect this
type of termination internally, new primitives have been proposed, notably collect
which allows the state of a tuple space (cf. pool) to be examined directly[1].

An alternative is to attempt to solve the consensus problem directly using a strongly
coherent counter[6]. By appropriate manipulation, a counter may keep track of the
number of tasks that are potentially in the pool, analogously to the counting proto-
col described in [8]. In a possible protocol, the last remaining unblocked process
examines the counter before committing to a get operation, allowing it to detect
the condition that this pool is and will remain empty. It can therefore signal the

3

other processes via the pool that termination has occurred[4]. Unfortunately this
solution leads to significant performance problems due to the costs of maintaining
a coherent counter across a loosely-coupled distributed system[5].

2.2 A Hybrid Semantics

The two options explored for the semantics of the pool are:

– Non-blocking. In this case, processes will not be blocked by an empty pool,
but cannot conclude anything about the state of the system from an exceptional
return value.

– Blocking. In this case, the termination state exists when all processes are blocked
waiting for an item to be returned from the pool.

An alternative semantics for the get operation offers an elegant integration of the
termination mechanism with the pool shared type. The mechanism is depicted in
figure 2. The semantics of the get operation are identical to the blocking case up

Get

Get pool

Get

threads in threadgroup

NIL

NIL

NIL

NIL

Get

Fig. 2. Multiple processes accessing an empty pool data structure, with consensus termina-
tion detection.

to the point that the pool data structure becomes empty. The pool structure records
which processes have access to it. In an object-oriented environment this can be
captured by the notion of threads binding on to the object encapsulating the pool
data structure. When all bound threads are all simultaneously attempting to remove
a task from the pool using get, and all are unable to proceed we have the termina-
tion state. In this state it is arranged so that an exceptional value is simultaneously
returned to all get operations, signalling termination to all threads. This allows the
threads to behave in an application dependent manner in response to the exhaus-
tion of a supply of work. The termination property as described above can also
be re-used a number of times during the execution of an application; there is no
requirement implied that the application need terminate.

4

2.3 Modelling assumptions

This typical set of assumptions modelling a distributed system follows that of [12].

(i) Each processing node has two states; idle and active.

(ii) An active processing node can become idle spontaneously.

(iii) Only active processing nodes can send messages.

(iv) On receipt of a message, an idle processing node becomes active.

And optionally:

(v) the sending and receipt of a message occur in the same atomic action.

The conjunction of assumptions (i)-(v) assures that the state where all processing
nodes are idle is stable, which is the termination state.

The model presented in section 2.2 can be understood in these terms as the pool
distributed shared abstract data-type is itself implemented in terms of a messaging
system. Delivery of data to an idle node can move that node to the active state by
providing more work. An active node can exhaust its supply of work and therefore
become idle. There is thus a direct correspondence between the abstracted model
and this underlying messaging model.

3 Embedding mechanism

To allow the construction of operations with collective operational semantics such
as termination detection, the concept of a threadgroup is introduced. A threadgroup
is a logical collection of threads of control that may for some purposes be treated
as a unit. This construction allows predicates over the execution state of parts of
a distributed application to be evaluated. A group may all run in the same address
space, or in the case of the implementation described here, may run across many
address spaces in a distributed application.

Once a threadgroup is established, mechanisms may be employed to allow the com-
bined execution status to be examined. Once such mechanism is that used to detect
termination as suggested in section 2. It is suggested that other predicates over
group execution state may be useful, motivating the design of a generic mecha-
nism.

A prototype threadgroup mechanism specifically to facilitate termination detection

5

in applications distributed across networks of workstations has been implemented
using the DEC-SRC Modula-3[10] Threads module. Inter-thread synchronisation
is facilitated using signal variables in this module. The implementation modifies
the calls on signal variables such that if a thread belonging to a threadgroup waits
on a signal variable, it first examines whether all other threads are similarly wait-
ing. If so, a run-time signal is generated that may be used to trigger other activity,
facilitating the protocol mechanism. Within the run-time layer, signal variables can
also be accessed to release all threads currently waiting, returning to each blocked
thread an exceptional value indicating a group release event.

This termination detection mechanism is similar to a barrier. However, joining
a synchronisation barrier is a committed event, whereas this mechanism permits
threads to join and leave the synchronisation point, driven by other normal events
on signal variables. The similarity with the barrier is that once all threads in the
group arrive, they are simultaneously released. The distinction is that there are two
circumstances that lead to a thread leaving the synchronisation point; normal re-
lease or group synchronised release. This implementation informs threads of which
has occurred, allowing operations that can use this information to be constructed.

4 Termination Protocol

It is known to be difficult to verify the correctness of termination protocols; mis-
takes have been made in the literature (see [14] for a detected example). This sec-
tion presents the design and analysis of a lightweight protocol that efficiently de-
tects termination. A process algebraic approach is used to both specify and verify
the protocol. Algebraic reasoning is supplemented with the use of the Edinburgh
Concurrency Workbench automated analysis tool[2].

The protocol presented underlies our implementation of the threadgroup abstraction
for termination detection. The realisation of this protocol using local synchronising
operations and RPC for remote synchronising operations is straightforward. The
protocol has been used to implement the run-time detection mechanism on both a
loosely-coupled distributed system, and on a massively parallel machine[5].

The protocol describes both the messaging structure within a shared abstract data-
type facilitating dynamic load balancing, and the underlying run-time mechanism
for detecting termination. There is subtle interaction between these two mecha-
nisms, requiring that both of them are exposed for analysis.

Despite the apparent simplicity of the protocol, its correct derivation has proved to
be difficult. This has motivated the detailed definition of the protocol in this paper
and the presentation of the validation methodology applied.

6

The process algebra CCS[9] is used to describe both the threads acting on the data
structure and the internal components comprising the data structure and implement-
ing the termination protocol. It is assumed in the following that the reader is rea-
sonably familiar with this notation. The correctness arguments presented below are
given both in English and in a form suitable for automated validation. The protocol
has been validated using the Edinburgh Concurrency Workbench[2] using proposi-
tions expressed in the Hennessy Milner modal logic[13].

4.1 Principle of operation

A Shared Abstract Data-type (SADT), providing an abstract interface to a dis-
tributed data structure, is accessed by a number of threads spread across the address
spaces of a distributed machine. A store SADT supports put and get operations, al-
lowing threads to deposit and obtain items of work. This can model a wide variety
of data structures. The only assumption about the semantics of operations on such
a structure in the following is that it is possible for get operations to block due to
lack of data.

The SADT is implemented by a set of representatives, one per address space in a
system[5]. Each of these representatives tracks the number of threads accessing it
and their state. When a representative becomes empty, and all its client processes
are stalled during a get operation, it sends a signal to a central controller stating
that it is stalled. After this it can either tell the controller that it has become active
again as new data has arrived from elsewhere, or it is informed by the controller
that all other representatives have signalled that they have also become stalled, so
signalling that termination has been detected. A model of the system corresponding
with the CCS formulation is shown in figure 3. In the CCS formulation below it is
assumed that the number of threads in the group is set during some initialisation
phase before normal operation commences.

4.2 Local system

The protocol is analysed firstly at a local level before extending it to a distributed
implementation spanning multiple address spaces. The local model consists of a
number of agents and an SADT representative comprising a data structure
agent and a control agent.

4.2.1 Thread agent

The Thread agent models the behaviour of client threads of the SADT. Conven-
tionally, outputs are denoted through the over-barred co-action of an action name

7

rel
sig

finStore

Controllerisempty,

Thread

finish
empty

got

put
get

isfull

Fig. 3. System of agents comprising the distributed termination protocol mechanism.

pair.

def (1)

The agent repeatedly accesses the data structure, either putting or getting
an element at each step. Putting an element is accomplished by the simple action

. Getting an element involves a compound synchronisation. Firstly the thread
signals () that it is attempting a get operation, equivalent to issuing a wait on
a signal variable. Either the thread will then be allowed to complete the sequence

to obtain an item, or will synchronise of a action, terminating its be-
haviour.

The design of the synchronisation mechanism should guarantee that all threads
are only allowed to terminate via their action when the global data structure
is empty and all threads are similarly blocked, unable to synchronise via the
action.

4.2.2 Representative agents

The local SADT representative consists of two agents; and . The Store
agent simulates the underlying data structure.

def

def

(2)

8

A complete model of the data structure would have an unbounded number of states,
representing the number of stored elements. This representation only distinguishes
two major states; full and empty. In the empty state nothing can be removed
from the store. In the full state, removing an item through the sequence
either does not empty the structure, hence it remains in state on completion,
or it becomes empty. In both states, actions are available to test the state externally.

The control agent, beginning as , implements a counter tracking the number of
threads currently attempting to get an element from the store agent. The number of
threads is expressed by the parameter .

def

def

def

def (3)

If all threads are blocked () and it is possible to observe that the store is empty
(), then the controller indicates that it is preparing to finish via the
action. The action is provided as a means for an external agent to give
the controller permission to terminate. Subsequently the control agent offers
actions to synchronise with and terminate each of the threads. Finally it offers an

, signalling that the termination sequence has occurred, action before becoming
the null agent.

4.2.3 Correctness of local system

A system consisting of the , and agents illustrates the basic prin-
ciple of operation of the protocol. Before extending this from a single address space
model to a distributed model, this simple local system is analysed for correctness.

A local system may be described in its initial state by the agent below:

def

where (4)

For a termination to be considered correct the following conditions must apply:
(i) All threads must be waiting to get an item from the data structure.

(ii) The data structure must be empty.

Condition (i) implies that the thread agents are all in the waiting state:

9

Condition (ii) implies that the data structure is in the state , where it cannot
synchronise on a action. Taken together therefore, this implies that the only
actions on which the thread agent can synchronise is .

For the thread agents to have entered the waiting state as implied by (i), the control
agent must have entered state . As no thread can offer a action, progress is
only possible through synchronising with the store agent on . This confirms
that the store is empty, therefore that the actions of the threads cannot progress,
implying that the synchronisation cannot occur.

Once the termination conditions arise therefore, the controller agent will enter state
after synchronising with the external system on an action. Once the ex-

ternal system offers a action, the controller can only progress by offering the
sequence . From (i), the actions can thus synchronise with the thread
agents, leading them to terminate (null agent). Once this has been accomplished the
control agent offers the action and itself becomes the null agent.

To verify that the system does indeed follow these behaviours, the Edinburgh Con-
currency Workbench has been employed. The first test of correctness is that the
system is only able to terminate correctly. The termination state defined above al-
lows no further actions. In a correct system, there should be no other states in which
no further actions are possible. Enumerating the deadlocks of the agent re-
turns only one state, the correct termination state.

From the argument given above it follows that a correct termination consists of the
following sequence of external observations: . In particular, it is
not possible to observe the action unless the threads have correctly terminated.
To check correctness, two temporal propositions expressed through the Hennessy
Milner Logic are used:

(5)

Where is the always temporal operator; its argument must be true for all derived
states reachable from this state, and is the eventually operator, that in at least one
derived state, the argument is true.

Proposition P1 expresses the condition that from all states (except deadlock) it is
possible to terminate correctly, observing an action and without the possibility
of observing the data structure to be in the full state via the action. Propo-
sition expresses that from all states, it is not possible to deadlock (terminate)
except via the action. The conjunction of these two therefore implies that correct
termination is always possible (liveness) and that the only deadlock is the correct
termination sequence (correctness).

10

The and operators are straightforward to express using the minimum and max-
imum fix-point propositions supported by the Concurrency Workbench. Checking
that the agent satisfies both and is accomplished using the model
checker of the Concurrency Workbench. A limitation of a proof made in this way is
its limitation on the size of the system which must be boundedly finite to complete
an analysis. Towards a general proof, the following inductive argument is offered.

If a system with threads correctly terminates; consider a system with
threads. The additional thread can either be in the active state, or waiting to syn-
chronise on one of , or . The controller is also expanded by one state to
accept the additional and actions due to the additional thread.

If the thread is active, then the controller will be in the same state as it would in a
system without this thread present. If the thread is waiting, having synchronised on

, then the controller will be elevated by one state from where it would be in the
equivalent thread system. This expansion of the controller states will therefore
still permit correct behaviour. If the added thread is active, then the controller will
not be able to reach the state. If the added thread is waiting on or , then
the controller will only reach the state if all other threads are similarly waiting.

Informally therefore, the addition of an extra thread will not affect the correctness
of the local system. Correctness has been mechanically verified for systems with
up to 10 threads, giving confidence in the existence of a general proof.

4.3 Global model

To extend the model to a distributed system it is necessary to include definitions
for a global controller and a mechanism for migrating elements between represen-
tatives at each node in the system. This is achieved through the following additions
to the local model, shown pictorially in figure 4.

4.3.1 Work migration mechanism

To facilitate migration of data elements between nodes, a sender-initiated migration
protocol is modelled. Arrivals of new elements from elsewhere occur via the Rput
agent. These elements are generated by the Migrator agent at a remote node. The
Migrator agent is simply a client of the store, similar to the Thread agent, and will
similarly block if the store is empty. The thread count reflects the addition of this
extra client into the local agent. The sending of an item of data across the network
is accomplished via the sequence , modelling a remote procedure call.

The Rput agent accepts an action from a remoteMigrator agent, subsequently
putting the received item into the local store. It is possible that this arrival will

11

put

got

finish

isempty,
isfullput

get

Controller

Store fin
sig

rel

rarr

empty finish
notempty

notempty

Thread

Global Controller

Rput rarrok

empty

rputi racko

rputo
racki

Migrator

Fig. 4. Global system of agents, extending the local system to facilitate termination detec-
tion across multiple address spaces.

enable this node to perform work again after it has previously generated an
action. This requires synchronisation with the control agent, accomplished by the
sequence .

def

def (6)

If all client threads have become idle waiting on an empty store, then the control
agent will have performed action, notifying some global controller. If new
work arrives from another node in the system, this notification must be revoked.
This occurs through the action, triggered when the agent inserts a
new item into the store.

def

def

def

def (7)

12

A race exists where a remote node migrates data to this node rendering itself empty.
If that node were to generate the action before this node generates the action

, revoking its previous action, then a global controller might erroneously
detect that all nodes are idle.

The remote inserter agent , through the sequence, ensures that
the local controller agent performs the action, if required, before ac-
knowledging the arrival of the new data to the sending Migrator agent. This send-
ingMigrator agent can therefore only proceed to its blocking state, allowing
to be performed by its local controller once the receiving node has performed

. This ensures that global termination can only be detected when all nodes
have achieved the idle state. It may be observed that the system is stable after the
time that all nodes have signalled .

4.3.2 Local correctness

The new local node agent is defined as the parallel composition:

(8)

To assure that the properties of the local node agent are still preserved, Local’ is
checked against the propositions G1, G2 and G3.

(9)

In the absence of remote insertion (action) all the propositions hold.G1 guar-
antees that deadlock (termination) is only possible via the action, thus no addi-
tional deadlocks have been introduced. Proposition G2 guarantees that once the
node agent has signalled , then it cannot be observed to become full. Propo-
sition G3 guarantees that once the node agent has signalled , then it cannot
subsequently generate a remote insertion (). For a node in isolation, not re-
ceiving any remote insertions, these propositions taken together guarantee that the
node agent will behave correctly; only terminating via the action and once hav-
ing signalled that it is empty, remaining empty.

That these propositions are not true for the agent when remote insertions are en-
abled means that a collection of nodes as a whole must co-ordinate to support the
necessary guarantees. In a system of local agents which does permit inter-node

13

work migration, if the system is operating correctly, the only achievable deadlock
must be preceded by an action. This is asserted by G4 in an analogous man-
ner to G1. The Local’ agent is also re-labelled to enable multiple agents to inter-
communicate. Note that the semantics of re-labelling do not permit Local’ agents
to synchronise with themselves on the and actions.

def

def

(10)

The satisfaction guarantees this property for a system of up to 2 nodes closed under
the , and actions, demonstrating that no other deadlocks exist apart
from that induced by the non-availability of the finish synchronisation with an ex-
ternal controller. This satisfaction has been mechanically checked for .
Extending this satisfaction to larger is discussed in section 4.4.

4.3.3 Global controller

It has been demonstrated that the new local system under the restriction of no inter
address-space communication behaves correctly. Once message passing is allowed,
then a distributed system of local agents behaves correctly up to the point of deliv-
ering the notifications.

An global termination agent must therefore guarantee that synchronisations
are only possible once all local nodes have reached an impasse via their
actions. A global controller that facilitates this is simply a counter, analogous to the
local controller.

def

def

def (11)

The complete system can therefore be expressed as the agent:

def (12)

14

4.3.4 Global correctness

To test correctness for the complete system, three propositions G5-G7 are used.
Proposition G5 guarantees that the system can always terminate correctly from any
state except deadlock. Proposition G6 guarantees that the only deadlocks in the
system proceed via as the final action (a node agent terminating). Finally G7
guarantees that once the global termination signal has been seen, then it is not
possible to observe any node to have a store which is not empty.

(13)

The final property of the system required to prove correctness is that all termina-
tions (deadlocks) can only occur following the action. This can be concluded
by inspection of the agents concerned. The local control agent can only signal lo-
cal termination via by completing the requisite set of actions with its client

and agents. This in turn can only be triggered via a ac-
tion, which can only arise subsequent to a action. Therefore all terminations
can only proceed via a action, implying correct global termination.

From these satisfactions it is concluded that the system can only terminate correctly,
closing down all operations on all local nodes once all local stores are empty and
all client threads are blocking on get operations from those stores.

It has been mechanically checked that these satisfactions apply to various instances
of :

(14)

This has been mechanically checked for and .

4.4 Extensions

The preceding reasoning and model checking has assured that the protocol de-
scribed is correct for systems containing up to two local nodes each supporting
three client threads.

A problem with the system construction as presented above concerns the non-
uniqueness of the and synchronisations in the system. Agents
and above do not satisfy G4 which in turn leads to the failure for systems including
a global controller to satisfyG5-7. This is found to be due to the non-unique pairing

15

of and communications between nodes, leading to the possibility that the
wrong will acknowledge a communication. This can lead to a deadlock arising
where one is left waiting for an acknowledgement that has been consumed
by one of the other agents.

To avoid this, and thus extend the satisfiability of G4-7, a guarantee of unique
pairing of messages and acknowledgements is required. This can be achieved by
introducing two unique names for each communication from an agent, re-
labelling these to uniquely address one other instance in the system. The
Migrator and Rput agents are thus re-defined as follows:

def

def

def (15)

The construction of now requires the re-labelling of the , ,
and actions to form unique communications paths across the set of

nodes, for example the zeroth node agent in a three node system () could be
assigned the relabelling:

def

(16)

Constructing the system as before with this relabelling applied and restricting over
the extended resulting action set allows systems with the unique name pairing prop-
erty to be specified and verified. Systems so formulated have been mechanically
verified correct under up to the complexity of .

4.4.1 Re-entrant behaviour

In the protocol as described, all thread and control agents deadlock on correct termi-
nation. Instead of this behaviour, all these agents can continue operating from their
initialisation state, allowing the termination mechanism to operate again. Rather
than being just purely for application termination therefore, this mechanism can be
used to manage the phases of a distributed computation.

To express this change in the process algebraic model is straightforward, however
it makes the system cyclic and thus expressing the correctness of termination is
more involved. It is reasonable to argue however that the extension of processes
behaviour beyond the deadlock point should not change the form of the system
state space as we will just be returning to a starting state again, thus the correctness

16

arguments and checks remain valid. The implementations of the protocol assume
the correctness of this re-entrant formulation.

4.5 Summary

A correctness argument and automatically verifiable propositions over the behaviour
of the termination protocol have been presented. On the basis of these, the correct-
ness of the distributed termination protocol has been demonstrated for restricted
system sizes. The complexity of the system has precluded the discovery of a sim-
ple analytical proof of correctness for arbitrary system size. The experience gained
with automated model checking does however inspire confidence that such a gen-
eral proof does exist.

5 Performance

It has been claimed that the proposed protocol is lightweight. By this it is implied
that the protocol uses little in the way of system resources to complete its task. In
this section this issue is briefly studied, presenting a paper analysis and practical
results from the use of the protocol in a network of workstations based distributed
application.

5.1 Message counting

A node will generate a termination message on becoming idle, or on after being
idle, becoming active again. Typically this might happen several times for each
node in a network before the stable system-wide termination state exists. The num-
ber of messages generated by the protocol is therefore where is the size
of the network. On a scalable network therefore, the protocol should scale ideally.
A limitation to the scalability of the protocol will be the bandwidth sustainable by
the node responsible for maintaining the global control thread. It is assumed that
this will not be a limitation on relatively small systems. For larger numbers of pro-
cess this could lead to a hierarchical design for the global controller, alleviating this
bottleneck.

The constant factor in the time complexity of the protocol is due to the number
of times a node enters into and exits from the idle state. In the distributed data
structure application investigated below, this is a function of the quality of the load
balancing in the system. Specifically, if a node becomes regularly starved of work,
then the constant factor of the number of termination messages will increase.

17

5.2 Performance results

A set of executions of a distributed application were performed with the code instru-
mented to measure the network traffic generated. The distributed system used was a
set of Silicon Graphics Indy workstations connected via a switched 10BaseT Ether-
net using TCP/IP protocols to support message passing. The distributed termination
protocol was embedded in the implementation of a weakly-coherent distributed pri-
ority queue, in which transparent dynamic load balancing was performed. For this
shared abstract data-type, a record was made of the number of messages gener-
ated in total by all the representatives, and the messages specifically concerning
termination; empty and notempty.

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30 35

M
es

sa
ge

s

Processors

Total messages
Termination only

Fig. 5. Termination message count against total message count within a distributed im-
plementation of a weakly coherent priority queue. Figures obtained from usage inside a
branch-and-bound parallel solver averaged over several executions of a set of benchmark
problems.

Figure 5 shows the number of messages generated by the SADT during execution.
The data shown is averaged over several executions on different sizes of network
solving a set of benchmark problems. The average amount of work done by each
network during each execution is roughly constant.

The total number of messages generated within the SADT steadily climbs with the
size of system, showing a marked increase above 25 processors. This is increase
is due to the interaction of the periodic dynamic load balancing scheme and the
available network performance across the larger distributed machine. The number
of these messages attributable to the termination mechanism appears below this.
Not only is the number of messages small, but as the machine size increases the
proportion of message traffic concerned with termination decreases progressively.

18

In conjunction with the dynamic load balancing scheme used therefore, the termi-
nation mechanism scales well.

An additional factor to be considered is the size of messages. Termination messages
are very short status messages. The load balancing messages typically consist of
the order of 1KByte of data. Taking this into account, the claim is justified that this
termination mechanism is indeed lightweight in practical application.

6 Concluding remarks

The protocol mechanism and its abstraction presented in this paper have been
proved effective in practice. The protocol used, whilst simple to formulate did cause
implementation difficulties which were hard to fully understand without the aid of
automated checking. The discovery of general proofs for this type of protocol sys-
tem, based on induction as a constructive principle is viewed as a difficult problem.

Our automated property checking approach inspires confidence in the correctness
of this protocol, but it is limited by the size of system that can be analysed using
current generation property checking systems. It is intended that approaches to the
generalisation of this kind of proof are pursued, with the intention of developing
proofs that can scale with the implementation of a system.

Acknowledgements

The authors would like to acknowledge the inputs of their colleagues into the de-
velopment of this work; notably Graham Birtwhistle and Chris Wadsworth. Also
thanks to Perdita Stevens for offering a pre-release version of CWB7.1, allowing
the use of a Silicon Graphics Origin2000 for model checking.

References

[1] Paul Butcher, Alan Wood, and Martin Atkins. Global synchronisation in Linda.
Concurrency: Practice and Experience, 6(6):505–516, 1994.

[2] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-
based Verification Tool for Finite-State Systems. Technical Report ECS-LFCS-
89-83, Laboratory for the Foundations of Computer Science (LFCS), University of
Edinburgh., 1989.

[3] Edsger W. Dijkstra, W.H.J. Feijen, and A.J.M van Gasteren. Derivation of
a Termination Detection Algorithm for Distributed Computations. Information

19

Processing Letters, 16:217–219, 1983.

[4] D. Goodeve, R. Briggs, and J. Davy. Capturing Branch and Bound using Shared
Abstract Data-types. In C.R. Jesshope and A.V. Shafarenko, editors, UK Parallel ’96
(BCS/PPSG), pages 119–134. Springer Verlag, July 1996.

[5] D.M. Goodeve, S.A. Dobson, J.M. Nash, J.R. Davy, P.M. Dew, M. Kara, and C.P.
Wadsworth. Toward a Model for Shared Data Abstraction with Performance. Journal
of Parallel and Distributed Computing, 49(1):156–167, February 1998.

[6] Maurice Herlihy. Wait-Free Synchronisation. ACM Transactions on Programming
Languages and Systems, 11(1):124–149, January 1991.

[7] Nobert Kuck, Martin Middendorf, and Hartmut Schmeck. Generic Branch and Bound
on Transputers. In R. Grebe et al., editor, Transputer Applications and Systems ’93,
pages 521–535. IOS Press, 1993.

[8] Friedemann Mattern. Algorithms for distributed termination detection. Distributed
Computing, 2(3):161–175, 1987.

[9] Robin Milner. Communications and Concurrency. Prentice Hall, 1989.

[10] Greg Nelson. Systems Programming with Modula-3. Prentice-Hall series in
Innovative Computer Science. Prentice-Hall, 1991.

[11] V.J. Rayward-Smith, S.A. Rush, and G.P. McKeown. Efficiency considerations in
the implementation of parallel branch-and- bound. Annals of Operations Research,
43:123–145, 1993.

[12] Steffan Rönn and Heikki Saikkonen. Distributed termination detection with counters.
Information Processing Letters, 34(5):223–227, May 1990.

[13] C. Stirling. An Introduction to Modal and Termporal Logics for CCS. In Proceedings
of the 1989 Joint UK/Japan workshop on Concurrency, volume 491 of LNCS, pages
2–20. Springer-Verlag, 1991.

[14] R.B. Tan, G. Tel, and J. Van Leeuwen. Comments on: Distributed Termination
Detection Algorithm for Distributed Computations. Information Processing Letters,
23(3):163, October 1986.

20

