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This note summarises my understanding to date of two closely-related theories for 
dealing with “bulk” data types:  the Bird-Meertens formalism (henceforth abbreviated to 
BMF) and its extension in categorical data types (CDT).  I've been led to this study for 
two reasons:  as interesting formalisms for program derivation in their own right, and as a 
possible basis for defining useful operations for shared abstract data types.  In this note I 
cover all the essential ideas I've found so far, and include a bibliography of the theories. 

Overview 

BMF is a theory of program synthesis in which functions are evolved from abstract 
specifications using a small number of higher-order constructs.  Functions are expressed 
as combinations of functions over data structures, avoiding the explicit use of recursion.  
This both simplifies proofs of correctness and allows the possibility for efficient (possibly 
parallel) implementation of the combination operators over a range of data types.  A 
small-scale theory leads to potentially large-scale applications. 
The theory does not, however, start from a standpoint of immediate mechanisation.  To 
do so, in Bird and Meertens' view, would severely limit the many ways in which an 
algorithm may be evolved.  There is a wonderful quote in [10]: 

“...we must abandon our fixation on efficiency if algorithmics [Meertens' 
name for programming as a mathematical activity] is to enjoy a fruitful 
development.  In general, developing an efficient algorithm will require 
that we first understand the problem, and for this we need simple 
algorithmic expressions;  but to simplify an expression we have to shed 
our old habits.” 

so BMF does not initially worry about the efficiency of functions:  instead it makes the 
concise expression of algorithms possible whilst holding out the possibility for verifiable 
transformations to improve efficiency. 
Categorical data types form the basis for generating types and functions which are very 
closely related to BMF using category theory.  The approach is to derive new types in a 
manner which are guaranteed (from the underlying categorical basis) to be amenable to 
treatment in BMF-style functions. 
The notation used in this paper is substantially that of [2], altered very slightly to take 
account of the peculiarities of the word processor used to prepare this note. 
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The Theory of Lists 

The essence of BMF is the use of a small set of higher-order functions and operators to 
derive programs from specifications (a process which Bird[5] refers to as program 
calculation).  The advantages of this approach are four-fold: 

• the higher-order of functions chosen are (necessarily) very 
general, and so form a small set of “syntactic” elements for the 
programmer to learn; 

• functions are defined as compositions of functions rather than 
by explicit use of recursion wherever possible, so full 
inductive proofs are seldom needed; 

• the semantics of the functions allow for parallel 
implementation;  and 

• functions manipulate data types in bulk rather than a piece at a 
time. 

The first property means that functions use only a small number of operators which 
makes for powerful, if terse, expressions.  The second reduces the proof obligation taken 
on by a programming in deriving a function, as he may make use of the known semantics 
of the kernel functions rather than having to resort to recursion.  The third (which is 
accomplished by avoiding the usual tail-recursive formulation of the kernel functions) 
gives the theory its current importance as a vehicle for specifying functions across a 
range of architectures.  The final property is also an aid to parallel evaluation, as 
functions using BMF avoid the Von Neumann bottleneck. 

List operators 

BMF is primarily concerned with operations on lists.  It uses the notion of a join-list 
defined by three functions whose type signatures are: 

[] *

[.] *

* * *

  ::   

  ::   

  ::   

1!

!

+ + " !

A

A A

A A A

 

where 1 is the one-point (unit) type, A* is a list of values of type A and ++ is the list 
concatenation operator.  (This form may be contrasted with the more familiar form of 
cons-list found in Lisp, ML and most other functional languages.)  Lists are constrained 
to be composed of values of a single type. 
The simplest operation on lists is list length.  The rules for this operator are as expected: 

#[]

# [ ]

#( ) # #

=

=

+ + = +

0

1x

a b a b

 

Notice that the structure of computing # is recursive and, furthermore, follows closely the 
recursive structure of the type itself.  This point will be important later. 
The next operation defined for lists is the map operator, denoted ! , which applies a 
function to all elements of a list.  The definition of map is that 
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f

f x f x

f a b f a f b

* [] []

* [ ] [ ( )]

* ( ) ( ) ( )

=

=

+ + = + +

 

The map operator may be applied to a single argument to “lift” a function, so the notation 
( )f !  denotes the function which, when applied to a list, returns a list where f has been 
applied to every element.  Notice again that !  is defined in terms of the definition of the 
list type. 
The final operator is the filter operator, denoted <.  This filters a list through a boolean-
valued predicate, returning the list of those elemnts which satisfy the predicate. 

Reduction operators 

The most basic reduction operator is /, which reduces a list using an operator  (the same 
symbol is used for this purpose in APL): 

! = ! ! !

! =

/ [ , ,..., ] ...

/ [ ] [ ]

a a a a a a

a a

n n1 2 1 2  

(The case of ! / [] is deferred until later).  Using this operator, many useful functions 
may be defined by composition (in the same way that * may be used “sectionally”): 

sum

product

flatten

all p p

some p p

= +

=

= + +

= !

= "

/

* /

/

( ) ( /).( *)

( ) ( /).( *)

 

Identity elements and fictitious values 

As observed earlier,  
[] []+ + = = + +x x x  

[] is referred to as the identity element of the ++ operator.  Many operators have such 
identites, including + (identity element 0), * (1) and !  (true). 
Identity elements have several uses.  The first use is that they allow the value of ! / [] to 
be defined for any operator !  which has an identity element e: 

! =/ [] e 
and indeed this equation may be seen as defining the identity element. 
The second use of identity follows from the observation that the reduction operator is 
defined using a single form.  In most function programs there exist two functions foldl 
and foldr defined such that 
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foldl f z z

foldl f z x xs foldl f f z x xs

foldr f z z

foldr f z x xs f x foldr f z xs

( , ,[])

( , , : ) ( , ( , ), )

( , ,[])

( , , : ) ( , ( , , ))

=

=

=

=

 

which reduce a list using an operator and a given basic (identity) element.  The need for 
the two functions is that the operator may not be associative and the element may not be a 
left and right identity. 
BMF states that ! / [] is only defined for associative operators, and furthermore is only 
defined when the operator has an identity element.  This implies that the identity value e 
of an operator is both a left and a right identity, and combined with associativity this 
means that there is no needs for the two reducing forms. 
([2] defines two “directed” recursion operators whose definitions match those of foldl and 
foldr.  These seem to have been abandoned in later treatments of BMF – notably [5] and 
[10].  It must be said, however, that the directed forms can be very useful in many cases.  
Note that the undirected form is amenable to parallel implementation whilst the directed 
forms aren't.) 
It is usually possible to either determine an identity element for an operator, but in some 
cases it may be necessary to extend the domain of the operator with a additional or 
fictitious identity value .  For example, a maximum value operator max, which has no 
identity within the domain of finite numbers, may be given one by adjoining the fictitious 
value !  to the domain to form a new operator max' such that 

max' a b a

b

max a b

( , )

( , )

= = !

= = !

=

  if b

  if a

  otherwise

 

Conditionals and selections 

BMF adopts the McCarthy conditional form, so using a predicate p 
( , ) ( ) ( )

( ) ( )

p f g x f x p x

g x p x

! =

¬

  if 

=   if 
 

Another operator defined is the selection operator ! f  which is defined over integer-
valued functions f such that 

a b a f a < f b

b f a f b

f! =

= >

  if 

  if 

( ) ( )

( ) ( )
 

A possible problem here is that ! f  is under-specified in the case that f a f b( ) ( )=  but 
a b! .  This non-determinism can be very useful, but care may be taken in performing 
equational reasoning on functions using ! f . 
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Homomorphisms and Categorical Data Types 

Let us now turn the focus more towards categorical data types.  As mentioned above, this 
approach is very much in the spirit of BMF.  As might be expected from category theory, 
it seeks to generalise the notions of BMF to more complex types by identifying and 
exploiting common structure. 
The most important single contribution of the CDT discipline is the idea of computing 
using homomorphisms (which are present but under-emphasised in BMF).  A 
homomorphism is an operation which is defined so as to follow the structure of the type 
of its argument.  For example, consider a type A with operations ^ and + (injection and 
binary join respectively).  An operation h is a homomorphism if there exists an operation 
!  such that 

h a b h a h b( ) ( ) ( )+ = !  
h may be described as respecting the structure induced by +:  moreover if a and b are also 
composed of smaller objects then the computation of h(a) and h(b) may also be expressed 
in terms of ! .  In other words the computation of h is recursive according to the 
definition of the type A.  This result is true for any homomorphism:  its computation will 
always follow the recursive structure of the argument data type.  The list length and map 
operators defined earlier are both homomorphisms 
The advantage of expresing a function in terms of homomorphisms is that computation is 
naturally parallel and largely architecture-independent.  The communicarion structure of 
the computation is determined by the structure of the data type.  Any “branch” of the 
computation may proceed in parallel, either down to values of the fundamental types 
from which the type A was built or to some level of granularity at which it is 
advantageous to compute a portion of the homomorphism sequentially.  This possibility 
for different decomposition strategies without impacting on a function's meaning is the 
major claim which CDT (and BMF, for that matter) have to architecture independence. 

Extensions of BMF:  D-structures 

BMF arose as a theory of lists, but can be generalised to other types.  The idea comes 
initially from [10] with the notion of a D-structure, which is closely related to a more 
general notion of specifying types using algebra. 
A D-structure can be created for any type D by defining two functions:  a function ^  
mapping an element of D into a D-structure and a binary join operator + combining two 
D-structures into another D-structure.  Thus each D-structure is a full binary tree where 
each interior node has exactly two children and each leaf is an element of D.  The D-
structure S

D
 may be represented by the domain equation 

S D S S
D D D
= + !  

New types may be derived by adding requirements to the form of the initial type D and 
the join operator.  For example to obtain a list type we define: 

S D S S

s s s

D D D
= + + !

+ = = +

{ }0

0 0
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i.e. augment the base type D with an additional element which is the identity element of 
the join operator. 
If we now progressively add restrictions that the join operator above is associative, 
commutative and idempotent we obtain the types sequence, bag and set respectively.  
This illustrates the important correspondence between common data types and algebraic 
structures, and allows the full power of algebraic reasoning to be brought to bear on 
problems relating to complex data types.  The hierarchy of types thus obtained is termed 
the Boom hierarchy by Meertens[10]. 

Bulk algebraic data types from scratch:  arrays 

Another means of extracting bulk data types is to focus on the algebra which defines a 
type, and then use notions of homomorphisms to generate suitable operations.  This 
approach may be followed without recourse to category theory, although coming to the 
same effective result. 
To illustrate this approach we shall use Miller's algebraic treatment of arrays.  For 
simplicity we shall concentrate of 2-d arrays, although Miller's work generalises to 
multiple dimensions. 
Arrays are defined using a “join-array” algebra: 

[.]:: | |

::| | | | | |

::| | | | | |

A A

A A A

A A A

!

" !

" !

#

$

 

(Compare this with the join-lists of BMF.)  These functions respectively create a 
singleton array or join two arrays “besides” or “above” each other.  Arrays joined besides 
each other must have the same height whilst those joined above must have the same 
width – the type constructors are partial functions over arrays. 
An interesting property of the constructors is that they “abide” with each other: 

( ) ( ) ( ) ( )x u y v x y u v! " ! " ! "=  
providing all the expressions are well-defined.  This implies that an array, once 
constructed, has no “memory” of the sequence of constructors used to create it. 
One may now define the usual functions such as map: 

f a f a

f x y f x f y

f x y f x f y

*| | | ( )|

* ( ) ( * ) ( * )

* ( ) ( * ) ( * )

=

=

=

! !

" "

 

Other functions may be defined in a similar framework, including the transposition 
operator tr, a “zip” operator !"  which applies the !  operator pointwise to two arrays, 
and a generalised cross product operator !"  which generates a cross product of two 
arrays using ! .  From here we may define the usual laws of matrix algebra. 



7 

Conclusion 

This note has briefly presented the Bird-Meertens formalism and its close relative 
categorical data types.  Both offer a theory of creating “bulk” data types which are then 
manipulated en bloc using a small number of higher-order operators.  The structure of the 
theories, especially the use of homomorphisms, guarantees that efficient parallel 
implementations could be built.  Such functions are completely imdependent of the 
number of processors on the target system. 
Both theories can be extended from their basis in lists to cope with other data types.  
Sequences, bags and sets have already been encoded (as well as more exotic types such 
as molecules), so the theories may be seen to underpin several novel programming 
models. 
The parallelism obtained from the theories is implicit and data-parallel.  Each function 
defined as a composition of maps and homomorphisms can assume that the semantics of 
each is sequentially consistent.  Parallelism comes within each bulk operation, and 
although a smart compiler might spot optimisations across operations there is no support 
withi the theory for so doing.  This is a far more restrictive form of parallelism than is 
common in the MIMD world. 
With this in mind, however, the ideas of bulk algebraically-specified types provide a 
good starting point both for mapping and for performance-improving transformations. 
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