
Self-organising Semantic Resource Discovery for
Pervasive Systems

Graeme Stevenson, Juan Ye,
and Simon Dobson

School of Computer Science
University of St Andrews, UK

Email: graeme.stevenson@st-andrews.ac.uk

Mirko Viroli and Sara Montagna
Alma Mater Studiorum

Università di Bologna, Italy
Email: mirko.viroli@unibo.it

Abstract—The pervasive computing vision encompasses sce-

narios where services are delivered to users as a result of oppor-

tunistic encounters between their personal devices and compu-

tational resources embedded in their surrounding environment.

The decentralised and dynamic nature of such environments

complicates service provision, providing no setting for a con-

ventional orchestrator to manage the resource discovery process.

This paper proposes a novel approach to resource discovery,

employing nature-inspired patterns to manage the search for and

retrieval of information across a dynamic arrangement of devices.

We show how the results of fuzzy matching based on semantic

resource descriptions can be incorporated at the pattern level

to route only the best matched resources to a requestor, and

how application context extrinsic to the matching algorithm may

augment this process.

I. INTRODUCTION

Pervasive computing envisions the dynamic provision of
services based on ad-hoc, spontaneous arrangements of de-
vices, agents, and content across an infrastructure with few
central points of control. Having previously proposed bio-
inspired mechanisms with attractive robustness, scalability
and adaptability characteristics as a communications layer
upon which interactions between such arrangements of devices
can be based [1], we develop here an approach to resource
discovery using ontological resource descriptions deployed
atop this substrate. A semantic matching scheme that resolves
comparisons between requests and resources to a match-
degree p, p 2 [0, 1] forms the groundwork for our two main
contributions:

• A mechanism for distributed semantics-based resource
discovery that selectively routes responses to requests
based on their evaluated match-degrees, and self-adapts
to environmental changes such as the addition, removal,
and mobility of resources and the computational nodes
that host them.

• A framework within which match-degrees may be dy-
namically influenced positively or negatively by appli-
cation specific factors that are extrinsic to particular re-
quests or resource descriptions. For example, the distance
between the requestor and resource, the prevalence of
similar resources in an surrounding area, or QoS metrics
such as power consumption, latency, as error rate.

Incorporating fuzzy semantic reasoning within a self-
organising communication framework provides a powerful
mechanism for adapting pervasive systems’ delivery of in-
formation based on dynamic context that benefits from the
smooth integration of existing reasoning techniques.

Section II discuss the principles of semantic matching and
its implementation inside the SAPERE framework. Section III
describes the process of self-organising, semantics-based re-
source discovery atop the SAPERE model. In section IV
we provide implementation details and a proof of concept
via simulation. Finally, we present concluding remarks in
section V.

II. SEMANTIC MATCHING AND SAPERE

SAPERE [1] envisions a fully-decentralised pervasive com-
puting environment, where services are delivered based on
opportunistic, nature-inspired interactions between resources
distributed across an environment. In this section we introduce
semantic matching, and describe how we employ it as part of
a resource discovery process within SAPERE.

A. Semantic Matching
A matchmaking process takes a request and a set of resource

descriptions (or advertisements) as input, and outputs the set
of resources that satisfy the request. Many matchmakers adopt
simple schemas; for example, named interfaces or predefined
service categories [3], or sets of attribute-value pairs to which
string and numeric comparisons can be applied [4]. Such
approaches cannot compare semantically equivalent but syn-
tactically different concepts or handle approximation — for
example, 16:9 and Widescreen being equivalent aspect ra-
tios, or Red as an approximate match to the colour Scarlet.
Semantic analysis supports the incorporation of such matches
where they would otherwise be discounted.

Additional benefits of semantic-based matchmaking over
syntax-based alternatives include the flexible comparison of
requests and resource descriptions expressed at different levels
of abstraction (e.g., ModeOfTransport and Bus); auto-
matic, rather than explicit, classification of resources through
specifying the necessary and sufficient features required for a
resource to fit a categorisation; and consistency checking of
resource descriptions their defining ontologies [5].

Match Degree Description DL Notation Similarity Score (R, A)

Exact The request and advertisement are equivalent concepts. R ⌘ A 1
Subsume The request expresses a more general concept than the advertisement. A v R 1
Plugin The request expresses a more specific concept than the advertisement. R v A |S(A)|

|S(R)|

Intersection The intersection of the request and advertisement is satisfiable. ¬(R uA v?) |S(A)uS(R)|
|S(R)|

Disjoint The request cannot be satisfied by the advertisement. R uA v? 0

TABLE I: Match-degrees and their associated semantic scores. S(X) denotes the set of superclasses of concept X (Skoutas
at al. [2]). Other (for example, probabilistic) techniques yielding a score p, p 2 [0, 1] may be substituted.

Core semantic matching procedure steps include:
1) Modelling Resources and Requests: a request expresses

the intersection of a number of properties, each named con-
cept or existential restriction belonging to a resource. Using
Description Logics (DL) notation [6], the following describes
a request for red cars manufactured between 2009 and 2011,
and a particular car to be matched against this request:

Request ⌘ Car u 9yearMade � 2009 u 9yearMade  2011

Car32 ⌘ FordKa u yearMade = 2010 u colour = Magenta

Additional knowledge about cars (FordKa v Car) and
colours (Magenta v Red) supports the determination that the
car satisfies the request. More generally, a resource description
is compatible with a request if their intersection is satisfiable.

2) Quantifying Semantic Similarity: Paolucci et al. [7] and
Li et al. [8] introduced ordered degrees of matching to cate-
gorise the semantic compatibility between a request (R) and
an advertisement (A), of which there are five: exact, plugin,
subsume, intersection, and disjoint. Bandara et al. [5] extend
the match-degree model with scoring mechanisms to support
differentiation of matches falling within the same category.
Descriptions of each of the match-degrees and formulas for
scoring taxonomically related concepts are shown in table I.

Where two concepts do not share an ontological relation-
ship (that is, they are disjoint), additional heuristics may be
employed to measure their similarity. Proposed techniques
include conflating individual comparisons of two concepts’
features [9], and scoring based on the syntactic similarity of
concepts’ textual descriptions [10].

3) Match Algorithm: the following pseudocode describes
the core steps in a semantic matching algorithm.

function MATCH(X, Y)
if Y v X then . X subsumes, or equivalent to Y

return 1
end if

if X&Y are atomic concepts or literals then

return SIMILARITY(X, Y)
end if

score 0
for all Xi in X do . Composite concept/requirement

score score + MAX(MATCH(Xi,Y1..m))
end for

return score/|X| . Return average score of composite
end function

The MATCH function compares two variables X and Y ,
which correspond to the request and advertisement or their

sub-terms respectively. A check is first made to see if X
subsumes Y ; if so, the algorithm terminates with a similarity
score of 1. If X and Y refer to atomic named concepts or
literals, the similarity score is calculated by a call to the
SIMILARITY function, which resolves the comparison to a
score depending on whether the concepts are ontologically
or otherwise related, as per section II-A2. If not, X and Y
are composites that consist of named concepts or existential
restrictions. We handle these recursively by decomposing X
into its constituent parts, Xi, and averaging the maximum
score for each Xi, when compared with corresponding can-
didate components of Y , Y1..m. Alternative implementations
may consist of separating features into multiple dimensions,
or considering mandatory and optional properties.

B. Supporting semantic reasoning in SAPERE
The SAPERE architecture supports pervasive services that

are bound to the locality and context in which they execute
by reifying data, knowledge, and events in the precise points
(or region) of space where they pertain, and by promoting
interactions based on proximity [1]. Agents, acting on behalf
of user applications and available services, express their state
as “Live Semantic Annotations” (LSA) that continuously re-
flect the state of their associated components (live), which
is implicitly or explicitly connected to the domain in which
such information is produced, interpreted and manipulated
(semantic). LSAs are reified in a networked, distributed space
(called an “LSA-space”) acting as the fabric of the ecosystem.

LSAs have a unique, system-wide identifier (LSA-id), and
a content that includes the information the agent wants to
manifest. They are realised as an RDF-like [11] set of triples
that consist of a subject (an LSA-id), a predicate (the property
name, a Uniform Resource Identifier – URI) and an object
(the assigned value, a literal, URI, or locally scoped identifier).
By adopting a notation resembling N3 [12], an LSA is rep-
resented, for example, as “id p v; id q w1 w2 w3;”
where id is the LSA-id, property p is assigned to value v,
and property q is assigned to values w1, w2, and w3.

Aspects of autonomous adaptation and management are
achieved following the natural inspiration [13] through de-
signing self-organising system rules called eco-laws that – by
executing actions upon a small set of co-located LSAs – make
global properties emerge.

Eco-laws are structured as chemical-resembling rules [14] of
the kind “P+..+P --r-->Q+..+Q SideConditions”.
Elements P and Q are patterns of LSAs, expressed like N3’s
LSAs with the following changes: (i) values are either strings

or URIs; (ii) in place of each element of a triple one can
use a variable ?V (matching any value); (iii) constraints
of a variable are lifted out to an unordered sequence of
SideConditions, which are either “FILTER (exp)” or
“BIND (exp as ?V)”; (iv) each predicate in a triple can be
prepended by either symbol +, - and =, the former assumed by
default — respectively meaning that the triples with this object
should exist, should not exist, should be the only that exists for
that subject and predicate. Additionally, we sometimes use an
expression of the kind “?LSA: clones ?LSA2”, meaning
that ?LSA should have the same content as ?LSA2 plus any
following constraints.

The semantics of an eco-law reaction is that of consuming
reactant LSAs based on left-hand side patterns and producing
a set of product LSAs based on the right-hand side patterns.
Eco-laws obey a numeric transformation rate r representing a
Markovian rate in a continuous-time Markov chain system. If
omitted, the rate is assumed to be infinite, that is, the eco-law is
executed with “as soon as possible” semantics. Through their
agents, applications and services perceive the world through
any such transformations affecting their LSAs.

A mapping of eco-laws to SPARQL/SPARUL, discussed
in [15], supports their implementation in conjunction with the
RDF-based encoding of LSAs. Using functionality provided
by the ARQ query engine [16] and Pellet reasoner [17], which
performs OWL DL reasoning using sets of core SAPERE
ontologies and ontologies provided by agents acting locally.

We implement semantic matching by augmenting
the ARQ query engine with an external function:
:semanticMatchDegree(?X, ?Y), which implements
the algorithm described in section II-A3, resolving a
comparison between two concepts to a match-degree value.
This function is inserted directly into the eco-law language.

The complete framework is realised as a lightweight and
minimal middleware that reifies LSAs in the form of semantic
tuples, to be dynamically stored and updated in a system of
spatially-situated tuple spaces spread over the devices of the
network. The eco-laws governing the ecosystem are deployed
in all network nodes, and apply locally [18].

III. A FRAMEWORK FOR REALISING DECENTRALISED
RESOURCE DISCOVERY

In this section we clarify how standard self-organisation
patterns can be augmented with semantic reasoning so as
to support a decentralised approach to resource discovery in
pervasive computing applications.

A. Self-organisation Patterns
Fernandez-Marquez et al. [19] provide a catalogue of self-

organisation mechanism in terms of modular and reusable
design patterns. This section briefly reviews those used in this
paper that form the building blocks on top of which we achieve
decentralised resource discovery.

1) Spreading: The Spreading pattern is for information
dissemination. Spreading progressively sends information over
the system from one node to its neighbourhood, iteratively,

so as to make it available globally by using only local
interactions. In our framework it is supported by the following
eco-law:

?A :val ?V; :diff ?F; :loc ?L
-->
?A + ?B :#clones ?A; :val =?W; :loc ="*"; :prev = ?L
?BIND (:exec2(?F,?V) AS ?W)

2) Aggregation: The Aggregation pattern reduces the
amount of information in the system, typically to summarise
data disseminated by agents over time, e.g., by spreading. It
can be supported by the following eco-law:

?A :src ?S; :aggr ?F; :val ?V + ?B :src ?S; :val ?W
-->
?A :val =?Z :
?BIND (:exec3(?F,?V,?W) AS ?Z)

3) Gradient: The Gradient pattern is a composition of
the Spreading and Aggregation patterns, where information
about the sender (physical or logical), distance and direction
is propagated across an extent of the network. An LSA can
become source of a gradient by specifying initial distance 0, a
diffusion function incrementing distance value each time, and
an aggregation function retaining the less traveled LSA among
competing gradient LSAs from the same source [20].

4) Chemotaxis: The Chemotaxis pattern provides a mech-
anism to perform motion coordination in large scale systems;
it is based on the Gradient pattern: data items (or agents)
are routed towards the source of a gradient via the shortest
accessible path from within the gradient’s extent. In our
framework, movement of LSAs towards the gradient source
is achieved by diffusing in the direction indicated by property
:prev as created by Spreading eco-law above. This pattern
can be the basis for more advanced strategies dynamically
avoiding congested areas [20].

B. Self-organising Semantics-aware Resource Discovery

Building upon the concepts of semantic matching and
self-organisation patterns, we now introduce the key steps
in our approach to self-organising, semantics-aware resource
discovery, which are pictorially illustrated in figure 1.

1) Establish the resource request: An application searching
for a resource publishes a request gradient source LSA
carrying information about the source R of the request: spread-
ing and aggregation eco-laws will iteratively fire in tandem
establishing a gradient data structure, with horizon H (hop
distance counter), and in which each LSA has a pointer to the
node in which it was created, which is also the node indicating
direction to the source following shortest path.

2) Resolve potential matches to a match-degree and pub-
lish: Where a gradient annotation containing a request is co-
located with an annotation describing a resource (or service)
S, we apply semantic matching, as described in section II to
resolve their compatibility to a match-degree. This is realised
by a matching eco-law creating a reply LSA with pointers
(that is, bonds) towards the request and the service, and with
value MD representing the match-degree (greater than 0).

Annotation Agent/Resource

LSA ownership

Bond

Gradient Chemotaxis

Gradient

Chemotaxis

Resource Resource Resource

Aggregation

Application

Aggregation

Fig. 1: Interactions in the semantic service matching: the
application spreads a request gradient, at the site of each
matching resource (service) a reply is produced ascending the
gradient and aggregating with others.

3) Route match information to the requestor: The reply
LSA is created in a way that it fires aggregation and diffusion
eco-laws such that it diffuses by copying towards the request
source, keeping track also of the distance travelled, namely, the
chemotaxis pattern is applied to deliver a remote representation
of the resource annotation matched to the request source. Note
the Chemotaxis pattern is continually applied to maintain a
live link between the two points in the network, request site
and service site. This process ends after the request gradient
expires. For example, after the request is explicitly removed
by the requestor. This allows the process to update and self-
heal under conditions where (i) an intermediate node used
for routing fails, (ii) a compatible resource appears within the
gradient, (iii) the requestor or resources are mobile within the
network.

4) Aggregate results en route by competition: In the case
where a request is matched to multiple resources across a
network of spaces, we wish only to return the most suitable
match to the requestor at any point in time. This is achieved
by applying the Aggregation pattern to any two annotations
directed towards the same source, using a spatial-semantic
approach, namely, considering both match-degree comparison,
and distance travelled. For example, given two co-located
response annotations of the form hS0, 20, 0.9i and hS1, 5, 0.75i
(service, distance, match-degree), we might choose to retain
the second which, although it has worst match-degree, is closer
to the requestor.

5) Aggregate results en route by collaboration: Finally, we
provide a method for augmenting standard semantic-matching

with additional context – making a resource more, or less,
attractive – based on factors external to the resource itself. For
instance, in applications where resources represent physical
point of interest (POI), we may wish to consider a small region
of the space that includes many POIs more favourable than
another region with a POI with highest match-degree. This is
achieved by an aggregation function that “joins” two replies
instead of selecting one of them. For example, given response
annotations of the form hS0, 1, 0.9i and hS1, 2, 0.75i, they can
be subject to joining since they are represent services which
are very near in space. Hence, we can aggregate them into a
single annotation of the kind hS0 + S1, 1.5, 0.85i, in which
distance and match-degree properly summarise the original
ones. An additional example strategy we do not expand on in
this paper but which is an interesting subject of future work
is based on the idea of decreasing the match-degree based on
a calculation of how ‘busy’ an area of the network is (e.g.,
if the matched resource is to be physically navigated toward),
that is, making the approach congestion-aware as in [20].

6) Receipt of replies: The requestor will eventually receive
aggregated replies, providing information about (summary)
distance, (summary) match-degree, service provider (or ser-
vices provider), and direction to reach the service. Such
information can then be used e.g., to steer the requestor agent
towards a selected service, as developed in [20].

IV. IMPLEMENTING THE STRATEGY

In this section we first describe the eco-laws that support the
semantic-spatial management of resource discovery, describing
their behaviour and the functions they encapsulate, and present
a preliminary simulation.

A. Eco-laws to support match-degree
For the sake of space we will not provide the general-

purpose eco-laws supporting the spreading, aggregation, gra-
dient, and chemotaxis self-organisation patterns, for they are
discussed elsewhere [20]. We instead focus on the three eco-
laws that incorporate the key strategies described in previous
section, namely, the generation of replies along with a match-
degree, and the competition-/collaboration-based aggregation
of them as they are routed towards the requestor. They are
presented in Figure 2, and described in turn. Note such
eco-laws make use of a default name-space, omitted in the
corresponding URIs, corresponding to the ontology of resource
discovery, and the sos namespace incorporating all the con-
cepts relating to self-organisation patterns.

Eco-law [MATCH] creates the reply. It takes a request LSA
REQ and a service LSA SER located in the same node, and
creates the reply LSA REP such that: it is of type :reply,
it points (via so-called bonds) to the request and service
LSAs, it is also of type sos:ascend (with initial distance
0 so as to ascend the gradient to which REQ is part. It
also describes the match-degree ?MD, computed by external
function :semanticMatchDegree over service content
?S and request content ?R, implemented by the algorithm
shown in Section II—only match degrees greater than 0 are

Resource discovery with match-degree and spatial information

%[MATCH] When a request and service match, a reply LSA is generated to be diffused towards requestor
?REQ :type :request; :content ?R + ?SER :type :service; :content ?S
--?F-->
?REQ + ?SER +
?REP :type :reply; :service ?SER; :request ?REQ; :match_degree ?MD;

sos:type sos:ascend; sos:direction ?REQ; sos:dist "0"
BIND(:semanticMatchDegree(?R, ?S) AS ?MD)
FILTER(?MD > 0)
BIND(:replyRate() AS ?F)

% [AGGREGATE-BOOST] Joins information from two replies belonging to the same service cluser
?A1 :type :reply; :request ?R; :service ?S1; sos:dist ?D1; :match_degree ?MD1 +
?A2 :type :reply; :request ?R; :service ?S2; sos:dist ?D2; :match_degree ?MD2 +
-->
?A1 :service ?S; sos:dist = ?D; :match_degree = ?MD
FILTER(:near(?D1,?D2)) . % The two services are near
BIND (:center(?D1,?MD1,?D2,?MD2) AS ?D) . % Let D be the aggregated distance
BIND (:tconorm(?MD1,?MD2) AS ?MD) . % Let MD be the aggregated match-degree
BIND (:union(?S1,?S2) AS ?S) . % Let S the aggregated service description

% [AGGREGATE-CHOOSE] Selects between two replies originating within different service clusters
?A1 :type :reply; :request ?R; :service ?S1; sos:dist ?D1; :match_degree ?MD1 +
?A2 :type :reply; :request ?R; :service ?S2; sos:dist ?D2; :match_degree ?MD2 +
-->
?A :service ?S1; sos:dist ?D1; :match_degree ?MD1
FILTER (!:neighbour(?D1,?D2)) . % The two services are not neighbours
FILTER (:stronger(?D1,?MD1,?D2,?MD2)) . % Service A1 has a stronger match-distance pair

Fig. 2: Eco-laws for handling request-reply match, and for distributed aggregation.

realised as a reply. Note that this eco-law is reapplied over time
so as to continuously support the chemotaxis pattern as already
mentioned, as such external function (constant) :replyRate
is used to extract the application rate ?R.

Eco-law [AGGREGATE-BOOST] joins two reply LSAs
whenever they are perceived as belonging to a unique cluster
of services (e.g., related points of interest). It takes two reply
LSAs for the same requestor ?R, whose distance values are
such that they are perceived as “near” by external function
:near, and creates a new reply LSA (overwriting one of
the two originals) in which the service indication is obtained
by joining ?S1 and ?S2 by external function :join, dis-
tance ?D is computed by the :center function, and finally
match-degree is computed by the :tconorm function. As
a reference implementation for such functions (used in our
simulations, and to be compared with other approaches in
the next activities of this research) we consider: :near
simply check that the two distances are both below a given
threshold; :join appends the two arguments yielding the
list of all service identifiers; :center performs a weighted
mean of ?D1 and ?D2 based on match-degrees, namely,
(?D1 ⇤ ?MD1 + ?D2 ⇤ ?MD2)/(?M1 + ?M2); and finally
:tconorm implements a t-conorm (a function to perform
“union” to fuzzy results [21]), and in particular the so-called
product logic t-conorm ?MD1+ ?MD2� ?MD1 ⇤ ?MD2.

Eco-law [AGGREGATE-CHOOSE] joins two reply LSAs
whenever they are not perceived as belonging to a unique clus-
ter of services. Similarly to the previous law, it takes two reply
LSAs for the same requestor ?R, whose distance values are
such that they are not perceived as “near” by external function
:near, and selects the one with the stronger semantic-spatial
situation (discarding the other). This is computed by external
function :stronger, which in our implementation checks
whether (?MD1 ⇤ k/(?D1 + k)) � (?MD2 ⇤ k/(?D2 + k))

for some fixed parameter k. This compares the two match-
degrees, but penalises the one having greater distance (e.g.,
when D = k the actual match-degree is halved).

B. Simulated Illustration

As a proof of concept we use simulation, conducted using
ALCHEMIST [22], a prototype simulator extending the typical
engine of a stochastic simulator for chemical reactions with
the ability to express structured reactions (where chemicals can
have a tuple-like structure and reactions apply by matching)
and structure the system as a network of mobile nodes.

The simulated scenario aims to provide early validation of
the idea presented above, investigating model and functions
(matching and aggregator operators) proposed in section IV-A
for selecting the best services among services matching a
request—considering both the match-degree and the physical
distance between the requestor and services. In particular we
simulated a scenario where: (1) a requestor is placed in the
centre of a 20⇥ 10 grid. (2) services are spatially distributed
over the grid such that one service is isolated while a set
of others form a cluster in an opposite region of the grid,
with respect to the source. Each node of the grid simulates
the behaviour of an LSA-space, containing in particular eco-
laws for (i) gradient definition, (ii) matching and (ii) reply
propagation and aggregation, implemented as described in
section IV-A. Services in the cluster provide replies for the
request with a match-degree randomly chosen in the range
[0.2, 0.6], while the isolated service matches the request with
MD = 0.95. Given this scenario we simulated different
settings, placing the isolated service at different distances from
the source while leaving the cluster position fixed.

For model parameters, we defined a service cluster, as
used in the [AGGREGATE-BOOST] eco-law, as those services
physically closer than 1/3 of the highest gradient value, i.e.,

the maximum distance to the request (Dmax). The other
parameters k,D1, D2 are varied to analyse system behaviour.

Figure 3 shows how varying the value for the k parameter
of the :stronger predicate modifies the system’s preference
for the cluster and single service choices. k strongly affects
the impact distance has upon to the resource match-degree:
the higher the value of k, the lower the influence of distance
in the selection process.

This simulation serves only as an illustration of the potential
of the approach presented. Future work will aim to simulate
factors affecting implementation in large pervasive systems,
such as: (i) how requestor, service, and node mobility affects
behaviour, (iii) how system properties such as discovery time
and bandwidth are affected by the matching and aggregation
operators employed, (ii) how node density and connectivity
impacts performance, and (iv) how alternative and multiple
contextual modifiers (such as crowdedness) may be incorpo-
rated modularly.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
02*Dmax

5*Dmax

10*Dmax

inf

Dpoi/Dcluster

K
th

re
sh

ol
d

Fig. 3: The effect of k values on single/cluster selection.

Simulations evaluating fault tolerance, and evaluating per-
formance in a mobile setting remain as future work.

V. CONCLUSION

Using bio-inspired self-organising patterns as a communica-
tion mechanism, this paper proposed a novel approach to fully
decentralised semantics-aware resource discovery in a mobile
setting. Information about the match-degree between requests
and resources directly affects the application of the patterns
and additional context, namely physical distance, is integrated
to provide on-the-fly, distance-aware resource selection. A
simulated proof of concept shows how the impact of distance
on the match-degree can be controlled.

In the future we aim to build upon this work, generalising
our approach to support the augmentation of match-degrees
with arbitrary forms of context, not only distance. This poten-
tially leads to the construction of a library of such augmenter
functions, where an application may select from among a set
of possible concerns that may affecting resource selection.

ACKNOWLEDGMENT

This work has been supported by the EU FP7 project
“SAPERE - Self-aware Pervasive Service Ecosystems” under
contract No. 256873.

REFERENCES

[1] Franco Zambonelli et al. Self-aware pervasive service ecosystems.
Procedia Computer Science, 7:197–199, December 2011.

[2] Dimitrios Skoutas, Alkis Simitsis, and Timos K. Sellis. A ranking
mechanism for semantic web service discovery. In IEEE SCW, pages
41–48, 2007.

[3] Jim Waldo. The Jini Specifications. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

[4] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location
Protocol, Version 2. RFC 2608, 1999.

[5] Ayomi Bandara, Terry Payne, David De Roure, Nicholas Gibbins, and
Tim Lewis. Semantic resource matching for pervasive environments:
The approach and its evaluation. 2008.

[6] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
New York, NY, USA, 2003.

[7] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P.
Sycara. Semantic matching of web services capabilities. In Proceedings
of the First International Semantic Web Conference on The Semantic
Web, ISWC ’02, pages 333–347, London, UK, UK, 2002. Springer.

[8] Lei Li and Ian Horrocks. A software framework for matchmaking based
on semantic web technology. In Proceedings of the 12th international
conference on World Wide Web, WWW ’03, pages 331–339, New York,
NY, USA, 2003. ACM.

[9] Angela Schwering. Hybrid model for semantic similarity measurement.
In Robert Meersman and Zahir Tari, editors, On the Move to Meaningful
Internet Systems 2005: CoopIS, DOA, and ODBASE, volume 3761 of
Lecture Notes in Computer Science, pages 1449–1465. Springer Berlin
Heidelberg, 2005.

[10] Matthias Klusch and Frank Kaufer. Wsmo-mx: A hybrid semantic web
service matchmaker. Web Intelligence and Agent Systems, 7(1):23–42,
January 2009.

[11] Eric Miller and Frank Manola. RDF primer. W3C rec-
ommendation, W3C, February 2004. http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/.

[12] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF
syntax. W3C team submission, W3C, March 2011. http://www.w3.org/
TeamSubmission/n3/.

[13] Franco Zambonelli and Mirko Viroli. A survey on nature-inspired
metaphors for pervasive service ecosystems. International Journal of
Pervasive Computing and Communications, 7(3):186–204, 2011.

[14] Jean-Pierre Banâtre and Thierry Priol. Chemical programming of future
service-oriented architectures. JSW, 4(7):738–746, 2009.

[15] Mirko Viroli, Franco Zambonelli, Graeme Stevenson, and Simon Dob-
son. From SOA to pervasive service ecosystems: an approach based on
semantic web technologies. In Adaptive Web Services for Modular and
Reusable Software Development: Tactics and Solution. 2012. To Appear.

[16] ARQ - a SPARQL processor for Jena. http://jena.sourceforge.net/ARQ/.
[17] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of
Web Semantics, 5:51–53, June 2007.

[18] Mirko Viroli and Graeme Stevenson. On the space-time situation of
pervasive service ecosystems. In Workshop on Spatial Computing,
Valencia, Spain, June 2012. Informal Proceedings.

[19] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara
Montagna, Mirko Viroli, and Josep Lluis Arcos. Description and com-
position of bio-inspired design patterns: a complete overview. Natural
Computing, pages 1–25, 2012.

[20] Mirko Viroli, Danilo Pianini, Sara Montagna, and Graeme Stevenson.
Pervasive ecosystems: a coordination model based on semantic chem-
istry. In Sascha Ossowski, Paola Lecca, Chih-Cheng Hung, and Jiman
Hong, editors, Proceedings of SAC 2012, Riva del Garda, TN, Italy,
26-30 March 2012. ACM.

[21] Fernando Bobillo and Umberto Straccia. Reasoning with the finitely
many-valued ukasiewicz fuzzy description logic. Information Sciences,
181(4):758 – 778, 2011.

[22] Danilo Pianini, Sara Montagna, and Mirko Viroli. A chemical inspired
simulation framework for pervasive services ecosystems. In Maria
Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings
of the Federated Conference on Computer Science and Information
Systems, pages 675–682, Szczecin, Poland, 18-21 September 2011. IEEE
Computer Society Press.

