An ASSL Approach to Handling Uncertainty
in Self-adaptive Systems

Emil Vassev, Mike Hinchey

Lero - the Irish Software Engineering Research Centre
University of Limerick
Limerick, Ireland
emil.vassev@lero.ie, mike.hinchey@lero.ie

Abstract—Both modularity and loose-coupling properties
inherent to the self-adaptive systems offer the opportunity for ad-
hoc service compositions, dynamic change and adaptation. To
provide such a dynamic and self-adapting behavior, developers
emphasize special self-management policies. ASSL (Autonomic
System Specification Language) is a formal tool where such
policies might be formally specified, validated and implemented.
Intrinsically, the ASSL-developed policies are very strict and may
impose quite restrictive behavior, which sometimes is
undesirable. To solve the problem, we are currently developing
special mechanisms for ASSL that help to specify policies that
might evolve in order to satisfy system goals changing in the
course of system adaptation. This paper presents our work on a
mechanism imposing special loose self-management policies
introducing flexibility into the self-adapting behavior.

Keywords-self-adaptive systems; formal methods; ASSL

L INTRODUCTION

A self-adaptive system changes its behavior in response to
stimuli from its execution and operational environment [1]. As
software is used for more pervasive and critical applications,
support for self-adaptation is increasingly seen as vital in
avoiding costly disruptions for repair, maintenance and
evolution of systems. However, the wider use of self-adaptive
systems in a variety of domains also leads to more challenges
in designing and developing them. Salehie and Tahvildari [1]
identify some of these challenges including building multi-
property self-adaptive systems and deciding on adaptive
processes in a dynamic and uncertain environment. Any long-
running system is subject to uncertainty in its execution
environment due to potential changes in requirements, business
conditions, available technology, etc. Thus, it is important to
capture and cater for uncertainty as part of the development
process. Failure to do so may result in systems that are too rigid
to be fit for purpose, which is of particular concern for the
domains that typically make use of self-adaptive technology.
We hypothesize that modeling uncertainty and developing
mechanisms for managing it as part of software design and
implementation will lead to systems that are:

e more expressive of the real world;

o fault tolerant due to fluctuations in requirements and
conditions being anticipated;

o flexible and able to manage dynamic changes.

Dharini Balasubramaniam, Simon Dobson

School of Computer Science
University of St Andrews
St Andrews, United Kingdom
dharini@cs.st-andrews.ac.uk, sd@cs.st-andrews.ac.uk

Achieving this goal requires languages and notations that
are able to model uncertainty at different stages of the software
lifecycle and tools that are able to work over these models and
produce system code that reflects them. The ability to specify
flexible policies is an important factor in dealing with
uncertainty. For example, rather than mandating a repetition of
X seconds for an operation, we may only require that the
operation is carried out as often as possible. However it is also
essential to identify properties that must remain invariant to
ensure correctness of system execution.

Whittle et al. [2] have carried out some work in explicitly
capturing uncertainty as part of specifying system
requirements. Our approach builds on the ideas presented in [2]
to deal with uncertainty throughout the development lifecycle.
We extend ASSL (Autonomic System Specification Language)
[3], a dedicated to Autonomic Computing (AC) [4, 5]
specification language for self-adaptive systems, with
constructs to capture and manage uncertainty in specifying
system behavior, configuration and properties. ASSL provides
a strong foundation for this work as it has already been used to
model non-trivial self-adaptive systems [6, 7, 8] and has an
established toolset including a code generator and a model
checker. The code generation tool for the extended language
will be expanded to produce an implementation skeleton,
which codifies the so-called relaxed properties of the system.

This paper is structured as follows. We outline some related
work in Section II. A brief overview of the ASSL language is
provided in Section III while the next section describes the
extensions to the language to capture uncertainty. A case study
illustrating the extended ASSL is given in Section V. We
discuss our conclusions from this work and provide some
thoughts on future work in the final section.

II. RELATED WORK

Self-adaptive systems have inspired growing interest in the
formalization of such systems. In general, the formal
approaches help developers precisely describe with the logical
underpinning of mathematics features of a self-adaptive system
and validate those features at a higher level of abstraction than
the one provided by implementation. Policy models, goal
models and feature models are used to specify possible
behaviors of autonomic systems (ASs), emphasizing the self-

configuration, self-healing, and
present in self-adaptive systems.

self-optimization aspects

IBM Research has developed a framework called Policy
Management for Autonomic Computing (PMAC) [9]. This
framework provides a standard model for the definition of
policies and an environment for the development of software
objects that hold and evaluate policies. PMAC is used for
development and management of intelligent autonomic
software agents. With PMAC, these agents incorporate the
ability to change dynamically their behavior. This is provided
by a formal specification of policies by encompassing the
scope under which these policies are applicable.

A NASA-developed formal approach, named R2D2C
(Requirements to Design to Code) is described in [10]. In this
approach, system designers may write specifications as
scenarios in constrained (domain-specific) natural language, or
in a range of other notations (including UML use cases). These
scenarios are then used to derive a formal model that fulfills the
requirements stated at the outset, and which is subsequently
used as a basis for code generation. R2D2C relies on a variety
of formal methods to express the formal model under
consideration. The latter can be used for various types of
analysis and investigation, and as the basis for fully formal
implementations as well as for use in automated test case
generation.

Banatre et al. [11] use the chemical reaction metaphor to
express the coordination of computations. In this approach the
Gama Formalism is used to describe computation in terms of
chemical reactions (described as rules) in solutions (described
as multi-sets of elements). When applied to AS specification,
the Gama Formalism captures the intuition of a collection of
cooperative components that evolve freely according to some
predefined constraints (rules). System self-management arises
as a result of interactions between components, in the same
way as "intelligence" emerges from cooperation in colonies of
biological agents.

Whittle et al. [2] define a special requirements language
called RELAX that allows developers to specify requirements
that may be relaxed at run-time. RELAX helps to address
uncertainty in requirements to support self-adaptive systems
development, in a way such that the uncertainty can be
specified declaratively rather than by simply enumerating all
alternative goals.

As mentioned above, this research builds on the ideas of
relaxing properties presented in [2]. In this paper we present an
extension of the ASSL language intended to tackle uncertainty
in self-management policies forming the self-adapting behavior
of a system.

III. OVERVIEW OF ASSL

By its virtue, the Autonomic System Specification
Language (ASSL) [3] provides both formal notation and tools
for building software mechanisms for self-management in
complex systems where the problem of formal specification,
validation, and code generation of autonomic systems (ASs) is
approached within a framework. Here, being a formal method
dedicated to AC, ASSL helps AC researchers with problem
formation, system design, system analysis and evaluation, and

system implementation. A powerful and domain-specific formal
notation is provided to specify required features and to model
high-level models of ASs incorporating those features.
Moreover, suitable mature tool support is provided to allow
ASSL specifications to be edited and validated and Java code
to be generated from any valid specification.

A. The ASSL Specification Model

The ASSL formal notation [3] is based on a specification
model exposed over hierarchically organized formalization
tiers (see Table 1). The specification model provides both
infrastructure elements and mechanisms needed by an AS.
Thus, each tier of the ASSL specification model is intended to
describe different aspects of the AS in question, such as
service-level objectives, self-management policies, interaction
protocols, events, actions, autonomic elements, etc. This helps
to specify an AS at different levels of abstraction (imposed by
the ASSL tiers) where the AS in question is composed of
special autonomic elements (AEs) interacting over special
interaction protocols.

TABLE L ASSL MULTI-TIER SPECIFICATION MODEL

AS Service-Level Objectives
AS Self-Management Policies
AS Architecture

AS Actions

AS Events

AS Metrics

AE Service-Level Objectives
AE Self-Management Policies

AE Friends

AEIP

AE Recovery Protocols
AE Behaviour Models
AE Outcomes

AE Actions

AE Events

AE Metrics

As shown in Table 1, the AS Tier specifies an AS in terms
of service-level objectives (SLO), self~management policies,
architecture topology, actions, events, and metrics. The AS
SLO is a high-level form of behavioral specification that

establishes system objectives such as performance. The metrics
constitute a set of parameters and observables controllable by
the AEs. At the AS Interaction Protocol tier, the ASSL
framework specifies an AS-level interaction protocol (ASIP), a
public communication interface, expressed with channels,
communication functions and messages. Finally, at the AE
Tier, the ASSL formal model considers AEs to be analogous to
software agents able to manage their own behavior and their
relationships with other AEs. In this tier, ASSL describes the
individual AEs of the AS.

In general, an ASSL specification is built around one or
more self-management policies. This makes the ASSL
specifications AC-driven, where ASs are modelled taking into
account the main goal of AC - self-management based on four
main principles: self-configuring, self-healing, self-optimizing,
and self-protecting (self-CHOP). ASSL addresses these self-
CHOP principles as self-management policies specified at
both AS and AE tiers. ASSL specifies such policies with
special constructs termed as fluents and mappings. Whereas
the former are considered as specific policy conditions, the
latter map these conditions to appropriate actions. Fluents are
expressed with fluent-activating and fluent-terminating events,
i.e., the self-management policies are driven by events. In
order to express mappings, conditions and actions are
considered, where the former determine the latter in a
deterministic manner. The following ASSL code presents a
sample specification of a self-healing policy.

ASSELF_MANAGEMENT {
SELF_HEALING {
FLUENT inLosingSpacecraft {
INITIATED_BY { EVENTS.spaceCraftLost }
TERMINATED_BY { EVENTS.earthNotified }

}
MAPPING {
CONDITIONS { inLosingSpacecraft }
DO_ACTIONS { ACTIONS.notifyEarth }
}

}
} /I ASSELF_MANAGEMENT

B. Operational Evaluation

The formal evaluation of the operational behavior of ASSL
specification models is a stepwise evaluation of the specified
ASSL tiers, where the latter are evaluated as state transition
models in which operations cause a current state to evolve to a
new state [3]. Thus, if we use the convention for semantic
function in which o states for a current state and o states for a

new state then the state evolution caused by an operation Op is

0p(xX1,X2,Xn) .
denoted as o ———oc , where the operation

Op(xq1, %y, ..., X,) is an abstraction of a transition operation
performed by the framework that potentially takes n
arguments. All the arguments are evaluated to their expression
value first, and then the operation is performed. Here, in the
standard ASSL Op is a transition operation of type 0" (see
the set definition below).

0trns { DegradSLO, NormSLO, Fluentin, FluentOut, ActionMap,
Action, Function, MsgRcvd, MsgSent, Event, EventOver,
Metric, ChangeStruct, CreateAE, ExtClass, BhvrModel,

RcvryProtocol, MngRsrcFunction, Outcome }

In addition, the operational semantics of the ASSL tiers
introduces the notion of tier environment p presenting the host
tier of the sub-tiers or clauses under evaluation. For example,
the AS Tier is a host tier of the AS Actions sub-tier (see Table
1). Thus, we write p 5 to mean that p is evaluated in context
cand p F, e — e’ to mean that, in a given tier environment p
(host tier for the expression e) one step of the evaluation of
expression e in the context o results in the expression e . Here,
the context ¢ is defined by the tier content, i.c., sub-tiers, tier
clauses, etc. Note that the ASSL tiers may participate in
expressions. For example, AS/AE SLO, AS/AE policies,
fluents, AS/AE events, and AS/AE metrics can participate in
Boolean expressions, where they are evaluated as true or false
in the context of their host tier based on their performance.

1) ASSL Self-management Policy Evaluation: Originally,
an ASSL policy is evaluated over the evaluation of its fluents
and mappings and it is closely related to the events occurring
in the system. The original operational evaluation of a fluent f
follows the following algorithm:

If an event has occurred in the system then:

1. Process the INITIATED BY {...} clause to check if
that event initiates the fluent f and if so, initiate that
fluent with the Fluentin() system transition operation:

e Process the policy’s MAPPING {....} clauses
comprising the fluent f in their CONDITIONS {....}
clause.

e Evaluate the CONDITIONS {....} clause and if the
stated conditions are held then evaluate the
DO ACTIONS {....} clause to perform the actions
listed there.

2. Process the TERMINATED BY {...} clause to check
if that event terminates the fluent f and if so,
terminate it. Fluent termination is possible iff that
fluent has been initiated.

The semantic rules 1 through to 4 present the operational
semantics that cope with the algorithm stated above. In these
rules, each premise is a system transition operation such as
Event (ev), Fluentin (f, ev), FluentOut (f, ev), and
ActionMap (f, a).

Event(ev)
o —

J

1) FluentIn(f,ev) ev € {evl' iR evn}
fl—glINlTIATED_BY{evl,...,evn}—>o"

FluentIn(f,ev) Event(ev') ,,
o J

o o e
Fluentout(f.ev') ev
f+r TERMINATED BY { evy,...evp} ———— o'/’

2)

{evy, ..., ev,}

FluentIn(f,ev)
o—5d

3) ActionMap(f,a) f € {fl: ;fn}
mapt_; CONDITIONS{ fy,...fn} ————— o'’

ActionMap(f,a)
c—5d

4) a€A°

vae{aq,.,an} e Action(a) o

mapt DO_ACTIONS{ a4,...an}

Here, A is the finite set of actions in the context o and the
first premise in rule 2 evaluates whether the fluent f is
initiated, i.e., we can terminate initiated fluents only.

2) ASSL Action Evaluation: ASSL actions comprise the
following tier clauses: PARAMETERS {...}, RETURNS {...},
GUARDS {...}, ENSURES {...}, DOES {...}, ONERR DOES
{...}, TRIGGERS {...}, and ONERR TRIGGERS {...} [3]. The
following is an example of ASSL action specified with some
of the clauses listed above. Note that only the DOES {...}
clause is mandatory.

ACTION doPlanning {
PARAMETERS { State initialState; State goalState; TIME deadline }
GUARDS { EVENTS.newAsteroidFoundReceived }
ENSURES { EVENTS.planningDone }
DOES {
IF deadline > 00:00:00 THEN
set METRICS.teamTaskDeadline.VALUE = deadline;
set METRICS.teamTaskTime.VALUE = 00:00:00;
apply AES.ae1.BEHAVIOR_MODELS.modelPlanning
END;
instrumentTasks = call IMPL planTask (initialState, goalState, deadline)

}
TRIGGERS { EVENTS.planningDone }
ONERR_TRIGGERS { EVENTS.planninglmpossible }

The operational evaluation of an ASSL action follows the
following algorithm:

1. Map the arguments, if any, from the action call to the
parameters (PARAMETERS {...} clause).

2. Process the action guards, if any (GUARDS {...}

clause):

e If the guards are held then perform the action.

e Otherwise, deny the action.

Evaluate the variable declarations, if any.

4. Process the DOES {...} clause:

e If a return statement is hit, then stop the action
and return a result.

e Else, process all the statements until the end of the
DOES {...} clause.

5. If the DOES {...} clause is evaluated correctly, then
evaluate the ENSURES {...} clause (in respect to the
TRIGGERS {...} clause):

o If the ENSURES {...} clause is held then trigger
notification events via the TRIGGERS {...} clause
and exit the action normally.

e Else, process the ONERR _DOES {...} clause and
trigger error events via the ONERR_TRIGGERS
{...} clause.

6. If an error occurs while evaluating the action clauses,
then stop the evaluation process and:

e Process the ONERR _DOES {...} clause (similar to
the evaluation of the DOES {...} clause), if any.

e Trigger error events via the ONERR _TRIGGERS
{...} clause, if any.

W

Note that an ASSL action is evaluated operationally when it
is mapped to a fluent (see Section III.B.1) or called internally
from another action via a special CALL statement [3]. For
example:

CALL ACTIONS.checklInstrument;

IV. ASSL MAY MECHANISM

The standard ASSL does not provide specification
constructs that help developers specify policies evolving in the
course of system adaptation. Moreover, the ASSL self-
management policies are very strict and may impose quite
restrictive behavior, which sometimes leads to undesirable
persistency in the form of constant system’s attempts to follow
the predefined self-management policies. In the course of this
project, we have developed a special ASSL mechanism that
introduces relaxed properties in the ASs developed with ASSL.
This mechanism is termed “The MAY Mechanism” and helps
developers specify special loose self-management policies
capable of flexible self~-managing behavior allowing ASs to be
more agile. Such loose policies introduce points of flexibility
and nondeterministic choice in their behavior. The MAY
Mechanism is an extension of ASSL introducing a special MAY
specification modifier for ASSL sub-tiers. This modifier is
intended to provide flexibility and fault-tolerance in the
autonomic behavior via the specification of self-management
policies, actions and SLO.

A. MAY Self-management Policies

With the ASSL MAY Mechanism, the self-management
policies might be specified at an agile level of autonomic
behavior, where an AS is more flexible in terms of decision
making involving uncertainty issues. A policy specified with
the MAY Mechanism allows an AS to decide on-the-fly if a
certain behavior “may” be followed rather than “must”.

A MAY policy is specified by using the new MAY
specification modifier when specifying the policy’s fluents.
Note that a self-management policy might have one or more
MAY fluents coexisting with other non-MAY fluents. The
following ASSL specification demonstrates the specification
of the inLosingSpacecraft fluent with the MAY modifier.

SELF_HEALING {
MAY FLUENT inLosingSpacecraft {
INITIATED_BY { EVENTS.spaceCraftLost }
TERMINATED_BY { EVENTS.earthNotified }

}
MAPPING {
CONDITIONS { inLosingSpacecraft }
DO_ACTIONS { MAY ACTIONS.notifyEarth }
}
}

A MAY fluent requires MAY actions and is always
terminated after the execution of its mapped actions even no
fluent-terminating events have occurred in the system. Thus,
the operational evaluation of a MAY fluent f adds a 3-rd step to
the fluent evaluation (see Section I11.B.1):

3. Silently terminates the fluent f if it is still active.

The operational evaluation of a MAY fluent introduces a
new state transition operation (see Section 3.B)
termed MayFluentOut . The following inference rule
demonstrates the new behavior introduced to MAY fluents
(also described in step 3 above).

FluentIn(f,ev) ActionMap(f,a) vae{ay,..an} e Action(a)

d d ' d’ o

5
) fl—o_ul MayFluentOut(f) oAV

Therefore, a MAY fluent may be terminated either in
normal way when a fluent-terminating event is triggered in the
system or silently after the mapped actions have been executed.
This gives the AS the right to try only one execution of the
fluent’s actions even the goals after their execution are not
achieved.

B. MAY Actions

An ASSL MAY action is an ASSL action called with the
MAY modifier (see the example below). The ASSL MAY
Mechanism requires that a MAY action performs as a normal
ASSL action (see the operational evaluation of ASSL action in
Section II1.B.2) if no exception is raised during its execution.
However, actions called with the MAY modifier do not raise
exceptions if cannot succeed and thus, they do not trigger
erroneous events even the latter are specified in the
ONERR_TRIGGER {....} clause. Note though, that a MAY
action always triggers events specified in the ON_TRIGGER
{....} clause. Although not defined as a semantic rule, to
comply with the MAY Mechanism the MAY fluents shall be
mapped to MAY actions. For example:

MAPPING {
CONDITIONS { inLosingSpacecraft }
DO_ACTIONS { MAY ACTIONS.notifyEarth }

}

Note that according to the ASSL Operational Semantics [3]
the act of mapping an action to a fluent requires that action be
evaluated operationally (see Section III.B.2). However, when
the mapping is done with the MAY modifier the action’s
evaluation follows the following algorithm:

1. Map the arguments, if any, from the action call to the
parameters (PARAMETERS {...} clause).

2. Evaluate the variable declarations, if any.

3. Process the DOES {...} clause:

e If a return statement is hit, then stop the action
and return a result.

e Else, process all the statements until the end of the
DOES {...} clause.

e If the DOES {...} clause is evaluated correctly,
then trigger notification events via the TRIGGERS
{...} clause and exit the action.

e If an error occurs while evaluating the action
clauses, then stop the evaluation process and
process the ONERR_DOES {...} clause (similar to
the evaluation of the DOES {...} clause), if any.

Therefore, the MAY evaluation of an ASSL action
excludes the evaluation of specified GUARDS {...}, ENSURES
{...} and ONERR_TRIGGERS {...} clauses. Thus, a MAY
action does not raise erroneous events, which helps the system
handle uncertainty without propagating erroneous events when
an action cannot be performed due to problems in the GUARDS
{..}, ENSURES {...} or DOES {...} clauses.

C. MAY Service-level Objectives

According the ASSL Operational Semantics [3], an ASSL
event might be prompted by specified SLO (Service-Level
Objectives). This is possible when an ASSL event is specified
with one of the two clauses: DEGRADED {..} or
NORMALIZED {...}. Whereas the former specifies that the
event will be prompted when specific SLO have degraded their
performance, the latter specifies that the event will be prompted
when the SLO have normalized their performance. The
following rules evaluate these event clauses in a given event
tier environment ev defined in the tier context o (see Section
1I1.B):

DegradSLO(sloID)
o—————5d

6) Event(ev) B
evr s DEGRADED {sloID} ——— o
NormSLO(sloID)
7 c———d
) Event(ev)

evt-; NORMALIZED {sloID} ——— o’

The MAY Mechanism introduces SLO specified with the
MAY modifier. For example:

MAY SLO Safety_RiskGroup4 {
IF ASSLO.Safety RiskGroup1 and ASSLO.Safety RiskGroup2 THEN
FOREACH member in AES { not member.EVENTS.highRadiationLevel }
END

}

SLO defined as MAY do not trigger events associated with
SLO degradation, but do trigger events associated with SLO
normalization. Note that when encountered in expressions,
SLO are evaluated as Booleans based on their performance -
false if degraded and frue if not [3]. The evaluation of MAY
SLO is like the evaluation of the regular SLO. However,
degraded MAY SLO are not considered by the special system’s
control loop, which strives to get the degraded regular SLO
back to normal.

V. CASE STUDY

To demonstrate the MAY Mechanism, we used one of the
previously developed and published ASSL specification
models for the NASA ANTS (Autonomous Nano-Technology
Swarm) prospective mission [12]. Here, we applied the MAY
Mechanism to the ASSL model for Emergent Self-Adapting
Behavior in NASA ANTS Missions [13].

A. NASA ANTS

The Autonomous Nano Technology Swarm (ANTS)
concept sub-mission PAM (Prospecting Asteroids Mission) is a
novel approach to asteroid belt resource exploration. ANTS
provides extremely high autonomy, minimal communication
requirements to Earth, and a set of very small explorers with a
few consumables [12]. These explorers forming the swarm are
pico-class, low-power, and low-weight spacecraft units, yet
capable of operating as fully autonomous and adaptable agents.

Figure 1 depicts the PAM (Prospecting Asteroid Mission)
sub-mission scenario of the ANTS concept mission. As shown,

there are three classes of spacecraft: rulers, messengers and
workers. By grouping them in certain ways, ANTS forms
teams that explore particular asteroids. Hence, ANTS exhibits
self-organization since there is no external force directing its
behavior and no single spacecraft unit has a global view of the
intended macroscopic behavior. The internal organization of a
swarm depends on the global task to be performed and on the
current environmental conditions. In general, a swarm consists
of several sub-swarms, which are temporal groups organized to
perform a particular task. Each swarm group has a group leader
(ruler), one or more messengers, and a number of workers
carrying a specialized instrument. The messengers are needed
to connect the team members when they cannot connect
directly.

L)

Asteroid belt 1
- 5
.
3 .ﬂ .
. Rulers Lagrangian point
Asteroid(s) " habitat
Workers o [esengers
-)Workers Workers
)Earth
—
Herayworker 5

“Messenger

Mag worker

worker

FIGURE 1. ANTS MISSION CONCEPT [12]

B. ASSL Self-transformation Model for ANTS

The ASSL specification model described in [13] involves
policies and actions leading to operational transformation of
workers. This happens when a worker cannot perform its duties
anymore, due to a damage or instrument loss. If so, it

1. asks the ruler to assign a new replacement worker;
2. strives to transform to another category (messenger or
ruler) useful to the swarm unit.

A worker may transform to a ruler or a messenger.
Moreover, in the case that these transformations are not
possible, it may transform to a stand-by “shield”. A shield unit
sails nearby and strives to protect the replacement worker from
different hazards. For example, a shield unit could take the
impact of an incoming small asteroid which is about to hit the
replacement worker.

The original specification model [13] specifies this self-
transformation behavior as a self-management policy as
following (note that this is a partial specification):

AESELF_MANAGEMENT {
OTHER_POLICIES {
SELF_TRANSFORMATION {
FLUENT unableToExplore {

INITIATED_BY { EVENTS.instrlsNonfunctional }
TERMINATED_BY ({
EVENTS.canBeRuler , EVENTS.canBeMessenger,
EVENTS.canBeShield , EVENTS.mustBeDestroyed }

}
FLUENT inTransformToRuler {
INITIATED_BY {EVENTS.canBeRuler}
TERMINATED_BY {EVENTS.transformedToRuler ,
EVENTS.canBeMessenger, EVENTS.canBeShield }

}
FLUENT inTransformToMessenger {
INITIATED_BY { EVENTS.canBeMessenger }
TERMINATED_BY {EVENTS.transformedToMessenger ,
EVENTS.canBeRuler, EVENTS.canBeShield }

}
FLUENT inTransformToShield {
INITIATED_BY {
EVENTS.canBeShield, EVENTS.transformedToShield }
TERMINATED_BY {EVENTS.mustBeDestroyed }

}
FLUENT inSelfDestruction {
INITIATED_BY { EVENTS.mustBeDestroyed }

}
MAPPING {

CONDITIONS { unableToExplore }

DO_ACTIONS { ACTIONS .checkTransformation} }
MAPPING {

CONDITIONS {inTransformToRuler }

DO_ACTIONS { ACTIONS.transformToRuler} }
MAPPING {

CONDITIONS {inTransformToMessenger }

DO_ACTIONS { ACTIONS.transformToMessenger} }
MAPPING {

CONDITIONS { inTransformToShield }

DO_ACTIONS { ACTIONS .transformToShield } }
MAPPING {

CONDITIONS { inSelfDestruction }

DO_ACTIONS { ACTIONS.selfDestroy } }

As shown, we specify the self-transformation behavior as a
self-management policy specified at the individual spacecraft
level (AE Tier — see the ASSL multi-tier specification model in
Section IIL.LA). As specified, the worker can make a few
possible choices for transformation when is no longer
operational. To specify the self-sacrifice policy we used:

e SELF-TRANSFORMATION — a self-management policy
structure. We use a set of fluents and mappings to
specify this policy. With fluents, we expressed
specific situations, in which the policy is interested,
and with mappings, we mapped those situations to
actions;

e actions — a set of actions (not shown here) that can be
undertaken by the worker in response to certain
conditions, and according to that policy;

e events — a set of events (not shown here) that initiate
fluents and possibly are prompted by actions
according to that policy;

e metrics — a set of metrics (not shown here) needed by
that policy.

The unableToExplore fluent takes place when the worker is
no longer operational, due to heavy damage or instrument loss.
The fluent is initiated by an instrisNonfunctional event and
terminates if one of the events canBeRuler, canBeMessenger,
canBeShield, or mustBeDestroyed occurs.

Further, the unableToExplore fluent is mapped to a
checkTransformation action (not shown here), which checks for a
possible worker transformation and triggers one of the events

that terminate the current fluent. Moreover, each of the
terminating events initiates a new fluent respectively. The
“transform” fluents are mapped to “transformTo” actions in an
attempt to transform the worker into a ruler, a messenger, or a
shield respectively. As specified, the transformation attempts
are hierarchically related. Thus, when possible, the
transformation process starts with a transformation into ruler or
messenger, and then, in case of failure the algorithm attempts
to perform a transformation into shield. At the end of the
hierarchically ordered transformations, we have self-
destruction of the worker, in case none of the transformations is
successful.

The following ASSL code presents a partial specification of
one of the “transformTo” actions - transformToRuler. As shown,
in order to make the transformation from worker to ruler, this
action changes the unit’s service-level objectives (SLO) —
removes the old ones and adds new ones. In addition, this
action re-specifies the unit in accordance with the new SLO
and the new goals appropriate for a ruler. Note that some of the
statements like the add statements are not complete due to
space limitations.

ACTION transformToRuler {
DOES {

call IMPL saveAESPEC;

call ASIP.FUNCTIONS.sendRulerSpecRequest;

call ASIP.FUNCTIONS.receiveRulerSpecification;
/I[remove the old spec structures

remove AESLO({};

remove AESELF_MANAGEMENT {};

/Iproduce the new spec structures based on the received spec
add AESLO {....};
add AESELF_MANAGEMENT { SELF_HEALING{....} };

call IIIVIIIF.’L doRulerTransformation

}
ONERR_DOES { call IMPL restoreAESPEC }
TRIGGERS { EVENTS.transformedToRuler }
ONERR_TRIGGERS {
IF METRICS.antennaAvailability. VALUE > 80 THEN
EVENTS.canBeMessenger
END ELSE
EVENTS.canBeShield
END
}
}

As specified, the self-transformation policy is very
restrictive and cannot handle cases when the worker is
uncertain about the ongoing transformation. To handle this
uncertainty we apply the MAY Mechanism and specify the
fluents triggering transformation with the MAY modifier. The
new SELF_TRANSFORMATION policy specification is the following.
Note that this is a partial specification emphasizing the applied
MAY Mechanism.

AESELF_MANAGEMENT {
OTHER_POLICIES {
SELF_TRANSFORMATION {
FLUENT unableToExplore {....}
MAY FLUENT inTransformToRuler {....}
MAY FLUENT inTransformToMessenger { }
MAY FLUENT inTransformToShield { ... }
MAY FLUENT inSelfDestruction {}
MAPPING {
CONDITIONS { unableToExplore }
DO_ACTIONS { ACTIONS.checkTransformation} }
MAPPING {

CONDITIONS {inTransformToRuler }

DO_ACTIONS {MAY ACTIONS.transformToRuler} }
MAPPING {

CONDITIONS {inTransformToMessenger }

DO_ACTIONS {MAY ACTIONS.transformToMessenger } }
MAPPING {

CONDITIONS { inTransformToShield }

DO_ACTIONS {MAY ACTIONS.transformToShield } }
MAPPING {

CONDITIONS { inSelfDestruction }

DO_ACTIONS {MAY ACTIONS.selfDestroy } }

With the new specification, the worker will attempt a
transformation when the conditions require so, but will not
continue trying to transform if the conditions have changed
meanwhile and the first transformation operation is not
successful. Let us assume that the worker’s instrument has
stopped functioning for a while due to a power disruption and
the worker starts a “transformation to a ruler” operation. Thus,
the MAY inTransformToRuler fluent gets initiated and the mAY
transformToRuler action is started. Because the fluent is specified
as a MAY fluent it “dies” silently once the transformToRuler action
is performed (recall the new operational evaluation of the
MAY fluents — see Section IV.A). Therefore, the fluent will not
start the transformToRuler action again even the latter has not
succeeded with the transformation process.

Moreover, because the transformToRuler action is called as a
MAY action its operational evaluation excludes the evaluation
of the otherwise specified ONERR TRIGGERS {....} clause
(see Section IV.B). Thus, no erroneous events such as
canBeMessenger Or canBeShield will be fired and the transformation
process will not be propagated to other fluents (e.g.,
inTransformToMessenger OT inTransformToShieId). AlSO, because the
operational evaluation of a MAY action does not exclude the
evaluation of the ONERR_DOES {....} clause, the latter will be
evaluated and the restoreAESPEC action will be called to “wipe
out” the leftovers from the unsuccessful transformation.
Therefore, once the worker is restored from the unsuccessful
transformation, in order to start a new transformation again, it
shall check its instrument first. If the instrument is properly
functioning (the power is on and the instrument is working) the
worker will not initiate a transformation. Instead, it will
continue operating as a worker.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to handling
uncertainty in self-adaptive systems developed with ASSL. We
have introduced a new ASSL mechanism (termed MAY
Mechanism) that helps developers specify special loose self-
management policies capable of flexible self-managing
behavior allowing autonomic systems to be more agile and not
so persistent in following the specified behavior. Such loose
policies introduce points of flexibility and nondeterministic
choice in their behavior. The MAY Mechanism is an extension
of ASSL emphasizing a special MAY specification modifier for
some of the ASSL sub-tiers such as self-management policies,
actions and service-level objectives. ASSL constructs specified
with the MAY modifier are evaluated according the operational
semantics of the MAY mechanism.

In this paper, we have also presented a case study where we
applied the MAY Mechanism to demonstrate its applicability
to cases where the conditions determining the self-managing
behavior might change over time and the use of loose policies
is more appropriate. Unfortunately, it is far easier to
demonstrate validity of our approach than to demonstrate
conclusively its completeness. In part, this is because
completeness is at heart a relative rather than an absolute
concept. Therefore, more experiments and results are needed
and it is our intention to finish the code-generation part of the
MAY Mechanism and perform tests with the generated loose
policies under simulated conditions.

Moreover, we plan to extend the MAY Mechanism over
other ASSL constructs such as metrics. Metrics defined with
the MAY modifier shall be tolerant against threshold-class
violations. Threshold classes specify a range of observable
values for the ASSL metrics. The ASSL metrics are often used
to sense the system’s operational environment and thus, are
very sensitive to changes.

ACKNOWLEDGMENT

This work was supported in part by the Science Foundation
Ireland grant 03/CE2/1303 1 to Lero (The Irish Software
Engineering Research Centre)

REFERENCES

[1] M. Salehie and L. Tahvildari, Self-adaptive software: Landscape and
research challenges, ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol.4(2), pp.1-42, May 2009.

[2] J. Whittle, P. Sawyer , N. Bencomo and B. H. C. Cheng, A Language for
Self-Adaptive System Requirements, In Proceedings of the 2008
International Workshop on Service-Oriented Computing Consequences
for Engineering Requirements, 2008, pp.24-29.

[31 E. L Vassev, Towards a Framework for Specification and Code
Generation of Autonomic Systems, Ph.D. Thesis, Department of

(4]
[5]

(el

(7

(8]

91

[10]

(1]

[12]

[13]

Computer Science and Software Engineering, Concordia University,
Montreal, Canada, November 2008.

J. O. Kephart, D. M. Chess, The vision of autonomic computing, /EEE
Computer, vol. 36 (1), pp. 41-50, 2003.

P. Horn, Autonomic computing: IBM's perspective on the state of
information technology, Tech. rep., IBM T. J. Watson Laboratory,
October 2001.

E. Vassev, M. Hinchey, and J. Paquet, Towards an ASSL Specification
Model for NASA Swarm-Based Exploration Missions, In Proceedings
of 23rd Annual ACM Symposium on Applied Computing (SAC2008) -
AC Track, ACM, 2008, pp.1652—1657.

E. Vassev, M. Hinchey, Modeling the Image-processing Behavior of the
NASA Voyager Mission with ASSL. In Proceedings of the Third IEEE
International Conference on Space Mission Challenges for Information
Technology (SMC-IT’09). IEEE Computer Society Press, 2009, pp. 246—
253.

S. A. Mokhov, E. Vassev, Autonomic Specification of Self-protection
for Distributed MARF with ASSL. In Proceedings of C3S2E'09, ACM,
2009, pp. 175-183.

IBM Corporation, Autonomic Computing Policy Language, Tutorial,
IBM Tivoli, November 2005

M. Hinchey, J. Rash, and C. Rouff, Requirements to Design to Code:
Towards a Fully Formal Approach to Automatic Code Generation,
Technical Report TM-2005-212774, NASA Goddard Space Flight
Center, Greenbelt.

J. Banatre, P. Fradet and Y. Radenac, Programming self-organizing
systems with the higher-order chemical language, International Journal
of Unconventional Computing, vol. 3(3), pp. 161-177,2007.

W. Truszkowski, M. Hinchey, J. Rash and C. Rouff, NASA's swarm
missions: The challenge of building autonomous software, IT
Professional, vol. 6(5), pp. 47-52, 2004.

E. Vassev and M. Hinchey, ASSL Specification of Emergent Self-
Adapting for NASA Swarm-Based Exploration Missions, In
Proceedings of the 2nd IEEE International Conference on Self-Adaptive
and Self-Organizing Systems Workshops (SASOW 2008), IEEE
Computer Society Press, 2008, pp. 13-18.

