On using temporal features to create more
accurate human-activity classifiers*

Juan Ye!, Adrian K. Clear!, Lorcan Coyle?, and Simon Dobson!»2
! CLARITY: Centre for Sensor Web Technologies
University College Dublin, IE
2 Lero, the Irish Software Engineering Research Centre
University of Limerick, IE
juan.ye@ucd.ie

Abstract. Through advances in sensing technology, a huge amount of
data is available to context-aware applications. A major challenge is ex-
tracting features of this data that correlate to high-level human activi-
ties. Time, while being semantically rich and an essentially free source
of information, has not received sufficient attention for this task. In this
paper, we examine the potential for taking temporal features—inherent
in human activities—into account when classifying them. Preliminary
experiments using the PlaceLab dataset show that absolute time and
temporal relationships between activities can improve the accuracy of
activity classifiers.

1 Introduction

Advances in sensing technology lead to a huge amount of information being
available to context-aware applications. For example, an average smartphone
exposes data through accelerometers, GPS, Bluetooth, Wifi and microphones,
to name but a few. There is much research into techniques to extract high-level
activities from individual streams data from sensors like these [6-8].

In order to distinguish between various human activities, it is often necessary
to consider multiple types of sensor data in aggregate. For example, combining
location information, noise-level and the number of people co-located may allow
us to distinguish between a meeting situation and a working alone situation.
However, adding sensor infrastructure in order to distinguish between activities
can be a costly process.

Time is a property of all human activities and inherent in most sensor data
datasets—almost all sensor readings are time-stamped. In this paper, we explore
the effectiveness of using temporal information for classifying human activities.
We hypothesise that by doing so we can create more accurate classifiers at no
extra infrastructural cost. Firstly, we analyse the temporal semantics of the hu-
man activities that occur in the PlaceLab dataset, which records the activities of
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a couple living in an instrumented real-world environment for over two weeks [9].
Then, through experimentation using this dataset, we examine how effective a
subset of these temporal properties and relationships are at increasing the accu-
racy of our activity classifiers.

The rest of this paper is organised as follows: Section 2 describes the temporal
semantics of the activities in the PlaceLab dataset. In Section 3, we take a subset
of the temporal features of this data and conduct some experiments to examine
the effectiveness of these features in improving our classifiers. Section 4 explores
some related work in the area of temporal semantics. Finally, we draw some
conclusions in Section 5 and outline future directions for this research.

2 Temporal Features and Human Activities

In this section we will examine the temporal features of human activities that
can be useful in improving the accuracy of activity classifiers. Temporal features
of activities can be categorised as being absolute or relative. Absolute temporal
features are those that exist independent of other activities, whereas relative
features are those that exist in the context of other activities. We will explore
these features using activity data from the PlaceLab dataset [9].

The PlaceLab is an instrumented home fitted with a large number of sensors
and an audio-visual recording infrastructure. The dataset that we use in this
paper was gathered in real-world conditions—a married couple moved into the
PlaceLab and were encouraged to maintain their life routine as much as possible
for a period of 15 days. A third party annotated the activity categories of the
married couple using the recorded video stream. These categories include (1)
working (e.g., writing or using a computer); (2) leisure (e.g., watching TV); (3)
meal preparation (e.g., cooking or preparing a drink); (4) cleaning (e.g., dusting
or putting things away); (5) entering/leaving the PlaceLab; (6) grooming (e.g.,
getting dressed or undressed); (7) hygiene (e.g., toileting or bathing); and (8)
eating (e.g., eating a meal or drinking).

2.1 Absolute Temporal Features

Absolute temporal features are those that exist independent of other activities.
These include physical time, which consists of a date and time in a representation
such as “2006-09-05 18:23:45”, and semantic time, which is a symbolic represen-
tation of time such as “morning”, and is abstracted from physical times. Semantic
times can also be application- and person-specific. For example “lunchtime” can
be between 12:00 and 13:00, during which a person routinely has their lunch.
Such semantic times have been shown to be useful in predicting human activi-
ties [16].

As mentioned above, the PlaceLab activities can be classified into a set of
high-level categories such as leisure and cleaning. A person’s day can be seg-
mented into continuous intervals in which the activities that are carried out are



for the most part from a single high-level category [6]. We hypothesise that a per-
son’s routine will cause daily patterns to occur in the absolute temporal features
of these segments. Being able to determine that some activities from one of these
categories are occurring at a given time may be useful to an application, even
if the actual activity cannot be determined. Therefore, as a first experiment, we
will examine the potential to determine the high-level category of activities that
is occurring at a given time in a person’s day.

Figure 1 presents the time distribution of activity categories, including work-
ing, leisure, cleaning, entering/leaving the PlaceLab, grooming, hygiene, and eat-
ing. It illustrates the proportion of these categories at different times of the day.
Each point on the x-axis corresponds to a time interval beginning at the labelled
hour and ending at the following hour (e.g., 22 represents the time between 22:00
and 23:00).
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Fig. 1. Time distribution of activity categories

Even though many of the categories occur throughout the day, we can see
peaks in over half of the activities during a particular hour of the day. For
example, we can see that grooming mostly occurs around 17:00 and 23:00 and
that eating usually takes place between 19:00 and 20:00. While these results
may not be conclusive in determining the category of activities occurring, by
combining the occurrence ratios from the figure with some data from sensors
there is a potential to determine these categories with a high level of accuracy.



2.2 Relative Temporal Features

Relative temporal features of activities are those that exist in the context of
other activities. Such features may be useful in classifying activities that do not
display patterns in absolute temporal features, but can be inferred from their
relationship with other activities that occurred or are occurring. For example,
a person may not have a routine time for eating dinner, but they often prepare
food before eating it.

Figure 1 shows a large amount of overlapping among the occurrence of the
coarse-grained activity categories, so it is difficult to observe the temporal se-
quence between them. We will now examine a sub-set of lower-level activities,
which are regarded as characteristic activities in the PlaceLab publications [9].
Figure 2 shows the probability of activities occurring before the occurrence of the
activities on the x-axis. For example, there is almost 70% probability that the
subject is using a computer before he uses the phone. The activities under the
working and leisure categories still dominate most of the time, including “using
a computer”, “watching TV”, and “reading”. Beyond them, we can observe a
few distinguishable temporal relationships; for example, “meal preparation” is
likely to occur before “eating”; and “hygiene” is the activity that occurs most
frequently before “grooming”.
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Fig. 2. Probabilities of activities occurring before the occurrence of each activity

The occurrence of activities can exhibit rich temporal semantics. Figure 3
shows the following basic temporal sequences and the compound sequences de-
rived from them. More details can be found in [1]:

1. owverlapping — activities a and b co-occur at some point in time; for example,
a subject can watch TV and have dinner at the same time;

2. containing — activity b begins after the start of, and ends before the end of,
activity a; for example, mixing and stirring food can be considered as one of
the processes in cooking.



3. preceding — activity a occurs before activity b; for example, a person pre-
pares a drink before drinking it;

4. co-starting — activities a and b begin at the same time;

5. co-ending — activities a and b end at the same time.
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Fig. 3. Temporal semantics of activities. The starting and ending times of these activ-
ities are represented as [t;.ts, ti.te] and [t;.ts,t;.te].

2.3 Time with Other Sensor Data

Time usually acts as metadata for other sensor data; that is, each sensor datum
has an associated timestamp. Beyond this, further temporal semantics can be
applied to sensor data so that the same sensor values can be inferred to different
activities according to the time of day. For example, in a smart home where
electrical current usage is monitored, high usage at 19:00 may imply that the
subject is using the oven, watching TV, or using a computer; while the high
usage at 02:00, when the subject is usually asleep, may suggest an electrical
fault.

3 Case study

The above section discusses the rich temporal features in human activities. Here,
we demonstrate that incorporating such features into activity classifiers improves
the accuracy of determining activities compared to using sensor data alone. Our
experiments are carried out on the PlaceLab dataset [9].



3.1 The PlaceLab dataset

The PlaceLab has the following types of sensors installed: infra-red motion sen-
sors to detect motion in different rooms, object motion sensors to detect access
and movement of everyday articles such as the remote control, sensors to monitor
the usage of electrical current, water and gas, RFID (radio frequency identifica-
tion) sensors, and switch sensors that sense the open and closed states of doors.
Since most sensors in the PlaceLab are not person-specific (except for RFID)
and there are two subjects involved, this dataset has external noise, which leads
to a low accuracy in activity prediction [3].

The activities that we are classifying in our experiments are the most char-
acteristic activities of the dataset, listed in Figure 2. The activity classifier that
we use is called the situation lattice, which is a sound mathematical model that
is used to abstract and combine sensor data in a lattice structure [17]. Through
a learning process, the situation lattice can build the correlation between the
abstracted sensor data and the high-level activities. It supports the represen-
tation and use of domain knowledge, which allows us to incorporate temporal
features in the inference process. More detail on the theoretical model, construc-
tion methodology, and inference technique can be found in [16, 17].

We use the leave-one-day-out technique to evaluate the accuracy of our ac-
tivity prediction. The accuracy is quantified as F-measure, which combines and
balances sensitivity and specificity. Sensitivity is the ratio of the number of times
that an activity is correctly inferred to the number of times that it is inferred.
Specificity is the ratio of the number of times that an activity is correctly inferred
to the number of times that it actually occurs.

3.2 Experiments

We now present two experiments: the first one explores the effectiveness of incor-
porating absolute temporal features, such as hour of day (from 17:00 to 24:00),
into the activity classification process; and the second experiment explores the
effectiveness of incorporating the following relative temporal features:

— co-occurrence

e we explicitly constrain the activities that cannot co-occur according to

human common sense knowledge. For example, watching TV cannot co-

occur with hygiene in the bathroom. In the inference process, we remove

all the activities that cannot co-occur with the activity that we have
inferred with the highest probability;

e we account for the likelihood of activities co-occurring, for example, meal
preparation can sometimes co-occur with dishwashing. In the process of
training the lattice, we determine the probability that any two activities
will co-occur. In the inference process, we use this to predict the activities
that are likely to co-occur with the activity that we have inferred with
the highest probability. The following basic Bayesian rule is applied:
prob(j) = prob(i) x prob(j|i), where prob(i) is the probability of activity i



occurring, prob(j]i) is the probability of co-occurrence, and prob(j) is the
inferred probability of activity j occurring according to its co-occurrence
with activity 1.

— pre-occurrence — we account for the likelihood of an activity occurring based
on the activities that occurred prior to it. Similar to the co-occurrence rela-
tionship, in the training process we determine, for each activity, the proba-
bility that any other activities occur before it. In the inference process, we
use this to predict the activities that are occurring according to the activities
that occurred in the previous ten minutes.

Using the above temporal features, we carried out the following experiments.

Experiment 1 : comparing the accuracy of activity classifiers when using tem-
poral features compared to using other individual sensors.
In this experiment, we evaluate the overall accuracy of each type of sensor
for classifying activities. We compare this to the use of absolute time, and
the combination of using absolute time and the relative temporal features
described above. The results can be seen in Figure 4, where the absolute time
outperforms the other sensor types by producing a higher average accuracy
in predicting all activities. Moreover, the figure shows that the relative tem-
poral features can further increase the accuracy of this classifier.
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Fig. 4. Overall precision of predicting activities using each type of sensor.

Experiment 2 : comparing the accuracy of activity classifiers when using all
the PlaceLab sensors in aggregate, and when combining this with absolute
and relative temporal features.

In this experiment, we evaluate the accuracy of activity inference using clas-
sifiers created from the following factors:
1. all sensor types without any temporal features;
2. all sensor types including absolute time;
3. all sensor types including absolute time and the co-occurrence relation;
4. all sensor types including absolute time and the pre-occurrence relation;



5. all sensor types including absolute time, and the co-occurrence and pre-
occurrence relations.
Figure 5 shows that the incorporation of temporal features improves the
accuracy of inferring most activities. The most accurate classifier is the one
that incorporates all of the above temporal features.
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Fig. 5. The accuracy of classifiers creating using different factors.

4 Related Work

In this section we describe how time has been studied elsewhere, both in terms
of modelling and for use in activity recognition.

4.1 Modelling Time

Time is an important dimension of context and is inherent in every sensor read-
ing. Most current work on modelling time is restricted to reflecting the physical
nature of time, such as representation and formatting of time instants [2], and
intervals. Ye et al [15] observe that it would be beneficial to develop a formal
temporal model to exploit the features and various relationships of time.

In the GLOSS project, Dearle et al [4] provide an orthogonal structure to rep-
resent physical and semantic time, which is beneficial in reasoning for scheduling
applications. For example, we can add an activity with a description as follows:
meeting with Erica at 4 o’clock tomorrow. The system could then recognise that
tomorrow is one day after the current date, translate it into a physical time, and
then execute further actions.

SOUPA (Standard Ontology for Ubiquitous and Pervasive Applications) [2]
extends the above work by exploiting diverse temporal relationships such as



startsSoonerThan, startsLaterThan, startsSameTimeAs, endsSoonerThan,

endsLaterThan, endsSameTimeAs, startsAfterEnd0f, and endsBeforeStartOf.
However, these are incomplete when compared to the temporal relationships pre-

sented in Figure 3.

4.2 Using Time

Time has been directly or indirectly involved in the treatment of uncertainty
in sensor data [11,14]. In [11,14], Ranganathan and Niu et al describe their
approach to aggregating commonly noisy, uncertain and conflicting sensor data
types to determine the location of an object. They apply an exponential decay
of time to weigh each evidence source. The idea is that the fresher the evidence,
the more reliable it is. Therefore, time simply acts as a measure of the reliability
of other sensor data.

Partridge et al [12] study the applicability of time-use study data for ubiqui-
tous activity-inference systems. The time-use study covers all the human activ-
ities (and other data like location) performed by the participants over a certain
period, which could be a day or weeks. Partridge et al analyse how well the
time-use study predicts activities using time, location, demographics, and pre-
vious activity. They argue that the study data are useful in the sense that they
enable cheap and comprehensive classifiers. One of their results is that, when
combined with time of day, the accuracy of activity prediction is increased up
to 70%.

Hidden Markov Model (HMM) is one of the most popular techniques for
activity recognition [5, 10, 13]. It is a statistical model in which the system being
modelled is assumed to be a Markov chain that is a sequence of events. The
probability of each event is dependent on the event immediately preceding it.
For example, Modayil et al [10] use an interleaved HMM to predict transition
probabilities better by recording the last object observed in each activity. This
approach achieves very low error rates, though it requires an approximation for
the inference process.

5 Conclusion and Future Work

A major challenge in sensor-rich environments is extracting high-level events,
such as activities or situations, from low-level sensor data. There is much research
into finding features that enable classifiers to recognise activities and distinguish
them from other activities. In this paper, we have explored the effectiveness of
using temporal features for this task.

We have identified absolute and relative temporal features that can be in-
corporated into activity classifiers to produce more accurate results at no extra
infrastructural cost. We have shown through two preliminary experiments that
a subset of these features do indeed produce more accurate classifiers. In the fu-
ture, we will look into a formal method to model all the temporal relationships
and use them in a broad range of activity classifications.
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