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Abstract—Experiments in assisted living confirm that such

systems can provide context-aware services that enable occupants

to remain active and independent. They also demonstrate that

abnormal sensor events hamper the correct identification of crit-

ical (and potentially life-threatening) situations, and that existing

learning, estimation, and time-based approaches are inaccurate

and inflexible when applied to multiple people sharing a living

space. We propose a technique that integrates the semantics of

sensor readings with statistical outlier detection. We evaluate the

technique against four real-world datasets that include multiple

individuals, and show consistent rates of anomaly detection across

different environments.

Index Terms—Wireless sensor network, fault detection, activity

recognition, ontologies

I. INTRODUCTION

Pervasive computing has the potential to revolutionise hu-
man life by using devices with sensing, intelligence, and com-
munication capabilities to observe and respond to phenomena
in an environment without human intervention. Foremost
among pervasive scenarios is smart home research, where
sensors are embedded and attached to all sorts of our everyday
objects such as beds, mugs, appliances, and even our bodies.
These sensors perceive the state of the physical environment
through the interactions people have with these instrumented
objects. By reasoning on these captured states, a pervasive
system can infer what tasks residents are carrying out, and
therefore automatically provide services to help achieve these
goals without the need of direct or explicit guidance from the
residents [6]. Smart home research has had a significant impact
on many human beneficial applications among which ambient
assisted living is one of the most exciting examples [4].

Many smart home prototypes have been developed to date,
including the Aware Home [1], MavHome [31], Gator Tech
Smart Home [12], and iDorm [7]. However the possibility
of widespread deployment of such systems remains unclear.
One reason among many (such as privacy and ethical issues)
is the high likelihood of sensor anomalies. Researchers from
the University of Virginia conclude their experience of de-
ploying sensors as “Homes [...] can be hazardous for sensors,
particularly when hundreds of sensors are deployed over long
time durations” [14]. During their years of experimenting, they
report an average of one sensor failure per day.

Pervasive sensors suffer from many types of technical
limitation [21], including hardware failure, disconnection from
the network, vulnerability to environmental interference, and
limited battery life. However, in smart home environments,

another major contributing factor is the presence of humans;
that is, users (including both foreground users who are target
subjects and background users who are active in the same en-
vironment like visitors, children, or even pets) might dislodge
or move sensors accidentally [14], [16]. This often leads to
sensor anomaly, where sensors do not fail, but continue to
report values that are technically reasonable (e.g., the reported
values are still within a reasonable range) but are unexpected
or contradict the events occurring in the world.

Addressing sensor anomaly is more challenging than detect-
ing broken sensors. Hnat et al. [14] discuss solutions towards
addressing the latter problem. For example, they set a time
interval that is reasonably long for any two consecutive data
points. If no data is reported from a sensor within the interval
since the last report, then this sensor can be considered broken.
In contrast, sensor anomaly can be much more subtle and
thus more difficult to detect. Simply setting fixed or variable
time intervals cannot solve the problem, and often we need
to validate collected values against either a data model that
represents expected sensor values or values collected from
neighbouring sensors via a correlation model.

This paper proposes CLEAN — a knowledge-driven tech-
nique to detect anomaly in event-driven binary sensors. We
focus on two types of anomaly — random events that oc-
cur sporadically due to short or intermittent environmental
interference; and systematic events where sensors consistently
behave abnormally due to the sensor recalibration or dislodge-
ment. We claim the following novelty and contributions:

• It is knowledge-driven in that it does not rely on any
training data or annotated data and thus can be used from
system initialisation and is not affected by changes in the
patterns or routines of users’ activities.

• It novelly combines knowledge and statistical models by
using a well-defined knowledge as part of a clustering-
based outlier detection technique. It is configured with a
flexible and dynamic mechanism to configure and adjust
thresholds at runtime, which reduces engineering effort
in setting thresholds for different environments.

• It can detect multiple sensor anomalies simultaneously,
and can scale up to a large number of sensors.

• It is not constrained by the number of users cohabiting
the same environment.

• It is demonstrated to be widely applicable, through eval-
uation using four third-party real-world datasets with
different sensor deployments, user profiles, and collection



periods.
The rest of the paper is organised as follows. Section II

briefly discusses existing fault detection work in sensor net-
work and identifies their limitations and difference from
CLEAN. Section III introduces the proposed approach where
we discuss similarity measure between sensor events and elicit
a clustering-based outlier detection algorithm. The work is
evaluated in Section IV and concluded in Section V along
with the directions for future work.

II. RELATED WORK

We briefly review sensor anomaly detection techniques in
both wireless sensor network in general and smart home
environments in particular. In the area of sensor networks,
most fault detection techniques target sensors in environmental
monitoring domains, usually involving temperature, humidity,
light and wind speed. These sensors produce homogeneous,
periodic, and real-numbered readings. Also these models often
target individual sensors by tracking their historic values.
However, the most common classes of sensors deployed in
a smart home are infrared sensors, RFIDs, motion sensors,
accelerometers, camera and microphones [28]. These sensors
produce heterogeneous, event-triggered, and binary or featured
readings. It is difficult to define a range limit over RFID
readings, a seasonal pattern of sound, or an explicit numeric
correlation between infrared sensor readings and acceleration
data. We will review the fault detection techniques that deal
with these two types of sensors and present how CLEAN
addresses the problem and advances the state-of-the-art.

A. Failure detection in Wireless Sensor Networks
Fault detection is gaining more and more attention in wire-

less sensor networks, as longer-term deployment in real-world
settings significantly increases [24]. Fault detection techniques
can be categorised into four groups: rule-based methods,
estimation methods, time series analysis, and learning-based
methods [21], [24].

A rule-based method relies on expert knowledge about
sensor readings to develop heuristic rules for identifying and
classifying faulty sensor data. This method works best when
the types of faults that can occur and the methods to detect
them are known a priori. An early solution adopted by
Mourand et al., defines ranges for valid sensor readings so as
to exclude any observations falling out of reasonable domain
limits [20]. This approach is mainly used to clean the data
and thus to reduce the burden from the domain experts before
performing any data analysis process.

An estimation method learns sensor correlations to predict
normal behaviour of sensor observations. For physical phe-
nomena like temperature or light, there often exist statisti-
cal correlations between sensor measurements. For example,
correlations between measurements of sensors that monitor
the same physical phenomena but are deployed at different
locations, or correlations between measurements of sensors
that monitor potentially related phenomena (e.g., temperature
and humidity) but are deployed spatially together [9]. Gaussian

processes have a long history of use to represent such spatial
correlations between sensors [24]. We also assume that there
exists a correlation between event-driven sensors which is
not statistical between their values but semantical in the
placed locations and attached objected of the sensors. We use
such semantic relations to spot abnormal sensor events. For
example, we could regard as abnormal a single firing of a
sensor deployed in a bathroom among a collection of kitchen-
hosted sensor firings.

Time series analysis builds a model for data streams col-
lected by the same sensor to exploit their temporal correlations
over a long-term period. To detect a fault, a sensor mea-
surement is compared against its predicted value computed
using time series forecasting. This method works best if the
monitored physical phenomena such as temperature or light
exhibits a certain periodic or seasonal pattern. Fang et al. [10]
propose to use ARIMA – AutoRegressive Integrated Moving
Average – to reduce errors in data collection while achieving
energy efficiency. Each node learns an ARIMA model that will
predict if the measurements sampled by the node are within
a certain error bound. If the sampled measurement does not
agree with the predicted measurement, then it will be further
validated by a spatial model to determine whether the model
is out of date, or the sampled data is faulty. The assumption
of these techniques is that sensors report values in a fixed
frequency, which does not hold for event-driven sensors that
only report when a triggering condition is satisfied.

A learning-based method uses a certain amount of training
data to derive a model for normal and faulty sensor readings
and then, given an input sensor reading, statistically detects
and identifies classes of sensor faults. It is usually integrated
with the above estimation and temporal correlation based
methods. Bayesian networks, Hidden Markov Models, and
neural networks are the most common techniques applied.
Dereszynski et al. [5] propose to use Bayesian Network for
real-time fault detection and correction on temperature sensor
stream collected in an ecological monitoring setting. The
approach has two steps: (i) inferring a Bayesian network
structure for each sensor deployment site, which captures
spatial relationships between sensors and then (ii) extending
the network structures to a Dynamic Bayesian network (DBN)
to incorporate temporal correlations. The spatial and temporal
correlations captured in different Bayesian networks can help
to distinguish sensor failures from valid observations and as
well as to predict the true values for the missing or corrupted
readings. Similarly, Hill et al. [13] apply a DBN to analyse and
diagnose anomalous wind velocity data. They build individual
sensor models, on top of which a coupled DBN model is
learned to represent the joint distribution of two sensors.

Paschalidis et al. [22] use Markov models to characterise
the normal behaviour of sensor networks; that is, a Markov
model at each sensor node is built to estimate anomaly-
free probabilities from its past observation traces, and a tree-
indexed Markov model is developed to capture their spatial
correlations across the network. Based on derived optimal
anomaly detection rules, the approach can assess whether its



most recent empirical measure is consistent with the anomaly-
free probability model.

The need for training data is the main obstacle to the use of
learning-based techniques for detecting abnormal event-driven
sensors, which we expand on in the next section.

B. Detection Techniques in Smart Home Environments
In the area of smart homes, researchers propose top down,

application-level methods to detect sensor faults [16], [23].
The principle is to look at how sensor failure affects reasoners.
Such technique builds a performance profile for a set of classi-
fier instances that are trained with all possible combinations of
sensors. Detecting a sensor failure is achieved by comparing
the runtime performance with these acquired profiles.

For example, Kapitanova et al. [16] train state-of-the-art
classifiers (like Naive Bayes and Hidden Markov Model)
to learn high-level human activities (like cooking) from a
subset of sensors: excluding one sensor from the whole set of
sensors at a time. Fault detection is performed by comparing
the performance of these classifiers at recognising real-time
activities. There are three main drawbacks to this method:
i) its principle is to spot single sensor failure at a time,
however in reality there could be multiple sensors failing
simultaneously, ii) while the method might work on a small
number of sensors (e.g., dozens) which is determined by the
way they construct the classifier profile, and thus are unlikely
to scale to hundreds or thousands of sensors, iii) sensors in
the training data collection period never work the same in the
long term, and neither do residents behave as expected. During
the trial period, the sensors are typical in their best condition
(e.g., fully charged and finely tuned) and the residents carefully
(sometimes deliberately) interact with sensors. However when
the sensors are not under the close watch of professional
technicians, they frequently exhibit quite different behaviour.
The proposed technique, CLEAN, overcomes these drawbacks.

III. PROPOSED APPROACH

We consider sensor anomaly detection as an outlier de-
tection problem, where we assume the majority of sensor
events function coherently and we try to detect the minority
of sensor events that behave inconsistently from the majority.
There are many different outlier detection algorithms [15],
and here we choose an unsupervised solution, a clustering-
based outlier detection algorithm – FindCBLOF [11]. This
technique has been successfully applied to detecting abnormal
network behaviours, and shares the above assumptions. The
basic principles of FindCBLOF is as follows:

1) Cluster all the data points into groups, and sort the
groups by their size in a descending order;

2) To each data point, assign a Cluster-Based Local Outlier
Factor (CBLOF), which is a product of the size of
the cluster that the point belongs to and the similarity
between the point and the closest large cluster. The large
cluster here means the cluster containing the majority
of data points (say 90%). The CBLOF suggests the
similarity between a data point and a cluster in a

statistical way that represents the probability that the
point belongs to the larger cluster. Any data point whose
CBLOF is below a pre-defined threshold is considered
an outlier. That is, the smaller the CBLOF, the less
similar the point and the larger cluster are, and thus the
point is more likely to be an outlier.

To adapt the FindCBLOF algorithm to detect anomaly in
sensor events, we need to address the following four questions:

• What is the distance measure between two sensor events?
• How do we define a cluster as “large”?
• As sensor events are not static but streaming and con-

tinuous data, it is highly likely that abnormal sensor
events occur repeatedly. How do we take into account
the historic behaviour of sensors and combine it with the
CBLOF?

• How do we set a threshold on the CBLOFs to decide
which data points are outliers?

In the following we will propose strategies to address these
questions.

A. Distance Measures between Sensor Events

Readings of event-driven sensors are binary, and the dis-
tance between these binary numbers alone has little meaning.
However, each sensor can be characterised by its implicit
semantics such as where the sensor is displaced, which object
the sensor is attached to, and who the room or object belongs
to. These semantics provide more information than the binary
readings. In this section we follow the approach we proposed
in [30] to characterise the semantics of a sensor event and
quantify their distance measure. More technical details can be
found in that paper.

We characterise a sensor event into semantic features
{t, l, o, u}, describing that at the timestamp t, a sen-
sor that is installed on an object o at a location l re-
ports a reading about a user u. For example, a sensor
event can be represented as [2008-02-25T00:20:14Z,
bedroom, door, main_user], indicating that the sen-
sor installed at the door of the bedroom that belongs to
the main user fires at the give timestamp. We adopt an
ontological approach where we organise concepts in each
feature space into a hierarchy based on their granularity
level [29]. In the above example, bedroom, door, and
main_user are concepts or instances in the Location, Object,
and User feature space, and their relationships with the other
peer concepts can be: bedroom v sleeping_area v
living_environment, door v movable_structure

(from WordNet [19]), and main_user v any_resident.
We can use the hierarchy to quantify the similarity measure

of any two of its concepts. Wu et al. [26] propose a conceptual
similarity function that works by finding the Least Common
Subsumer (LCS) of the two input concepts and computing the
path length from the LCS up to the root node. The LCS is the
most specific concept that both concepts share as an ancestor.
This is given by:



sim(c1, c2) =
2⇥N3

N1 +N2 + 2⇥N3
,

where c1 and c2 are concepts in a feature space, N1 (N2) is
the path length between c1 (c2) and the LCS node of c1 and
c2, and N3 is the path length between the LCS and the root.

When c1 is equal to c2, their LCS node is itself and the
similarity is 1.0. When c1 is semantically far from c2, their
LCS node might be close to the root in the hierarchy, which
makes N1 and N2 large and N3 small, so the similarity is
close to 0. Therefore, the larger the similarity measure, the
closer the two concepts. There exist other measures to quantify
the distances between categorical values [2]. Most of them
are based on frequencies of the values occurring in a certain
dataset, which is not applicable in our approach.

Finally the distance between any two sensor events s1 and
s2 can be defined as
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where sim is the above similarity function of the hierarchical
concepts, and !

i

is the weight of each feature, which reflects
the importance of each feature on capturing the similarity
of two sensors. For example, if the activities of interest are
location-specific, a higher weight can be placed on the location
feature. To simplify, we uniformly apply across all the datasets
the same weight on these three features; that is, 0.33. We use
such similarity between sensors to spot the abnormal sensor
events that is further distant from densely clustered events.

B. Ordering of Clusters

Once we have defined the distance measure between any
two sensor events, we can cluster them. Let a sensor sequence
contain a temporally-ordered list of sensor events. Clustering
this sensor sequence will lead to multiple groups, some of
which may correspond to different activities from different
users while the others could contain the abnormal events.
Therefore, it is not as likely that one cluster takes the absolute
majority of data points as the original algorithm assumes. To
solve the problem, we use the shoulder-locating method; that
is, we order the clusters by their size, and an abrupt change
in their sizes suggests a threshold for distinguishing large and
small clusters. For example in Figure 1, we cluster a given
sensor sequence into six clusters, and the percentages of their
size to the whole number of data points in a descending order
are 40, 38, 12, 5, 3, and 2. As we can see, the shoulder point
is at the cluster whose percentage is 12%, where we observe
the maximal difference between the size percentages. We then
consider any cluster whose size percentage is above 12% to
be large; that is, any cluster to the left of the dotted red line
is considered as large and thus normal; i.e., Cluster 1 and 2.
If the clustering results in one group or groups with identical
sizes, the shoulder cannot be located; i.e., the percentage on the
shoulder point will be zero. If so, we cannot find the minority
of sparse points and thus we conclude there is no anomaly in

Fig. 1. Distribution of Cluster Sizes and the corresponding shoulder locating

this sensor sequence. If the gaps of sizes between groups are
the same; e.g., a slope line, then the shoulder point will move
downward to the smallest group. In this case, any other group
except the smallest group is considered to be large.

This shoulder-locating method provides a flexible alternative
to using a predefined fixed threshold (say 50% or 30%) to
determine a “large” group. The reason is that the threshold al-
ways depends on the number of sensors deployed, the number
of currently fired events, and activities being conducted at the
moment. This also saves effort, either in terms of knowledge
engineering or training, normally required to configure or
adjust the best settings of the threshold. In Section IV we will
demonstrate that we run CLEAN over four datasets without
the need to re-configure any of these thresholds.

C. Considering Historic Sensor Behaviours

As mentioned earlier, abnormal sensor events may be per-
sistent rather than one-off, especially for the systematic type
of anomaly caused by technical degradation or dislodgement.
Here we consider two extra factors: frequency and temporality.
We assume that the more often and the more recent a sensor
behaves abnormally, the more likely it is that a fault occurs
again. We apply these two factors as a weight to CBLOF in
an exponential function:

fw = e

�f/N (2)

where N is the total number of sensor events being monitored
and f is the number of times that abnormal events among the
last N events are reported by a certain sensor. The choice
of N depends on the intensity of sensing. In the following
experiments, we set it universally to be 100; that is, we will
look at how many times a sensor will function abnormally in



the last 100 events.

tw = e

max(1,td/T )�1 (3)

where td is the temporal distance between the current time
and the reported event, and T is the range of time of interest
(for example, one day is used in our experiment).

Finally for each data point, the extended CBLOF will be

size of cluster ⇤ sim to large cluster ⇤ tw ⇤ fw. (4)

To decide the threshold below which the data point is
considered as an outlier, it is unrealistic to set a fixed threshold
because the number of sensor events varies with the activities
being conducted by the users; for example, some activities like
cooking tend to fire more sensors, while the other activities
like sleeping only fires a limited number of sensors (e.g.,
the bedroom door) at its beginning and ending states. It also
matters with the number of sensors being installed and the
number of users living in the environment. Also different
parameters in both temporal and frequency weight functions
will make it difficult to fix the thresholds. To solve the
problem, we re-use the shoulder-locating method; that is, we
order all the CBLOFs in a descending order, and find the
shoulder point where the maximum change is found. Then we
use the CBLOF at this shoulder as the threshold. Any data
point whose CBLOF is below this threshold is an outlier.

IV. EXPERIMENT AND EVALUATION

CLEAN is evaluated on four real-world datasets that are
collected from different smart home environments with dif-
ferent human users and sensor configurations. These datasets
capture typical activities and more importantly they represent
common types of smart home datasets in terms of the number
of sensors, the number of users cohabiting, and the degree
of inherent noise. We believe that experimenting on these
datasets gives us a comprehensive view of the effectiveness
of the proposed technique.

The first two datasets are collected by the University of
Amsterdam (named TVK A and TVK B respectively in the
following) from two real-world, single-resident houses which
were instrumented with wireless sensor networks. The sensor
network in the first house is composed of 14 state-change sen-
sors attached to household objects like doors, cupboards, and
toilet flushes, while the network in the second house contains
reed switches to measure whether doors and cupboards are
open or closed; pressure mats to measure sitting on a couch
or lying in bed; mercury contacts to detect the movement of
objects (e.g., drawers); passive infrared to detect motion in
a specific area; float sensors to measure the flush of toilet.
All these sensors output binary readings (0 or 1), indicating
whether or not a sensor fires. These two datasets are interested
in the same set of activities, while the TVK B sensory data
contains more noise than the TVK A data [17].

The third dataset is the PlaceLab Couple dataset [18]. To the
best of our knowledge, this dataset is by far the most compli-
cated and largest dataset collected in a real-world environment
that is publicly available. The PlaceLab dataset contains over

nine hundred sensor inputs, among which 707 are object
sensors, including wireless infra-red motion sensors, stick-
on object motion sensors, switch sensors, and RFIDs. The
dataset was gathered over a period of 15 days during which
a married couple (who were unaffiliated with the PlaceLab
research) lived in the PlaceLab, generating 455,852 object
sensor events in total. This dataset is not only composed of the
highest variety of sensors but also contains many noisy events,
which is due to the following three reasons: (1) the majority
of the sensors (except RFID sensors) are not identity-specific,
(2) they are very sensitive to environmental interference (e.g.,
motion detection sensors), and (3) this couple often perform
interleaved activities and only one subject’s activities have
been annotated [18].

The fourth dataset is the interleaved activities of daily living
(labelled as IAA) dataset from the CASAS smart home project
[3]. This dataset was collected in a smart apartment testbed
hosted at Washington State University during the 2009-2010
academic year. The apartment was instrumented with various
types of sensors to detect user movements, interaction with
selected items, the states of doors and lights, consumption
of water and electrical energy, and temperature, resulting in
2, 804, 812 sensor events. The apartment housed two people,
R1 and R2, who performed their normal daily activities during
the collection period. This dataset will demonstrate CLEAN’s
performance in detecting abnormal sensor events in a multi-
user environment.

A. Methodology and Measure
The overall goal of the evaluation is to assess the effec-

tiveness of detecting random and systematic abnormal sensor
events. The effectiveness is measured in precision – the
percentage of the times of detected abnormal events actually
noise being injected into the data, and recall – the percentage
of the times of injected abnormal events being detected.

In the following experiments, we prepare the datasets by
segmenting the sensor events into one-minute time slots, which
is the most common segmentation technique in use [16], [25].
Algorithm 1 illustrates the random anomaly injection and
evaluation process. For example, if we want to inject a P

percentage of abnormal events into the dataset (i.e., the total
number of abnormal events will be P ⇤ N , where N is the
total number of sensor events in the original data). For each
injection, we randomly (i) select a time slot, (ii) generate a
timestamp within the interval of the time slot, and (iii) select
a sensor id that is different from all the sensor ids originally
contained in the time slot. Then we create a new sensor event
with the timestamp and sensor id and inject it into the time
slot. We repeat the injection process P ⇤ N times, where P

is chosen from 10% to 90%. For each percentage, we run
I iterations (i.e., in our experiment, I = 100) and present the
precision and recall over these iterations in a box plot. The box
plot presents the precision and recall distribution of detection,
including the minimum, maximum, and mean. This gives a
more detailed and complete view than the averaged precision
and recall. In the systematic detection, we randomly select a



Algorithm 1: Evaluation of Random Abnormal Events
Data: L: a list of one-minute segments of sensor events
I: the number of iterations
N : the number of sensor events in total
P : the injection rate of abnormal events
S: the number of sensors
Result: A: the detection precision and recalls
for i 1 to I do

IL = L

for n 1 to P ⇤N do

seg id = rand gen(1, size(L))
ts =
rand gen(L.get(seg id).start time, L.get(seg id).end time)
found = False

while !found do

sid = rand gen(1, S)
if !L.get(seg id).contains(sid) then

found = True

IL.get(seg id).inject(create event(timestamp, sid))

// run CLEAN over CL and put the evaluation accuracy into
results
CL = clean(IL)
A.append(eval(CL,L))

number of sensors, and then for each randomly selected sensor
we create a sensor event and inject it into each time slot. The
number of sensors is chosen from 1 to half of the total number
of sensors. For the PlaceLab dataset we only chose 10% of
the sensors (71). For each number of selected sensors, we run
100 iterations and present the precision and recall over these
iterations in a box plot. For example, if the number is 20, then
the 100 iterations generates 100 combinations of sensors, each
20 in size.

In terms of the clustering algorithm, we use DBSCAN [8],
which does not require pre-defined cluster sizes and is
amenable to our needs – grouping events by their distance and
neighbourhood density, which are set as 0.5 and 3 respectively.
That is, we cluster events if their distance is close enough
(i.e., within 0.5) and have enough close neighbours. This is
the only place that we need to set up the thresholds for the
clustering algorithm to work. As mentioned in Section III, we
do not need to configure the thresholds to determine whether
a cluster is large or whether an event is an outlier.

B. Random Anomaly Detection Results

Figure 2 presents the precisions of detecting random anoma-
lies on these four datasets. The precision is consistently high
across all the datasets, indicating that the detected events are
indeed abnormal. Note that the assumption of the algorithm is
that the majority of sensor events are normal, which suggests
that the majority of sensor events are more likely to form into
a cluster whose density is greater than the clusters that contain
abnormal events. So, although we inject noisy events that are
over 50% percent of the total number of sensor events, it is
less likely that these events form a high-density group. We
observe that the precision on the IAA dataset, which involves
two residents, decreases more rapidly than the precision on
the other datasets. The reason for this is that the injected
noise might form a cluster which is not significantly different

from the cluster representing a less active behaviour being
conducted by a background user.

Figure 3 presents the recalls on these four datasets increase
with the injection rate; that is, the more noise injected, the
higher chance of detecting them. This sounds counterintuitive,
and is partly due to the inherent noise in the datasets; e.g., we
detect abnormal events that are not injected but already exist
in the data. Our second experiment is to remove the potential
noisy events from the original datasets first by running the
same algorithm, and then by repeating the random noise
evaluation process. Figure 4 and 5 present the precisions and
recalls on the cleaned datasets, which are the ones where
each segment contains non conflicting sensor events. Both the
precisions and recalls have greatly improved, especially on the
TVK B and PlaceLab datasets, which tend to have more noise
than the other two [17], [18], [27]. Note that all these datasets
are not annotated with noisy sensor data.

To characterise the potential noise in the original dataset, we
present the frequency of sensors that have reported abnormal
events on a daily basis from the original TVK B dataset
in Figure 6. It is clear that sensor 28 consistently reports
abnormal readings. We manually examine the raw data and
find that this sensor is a passive infra-red sensor installed in
the kitchen, which reports all the time, especially on the last
day. CLEAN does not detect any abnormal events from this
sensor because the user was not at home on that day and there
was no other sensor firing. Without peer comparison, CLEAN
always forms one cluster that contains only this sensor, thus
the conclusion that there is no anomaly is drawn. This is the
one drawback of CLEAN, which can be complemented by a
rule based check; that is, if one sensor reports continuously
over an long period (e.g., one day), then this sensor should be
considered abnormal.

Fig. 6. Frequency of sensors that have been detected to report abnormal
events on a daily basis in TVK B dataset

C. Systematic Anomaly Detection Results

Figure 7 and 8 present the precisions and recalls of detecting
systematic sensor anomalies. We can see that there are fluctu-
ations in both precision and recall, especially on the PlaceLab
dataset. If a randomly generated sensor event is associated with
a sensor that fires frequently throughout the dataset, and if that
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Fig. 2. Precisions of detecting random noise on the original datasets. The consistently high precision indicates that detected noise has a high chance of being
the injected random noise.
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Fig. 3. Recalls of detecting random noise on the original datasets. The various recalls over different datasets are due to the potential noise in the original
datasets.
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Fig. 4. Precisions of detecting random noise on the cleaned datasets. After cleaning the original dataset, the precision has increased on the first three datasets.
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Fig. 5. Recalls of detecting random noise on the cleaned datasets. After cleaning the original dataset, the recall has increased on all the datasets.
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Fig. 7. Precisions of detecting systematic noise on the original datasets. Precision of detecting systematic sensor noise is highly influenced by the chosen
sensors.
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Fig. 8. Recalls of detecting systematic noise on the original datasets

sensor has similar semantics to a group of other firing sensors,
then there is less chance of that event being detected as an
outlier. This will affect the temporal and frequency weights as
a result. On the other hand, if a generated event is associated
with a sensor that is critical to a less frequent activity, then
it is more likely that that this sensor event will be detected
as being abnormal. For example, when we deliberately set the
sensor on the front door – which only contributes to identifying
the user’s entry and departure from the house – in the TVK
A dataset to report readings in every time slot, the detection
precision and recall are 94.3% and 80% respectively. Because
of these frequency and contribution factors of sensors, the
precisions and recalls do not follow a more observable trend
as that of detecting random anomaly. Similarly the detection
precisions and recalls improve on the cleaned datasets, as
shown in Figure 9 and 10. These two figures also show that
the precision and recall have not significantly improved on
the cleaned datasets, especially for PlaceLab and IAA which
contain a large number of sensors and thus the randomly
chosen sensors will lead to higher variability of the detection
accuracies. This again is consistent with the earlier statement.

V. CONCLUSION AND FUTURE WORK

This paper presents CLEAN, a technique that leverages
sensor semantics in a statistics-driven outlier detection method
to detect abnormal events, which does not rely on any training
data nor requires ground truth annotation. It is generic in that it
scales well with the number of sensors, can be deployed with
single- or multi-resident environments, and can be integrated

with existing activity recognition techniques. By taking the
streaming sensor events gathered from various sensors as
input, CLEAN detects and removes abnormal events, which
can be used to filter data fed as input to any activity recog-
nition algorithms. We demonstrate its detection performance
on four real-world datasets with various environments, sensor
deployments, the number of users living in an environment,
and the extent of noise underlying in the dataset.

Currently, CLEAN is designed to detect “excessive” data,
and cannot yet detect what “missing” data. Missing sensor
data is subtle in that not reporting a value does not imply a
sensor is broken, and could simply mean that the user has not
interacted with the object that the sensor is attached to. For
example in the activity of making coffee, we cannot conclude
that the sensor on the sugar jar is not working just because
it did not fire as the activity was carried out — the user
could simply have chosen not to add sugar to the coffee. Our
future work will look into correlations between sensors, and
between sensors and activities, and integrate such knowledge
with CLEAN to try to detect missing events.
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