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Abstract—In large scale networks, agents must use par-

tial knowledge obtained from local interactions to reason

about their environment. They require efficient mechanisms

to allow them to retrieve and aggregate information beyond

their communication range. Even though proposals have been

presented for gathering information in large scale wireless

sensor networks, it is still a challenge to find an efficient

and robust technique for gathering information in large scale

mobile wireless networks. In this paper we propose gradients as

a multi-path structure for routing and aggregating information

across a network of computational mobile nodes.

We use simulation to demonstrate that progressive aggre-

gation done on top of a gradient improves the bandwidth

usage and memory consumption. We also demonstrate self-

* properties of our proposed algorithms including scalability,

robustness and adaptability.
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I. INTRODUCTION

The proliferation of wireless, often mobile devices, such
as sensors, smart phones, tablet computers, and public dis-
plays offers untapped potential as an ad-hoc communication
and computation infrastructure. Such a network enables a
new class of application—one focused on highly dynamic,
localised, frequent update, real-time interactions that are
difficult to implement via a traditional centralised approach.
Such applications are designed specifically with local inter-
actions and awareness of partial knowledge at the fore.

Consider an application to optimising the travel arrange-
ments for tens of thousands of people, distributed across a
city, in real-time. Such an application would rely on up to the
minute information about bus, train and metro location, the
origin and intended destinations of citizens, traffic accidents
and areas of congestion, much of this information lying
beyond the host device’s communication range.

In this paper we propose the gradient [1] as a structure
for routing and progressively aggregating the information.
Progressive aggregation of information in a network is a
not a new idea, it has been applied for large scale sensor
networks on top of hierarchical structures, such as trees
and clusters. However, these hierarchical structures present

failure tolerance problems, and are difficult to maintain in
mobile networks. Multi-path structures have been proposed
to overcome this. In multi-path approaches, the information
is sent over multiple paths at once, producing duplicates
of the information while increasing robustness. Indeed, in a
multi-path structure even if a connection between two nodes
breaks, information is simultaneously sent along auxiliary
paths. This is potentially useful in Mobile Ad-Hoc Networks,
where the topology of the network is changing continuously
due to their dynamic nature. However, simultaneous use of
multiple paths increases the complexity of these algorithms
and the creation of duplicates makes it potentially difficult
to aggregate information with 100% of accuracy.

Gradients provide a complete multi-path structure, i.e., all
possible paths from any node to the sink. However, unlike
multi-path approaches, the gradient contains a notion of dis-
tance and direction to the node that originated the gradient.
Consequently, the information is naturally routed along the
shortest path created by the gradient and the information
is not duplicated when it comes back to the sink. Thus,
gradients produce a multi-path structure exploited using
unicast communication, and using the alternative paths only
in case of node failures or topological network changes. That
makes gradient a good candidate for gathering information
in mobile networks.

Even though gradients have been using for creating spatial
structure in sensor networks, their use in mobile networks as
basis for progressive aggregation is still an open issue. As
far as we know, there is not any work proposing gradients as
a structure for gathering and progressively aggregating data
in large scale mobile networks.

This paper analyses gradients as a structure for routing
and aggregating information in large mobile wireless net-
works. Mainly, we analyse the feasibility, performance and
robustness of progressive aggregation on top of gradients.

The paper is structured as follows: the next section sum-
marises related works. The proposed technique is introduced
in Section III. Section IV describes the different aggregation
algorithms. In Section V we evaluate the contribution of



progressive aggregation on top of gradient. Finally, we
conclude and present future works in Section VI.

II. RELATED WORK

Since the introduction of sensor networks (SN) different
techniques have been proposed in order to gather and aggre-
gate information from sensors. Nowadays, these techniques
are not only required for SN but by other domains, includ-
ing pervasive computing, amorphous computing, ubiquitous
computing, and the Internet of Things, in order to obtain
meaningful information from distributed systems, increasing
agents’ knowledge, and allowing them to reason and take
decisions.

The state of the art of progressive data aggregation (in-
network aggregation) algorithms for distributed systems has
been recently settled in [2]. This survey classifies the existing
networking protocols and hierarchies for progressive aggre-
gation in three different groups: Tree-based, cluster based,
and multi-path approaches.

In a tree-based approach a tree is first constructed at the
sink. The requested information is sent through the tree and
aggregated at intermediary nodes, that act as aggregators
and routers. This approach is suitable for performing optimal
and very efficient aggregation functions, however, it presents
a potentially high cost for maintaining the hierarchical
structure (i.e. the trees) and scarce robustness in case of
link/device failures. Some existing proposals are: TAG [3],
Directed Diffusion [4], and PEGASIS [5].

Analogously to tree-based approaches, cluster-based ap-
proaches build hierarchical structures, where nodes are sub-
divided into clusters. For each cluster, a node is responsible
of aggregating and routing the information to upper lev-
els of the structure. In dynamic environment the structure
should be maintained, involving a potentially high cost.
Main proposals in the literature that implement cluster-based
approaches are: LEACH [6] and COUGAR [7].

In order to increase the robustness of previous approaches,
multi-path approaches (e.g. Synopsis Diffusion [8]) extend
the tree-based approaches sending the information to more
than one single parent. This information is duplicated, and
reaches the source from many different paths. Obviously,
the increment of robustness is paid with an increment of the
resource usage.

In this paper we propose an in-network aggregation on top
of gradients. Gradients are multi-path structures that convey
the notion of direction and distance to the originator of the
gradient as defined in [1]. Even though gradients have been
used for creating hierarchical structures, such as, trees, as far
as we know, there is not any approach that exploits the multi-
path capabilities of gradients for implementing progressive
aggregation. A difference with tree and cluster based ap-
proaches, gradients provide all the possible paths from the
data sources to the sink, being potentially more tolerant to
node/link failures. Moreover, even though gradients provide

a multi-path structure we exploited them using unicast. Thus,
we do not duplicate information as multi-path approaches
do. In our case, the redundant paths are used in case of
node/link failures, producing a fast repair of the gradient
structure.

III. REQUESTING INFORMATION VIA GRADIENTS

Analogously to other algorithms, such as, TAG [3], we
consider two phases, the distribution phase and the collection
phase. To allow information to be requested and routed to
the source node (i.e., the node from where the information
query is sent), we propose the use of gradients as a multi-
path structure created during the distribution phase.

The gradient is a multi-path structure that provides an ad-
ditional information about the senders distance and direction,
usually the number of hops.

Gradients were initially proposed as one of the amorphous
computing paradigms [9] to estimate distances from each
node to the source node. Different approaches have been
presented for mobile networks [10], [11]. In this paper we
assume a basic implementation of gradients [1] and we focus
on how the gradient can be exploited for gathering and
aggregating information in an efficient way.

The aggregation algorithms proposed in this paper are
then built on top of the gradients and independent from the
gradient implementation itself.

Initially we consider a network where each node is locally
connected, have a local knowledge of the system, and stores
a value. The different steps of the proposed algorithm are:

1) A gradient is originally created by an agent (situated
in a given source node) that requests an information
(i.e., MIN, MAX, AVG of the values stored in nodes).
The gradient contains the distance to the source, the
information requested and how it must be aggregated
(e.g., a pair (humiditySensorV alue,MIN) is a
request that should provide the minimum humidity
sensor value).

2) Once the gradient is spread among the nodes, if an
agent at one of the nodes can answer the request, it
sends the reply value following the gradient back to
the node from where the gradient was initially created.

3) When two or more reply values arrive to the same
node, they are aggregated using the function specified
at the gradient creation time, and the aggregated result
is then sent back following the gradient.

4) Finally the agent that initially requested the informa-
tion receives the desired aggregated value.

IV. AGGREGATION ALGORITHMS

In this section, we present the design of several different
distributed aggregation functions that can be used to calcu-
late the sum, average, mode and max/min of a set of data.
Each differs in two respects: (1) the actual reply values
communicated between the nodes, (2) the function that is



applied when two or more values (i.e., inputs) are co-located
within the same node. Moreover, we present a couple of
application scenario for each aggregation function.

A. Sum

Following the algorithm steps proposed above, when two
reply values arrive at the same node they are summed, and
the result is sent back following the gradient.

The function is executed when two or more pieces of
information arrive at the same node are:

f

sum

(a1, a2, . . . , an) = (a1 + a2 + . . .+ a

n

)

where a

n

is the numeric value and n is the number of
aggregated values. The aggregation result is sent following
the gradient.

In the SUM algorithm the information sent among the
node is a simple value. Example application where the SUM
algorithm is needed are: (1) An agent wants to know the
number of nodes in the system (e.g., a number of active
sensors in a sensor network, or mobile phones in a given
city), and (2) Given a sensor network, an agent wants to
know the total battery power available in the system.

B. Average

To calculate the average, each reply value contains: i) the
numeric value, and ii) a counter that indicates the number
of times that this numeric value has been aggregated (i.e.,
summed in this case). Thus, each node initially has a pair
(a, b), where a is the value and b is a counter initialised to
1. When two or more reply values arrive to the same host,
they are aggregated according to the following rule:

favg((a1, b1), (a2, b2), . . . (an, bn)) = (
Pn

i=1 ai,
Pn

i=1 bi)

Finally the host from where the average was requested
receives a pair (a, b), and the agent then calculates the
average as: avg = a/b.

Examples of applications where the AVG algorithm is
needed are: (1) Given a sensor network, an agent wants to
know the average battery available at each sensor, or the
average of a number of sensor measurements, and (2) Given
a mobile network composed of cars, an agent wants to know
the average car speed.

C. Mode

In the mode case, reply values consist of a list of pairs,
with each pair representing: a unique number value in the
list and the number of times that specific value has been
already encountered while it is being propagated along the
gradient. Thus, the aggregation rules that produce the mode
are defined as follows:

fm((a1, b1), (a2, b2)) =

⇢
(a1, b1), (a2, b2) if a1 6= a2

(a1, b1 + b2) if a1 = a2

The agent that initially requested the information will
eventually receive a list of pairs, each containing different
values encountered in the system and the number of times
each of them has been encountered.

Examples of applications of the MODE algorithm are:
(1) given a network composed of mobile phones or PDAs,
an agent wants to know what is the best date to celebrate
an event (i.e., most voted day is the best date), and (2)
given a phone application, an agent wants to know the most
frequently chosen setting among users.

D. Max/Min

When two or more reply values arrive at the same host,
the MAX/MIN aggregation is processed according to the
following function:

f

max

(a1, a2, . . . , an) =a

i

s.t. a

i

2 {a1, a2, . . . , an} and
a

i

� a

j

, 8j 2 {1, . . . , n}

Examples of applications where the MAX/MIN algorithm
is needed are: (1) Given a mobile network composed of cars,
an agent wants to know the maximum speed achieved in one
city, and (2) Given a sensor network, an agent wants to know
the maximum measured value (e.g., maximum temperature
in one city).

A major aspect of these algorithms is that each node sends
each value only one time. The algorithms are not replicating
data among the nodes, thus, when a node sends a value it is
removed from the sending node. This is important in order to
get an accuracy of the result, even when network topological
changes occur, or the gradient is not properly updated. As
we show in the next section the algorithms reach 100% of
accuracy for all cases.

V. EVALUATION

In this section we evaluate the performance of the
proposed algorithms, and analyse the contribution of the
progressive aggregation on top of gradients. To measure
this contribution, we compare our approach using progres-
sive aggregation against aggregating the information on the
source node (called “flat”). Progressive aggregation has been
successfully applied on top of trees and clusters. However,
it is not clear its contribution on top of gradients, because
gradients provide many paths for routing the information,
thus, reducing the probability of information converging
on the same path. Through this section it is shown that
progressive aggregation on top of gradient reduces the band-
width usage and memory consumption, making gradients
a potential multi-path structure for routing and aggregating
information in mobile wireless networks. Moreover, we pro-
vide a detailed evaluation of the properties of our approach,
such as scalability, robustness and adaptability.

The simulations are implemented using REPAST 3 [12].



Params values
Space 1200m x 700m

hosts’ distribution Randomly uniform
Num. of dimensions 2

Comm. range 40
Hosts number 2000
Mobile hosts false

Table I: Parameters Settings

A. Assumptions and Parameters settings
For the simulations we assume the following:
• A number of nodes large enough to prevent network

fragmentation.
• A node can only communicate with node to which

it is directly connected (i.e., nodes that are inside its
communication range), and has only access to local
information.

• The cost of messages and memory for the gradient
creation is independent of the proposed algorithms. It
is analysed separately in section V-C.

Across this evaluation we vary the different simulation
parameters in order to analyse the different range of be-
haviour exhibited. Table I summarises the default parameter
settings used in the simulations. Unless otherwise indicated,
all the simulations use these settings, namely, 2000 nodes,
uniformly spread over a bi-dimensional space (1200 x 700
meters), each with a communication range of 40 meters,
and initially the nodes are static. The minimum number of
nodes used in this simulation is 2000, which corresponds
to an average adjacency of 11.47 nodes. Lowering this
value increases the probability of segmentation, i.e., that
some nodes are not connected to the network. Each node is
initialised with a random value between [1..1000], and each
simulation result is provided as the average of the result
among 50 runs.

B. Metrics
In these simulations we use two metrics: bandwidth usage,

and the memory consumption. A formal definition of these
metrics are as follows:

1) Bandwidth Usage: A message is sent each time a reply
value is moved from one node to another. The size of one
message is expressed in information units. For example, in
the sum algorithm, which only sends a single numeric value
among the nodes, the message size is 1 information unit. The
bandwidth usage is expressed as the amount of information
units sent during a given period of time.

Definition 1 (The bandwidth usage at time t): Let
msg(n, t) be the set of messages sent by a node n between
0 and t, and s(m) the size of a given message m in
information units, thus, the bandwidth used at time t over
all nodes, N

t

, is given by:

BW (t) =

X

n2Nt
m2msg(n,t)

s(m)

2) Memory: For each simulation we measure the maxi-
mum memory used by any host in the system.

Definition 2 (Number of messages stored at time t): Let
mem(n, t) be the maximum number of messages stored at
a node n between time 0 and t, the maximum number of
messages stored at time t in the network is given by:

MEM(t) = max

n2Nt

{mem(n, t)}

Notice that for all simulations these metrics are reported
when the algorithm have reached 100% of accuracy. Thus,
the criterium for finishing each run is reached when the
desired result is achieved.

C. Gradient cost

In this section we analyse the bandwidth usage and
memory required to create the gradients. Namely, we vary
the number of nodes and show the bandwidth usage and
memory consumption. We observe how the bandwidth con-
sumption increases as the number of nodes increases. This
increment is a linear proportion of the number of nodes, so
for 2000 nodes the system needs a bandwidth usage of 2000
information units and for a network size of 10000 nodes,
the system needs a bandwidth usage of 10000 information
units. Simulation results demonstrate that in order to create
the gradient each node sends an average of one message.
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Figure 1: Gradient Cost Memory

Figure 1 shows the different memory consumption, when
we vary the number of nodes. As the information is progres-
sively aggregated (following the gradient algorithm reported
in [1]), keeping only the minimum hop counter, the memory
consumption is not high. Memory consumption is directly
related to the number of adjacent nodes.

Notice that if the nodes are moving we need to update the
gradients. The cost of update the gradient is directly related
to the updating frequency. In sectionV-F we show how even
when the gradient are not properly updated the increment of
bandwidth usage and memory consumption is insignificant,
while keeping 100% of accuracy.

D. Scalability

In this simulation we vary the number of nodes, in order
to evaluate the scalability of our approach, and we compare
our approach versus the flat approach (i.e. without using



progressive aggregation). All the proposed aggregation func-
tions have been compared with the flat approach. Because
of space, we present only most relevant results.

By comparing Figure 2 and Figure 3, we observe that the
progressive aggregation dramatically reduces the bandwidth
usage among all the different number of nodes (e.g., the
SUM algorithm sends around 14000 units of information
per run, while SUM Flat sends an average of 140000 units
of information per run).
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Figure 2: Scalability - SUM - Bandwidth
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Figure 3: Scalability - SUM flat - Bandwidth

Regarding the memory consumption, Figure 4 shows the
maximum memory used by our approach for the different
number of nodes. Figure 5 shows the memory used by the
flat approach. By comparing both Figures, we observe that
the progressive aggregation (SUM in this case), reduces
dramatically the maximum memory consumption. In our
approach the maximum memory consumption is directly
related to the number of adjacent hosts (i.e., number of
neighbouring hosts), thus, the node with the highest con-
nectivity is the one that uses more memory, since in the
worst case it will receive as many information unit as its
number of neighbours. For the memory consumption in the
flat approach the maximum memory is directly related with
the number of hosts in the system. Since, each host sends
the information to the host that requires the information, and
it is aggregated there.

Similar results are achieved for the other aggregation func-
tions (i.e., AVG and MAX/MIN). The worst performance
is achieved in the MODE aggregation function. Here, our
approach presents similar bandwidth consumption as the flat
approach. The reason is that we are calculating the MODE of
values between [1..1000], and the aggregation only happens
when two similar values are in the same host. However,
if we implement the MODE for a voting system where
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Figure 4: Scalability - SUM - Memory

the number of possibles values is a range between [1..10],
the aggregation would happen more frequently, reducing
dramatically the bandwidth usage and memory consumption.

This simulations show that progressive aggregation can
be done on top of gradients, reducing the bandwidth usage
and memory consumption, in spite of the existence of many
different paths for reaching the source.
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Figure 5: Scalability - SUM flat - Memory

E. Robustness
In this section we evaluate the robustness of our proposed

aggregation algorithms, when the nodes values are subject
to noise. To evaluate the noise tolerance of our approach,
the value of each node is subject to noise. In this simulation
we set the number of nodes to 3000 and we vary the noise
factor. The noise is applied as follows:

noise(value) = value+ ((2 ⇤ ✓ ⇤ �)� �) (1)

where ✓ generates a uniform random number between [0..1]
and � is the noise factor.

Simulations show how the error produced by the noise in
the SUM aggregation function remains constant for all the
different noise factors. In general, the proposed algorithms
behave similarly to a centralised approach in front of noise.
Thus, the tolerance of the proposed aggregation algorithms
depends on the mathematical properties of the aggregation
function and not on the algorithm itself. Moreover, we
observe that the bandwidth and memory consumption remain
the same even in presence of noise.

Simulation results show that our approach is tolerance
to intermittent communication failures, without a significant
increment of the bandwidth usage nor memory consumption.

F. Adaptability
In this section we evaluate the performance of our pro-

posal when the network is composed of mobile nodes. To



deal with mobile nodes we implement the SUM algorithm
on top of active gradients. Active gradients [1], [10], [11]
are periodically updated in order to adapt the gradients’
values to network topological changes. The main goal of
this simulation is to evaluate how sensitive our approach is to
gradients that are not properly updated. Thus, this simulation
varies the frequency of updating the gradient and evaluates
the bandwidth usage and memory costs.
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The nodes follow a Random Way Point mobility pattern.
We assume that nodes are moving at a constant speed (1
meter/sec), the gradients are updated every 10s to 50s.

Figure 6 shows the bandwidth usage for different updating
frequencies. Notice that the SUM algorithm is able get
100% of accuracy even though the gradient is not prop-
erly updated. Moreover, the increment of bandwidth usage
is not significant. This small increment in the bandwidth
usage occurs because the information follows wrong paths
due to no updated gradient values. Regarding the memory
consumption, simulations results show that the memory
consumption does not change when nodes are moving, even
if the gradients are not properly updated.

VI. CONCLUSIONS

This paper proposes a gradient based aggregation al-
gorithm for distributed systems. This approach allows to
increment the agents’ knowledge by gathering and collabo-
ratively and progressively aggregating information from the
system. Agents can request information that come beyond
their communication range, reply values are routed following
the gradients and progressively aggregated at each node. As
far as we know, the progressive aggregation has only been
applied on top of tree, cluster, or multi-path structures, which
are not or only in a limited form fault tolerant (i.e.,multi-
path approaches have been applied to sensor networks, but it
is not clear their feasibility in mobile networks), and never
on top of gradients.

Even though, gradients have been used for the construc-
tion of tree structures. The combination of this progressive
aggregation with gradient provides an alternative for dealing
with mobile wireless networks, such as, pervasive comput-
ing, or ubiquitous computing.

Simulation results show that the progressive aggregation
can be done on top a gradient reducing dramatically the
bandwidth usage and memory consumption. Additionally,

we analysed the behaviour of the proposed algorithm dealing
with noise and host failures, demonstrating high levels of
robustness against noise and failure tolerance.

In future work we plan to compare our gradient based ap-
proach against other existing approaches, namely, Directed
Diffusion [4] in order to demonstrate its contribution in both,
mobile (e.g. pervasive computing) and static networks (e.g.
sensor networks).
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