
1

An introduction to the theories of bulk data types

Simon Dobson
Informatics Department
Rutherford Appleton Laboratory

This note summarises my understanding to date of two closely-related theories for
dealing with “bulk” data types: the Bird-Meertens formalism (henceforth abbreviated to
BMF) and its extension in categorical data types (CDT). I've been led to this study for
two reasons: as interesting formalisms for program derivation in their own right, and as a
possible basis for defining useful operations for shared abstract data types. In this note I
cover all the essential ideas I've found so far, and include a bibliography of the theories.

Overview

BMF is a theory of program synthesis in which functions are evolved from abstract
specifications using a small number of higher-order constructs. Functions are expressed
as combinations of functions over data structures, avoiding the explicit use of recursion.
This both simplifies proofs of correctness and allows the possibility for efficient (possibly
parallel) implementation of the combination operators over a range of data types. A
small-scale theory leads to potentially large-scale applications.
The theory does not, however, start from a standpoint of immediate mechanisation. To
do so, in Bird and Meertens' view, would severely limit the many ways in which an
algorithm may be evolved. There is a wonderful quote in [10]:

“...we must abandon our fixation on efficiency if algorithmics [Meertens'
name for programming as a mathematical activity] is to enjoy a fruitful
development. In general, developing an efficient algorithm will require
that we first understand the problem, and for this we need simple
algorithmic expressions; but to simplify an expression we have to shed
our old habits.”

so BMF does not initially worry about the efficiency of functions: instead it makes the
concise expression of algorithms possible whilst holding out the possibility for verifiable
transformations to improve efficiency.
Categorical data types form the basis for generating types and functions which are very
closely related to BMF using category theory. The approach is to derive new types in a
manner which are guaranteed (from the underlying categorical basis) to be amenable to
treatment in BMF-style functions.
The notation used in this paper is substantially that of [2], altered very slightly to take
account of the peculiarities of the word processor used to prepare this note.

2

The Theory of Lists

The essence of BMF is the use of a small set of higher-order functions and operators to
derive programs from specifications (a process which Bird[5] refers to as program
calculation). The advantages of this approach are four-fold:

• the higher-order of functions chosen are (necessarily) very
general, and so form a small set of “syntactic” elements for the
programmer to learn;

• functions are defined as compositions of functions rather than
by explicit use of recursion wherever possible, so full
inductive proofs are seldom needed;

• the semantics of the functions allow for parallel
implementation; and

• functions manipulate data types in bulk rather than a piece at a
time.

The first property means that functions use only a small number of operators which
makes for powerful, if terse, expressions. The second reduces the proof obligation taken
on by a programming in deriving a function, as he may make use of the known semantics
of the kernel functions rather than having to resort to recursion. The third (which is
accomplished by avoiding the usual tail-recursive formulation of the kernel functions)
gives the theory its current importance as a vehicle for specifying functions across a
range of architectures. The final property is also an aid to parallel evaluation, as
functions using BMF avoid the Von Neumann bottleneck.

List operators

BMF is primarily concerned with operations on lists. It uses the notion of a join-list
defined by three functions whose type signatures are:

[] *

[.] *

* * *

 ::

 ::

 ::

1!

!

+ + " !

A

A A

A A A

where 1 is the one-point (unit) type, A* is a list of values of type A and ++ is the list
concatenation operator. (This form may be contrasted with the more familiar form of
cons-list found in Lisp, ML and most other functional languages.) Lists are constrained
to be composed of values of a single type.
The simplest operation on lists is list length. The rules for this operator are as expected:

#[]

[]

#() # #

=

=

+ + = +

0

1x

a b a b

Notice that the structure of computing # is recursive and, furthermore, follows closely the
recursive structure of the type itself. This point will be important later.
The next operation defined for lists is the map operator, denoted ! , which applies a
function to all elements of a list. The definition of map is that

3

f

f x f x

f a b f a f b

* [] []

* [] [()]

* () () ()

=

=

+ + = + +

The map operator may be applied to a single argument to “lift” a function, so the notation
()f ! denotes the function which, when applied to a list, returns a list where f has been
applied to every element. Notice again that ! is defined in terms of the definition of the
list type.
The final operator is the filter operator, denoted <. This filters a list through a boolean-
valued predicate, returning the list of those elemnts which satisfy the predicate.

Reduction operators

The most basic reduction operator is /, which reduces a list using an operator (the same
symbol is used for this purpose in APL):

! = ! ! !

! =

/ [, ,...,] ...

/ [] []

a a a a a a

a a

n n1 2 1 2

(The case of ! / [] is deferred until later). Using this operator, many useful functions
may be defined by composition (in the same way that * may be used “sectionally”):

sum

product

flatten

all p p

some p p

= +

=

= + +

= !

= "

/

* /

/

() (/).(*)

() (/).(*)

Identity elements and fictitious values

As observed earlier,
[] []+ + = = + +x x x

[] is referred to as the identity element of the ++ operator. Many operators have such
identites, including + (identity element 0), * (1) and ! (true).
Identity elements have several uses. The first use is that they allow the value of ! / [] to
be defined for any operator ! which has an identity element e:

! =/ [] e
and indeed this equation may be seen as defining the identity element.
The second use of identity follows from the observation that the reduction operator is
defined using a single form. In most function programs there exist two functions foldl
and foldr defined such that

4

foldl f z z

foldl f z x xs foldl f f z x xs

foldr f z z

foldr f z x xs f x foldr f z xs

(, ,[])

(, , :) (, (,),)

(, ,[])

(, , :) (, (, ,))

=

=

=

=

which reduce a list using an operator and a given basic (identity) element. The need for
the two functions is that the operator may not be associative and the element may not be a
left and right identity.
BMF states that ! / [] is only defined for associative operators, and furthermore is only
defined when the operator has an identity element. This implies that the identity value e
of an operator is both a left and a right identity, and combined with associativity this
means that there is no needs for the two reducing forms.
([2] defines two “directed” recursion operators whose definitions match those of foldl and
foldr. These seem to have been abandoned in later treatments of BMF – notably [5] and
[10]. It must be said, however, that the directed forms can be very useful in many cases.
Note that the undirected form is amenable to parallel implementation whilst the directed
forms aren't.)
It is usually possible to either determine an identity element for an operator, but in some
cases it may be necessary to extend the domain of the operator with a additional or
fictitious identity value . For example, a maximum value operator max, which has no
identity within the domain of finite numbers, may be given one by adjoining the fictitious
value ! to the domain to form a new operator max' such that

max' a b a

b

max a b

(,)

(,)

= = !

= = !

=

 if b

 if a

 otherwise

Conditionals and selections

BMF adopts the McCarthy conditional form, so using a predicate p
(,) () ()

() ()

p f g x f x p x

g x p x

! =

¬

 if

= if

Another operator defined is the selection operator ! f which is defined over integer-
valued functions f such that

a b a f a < f b

b f a f b

f! =

= >

 if

 if

() ()

() ()

A possible problem here is that ! f is under-specified in the case that f a f b() ()= but
a b! . This non-determinism can be very useful, but care may be taken in performing
equational reasoning on functions using ! f .

5

Homomorphisms and Categorical Data Types

Let us now turn the focus more towards categorical data types. As mentioned above, this
approach is very much in the spirit of BMF. As might be expected from category theory,
it seeks to generalise the notions of BMF to more complex types by identifying and
exploiting common structure.
The most important single contribution of the CDT discipline is the idea of computing
using homomorphisms (which are present but under-emphasised in BMF). A
homomorphism is an operation which is defined so as to follow the structure of the type
of its argument. For example, consider a type A with operations ^ and + (injection and
binary join respectively). An operation h is a homomorphism if there exists an operation
! such that

h a b h a h b() () ()+ = !
h may be described as respecting the structure induced by +: moreover if a and b are also
composed of smaller objects then the computation of h(a) and h(b) may also be expressed
in terms of ! . In other words the computation of h is recursive according to the
definition of the type A. This result is true for any homomorphism: its computation will
always follow the recursive structure of the argument data type. The list length and map
operators defined earlier are both homomorphisms
The advantage of expresing a function in terms of homomorphisms is that computation is
naturally parallel and largely architecture-independent. The communicarion structure of
the computation is determined by the structure of the data type. Any “branch” of the
computation may proceed in parallel, either down to values of the fundamental types
from which the type A was built or to some level of granularity at which it is
advantageous to compute a portion of the homomorphism sequentially. This possibility
for different decomposition strategies without impacting on a function's meaning is the
major claim which CDT (and BMF, for that matter) have to architecture independence.

Extensions of BMF: D-structures

BMF arose as a theory of lists, but can be generalised to other types. The idea comes
initially from [10] with the notion of a D-structure, which is closely related to a more
general notion of specifying types using algebra.
A D-structure can be created for any type D by defining two functions: a function ^
mapping an element of D into a D-structure and a binary join operator + combining two
D-structures into another D-structure. Thus each D-structure is a full binary tree where
each interior node has exactly two children and each leaf is an element of D. The D-
structure S

D
 may be represented by the domain equation

S D S S
D D D
= + !

New types may be derived by adding requirements to the form of the initial type D and
the join operator. For example to obtain a list type we define:

S D S S

s s s

D D D
= + + !

+ = = +

{ }0

0 0

6

i.e. augment the base type D with an additional element which is the identity element of
the join operator.
If we now progressively add restrictions that the join operator above is associative,
commutative and idempotent we obtain the types sequence, bag and set respectively.
This illustrates the important correspondence between common data types and algebraic
structures, and allows the full power of algebraic reasoning to be brought to bear on
problems relating to complex data types. The hierarchy of types thus obtained is termed
the Boom hierarchy by Meertens[10].

Bulk algebraic data types from scratch: arrays

Another means of extracting bulk data types is to focus on the algebra which defines a
type, and then use notions of homomorphisms to generate suitable operations. This
approach may be followed without recourse to category theory, although coming to the
same effective result.
To illustrate this approach we shall use Miller's algebraic treatment of arrays. For
simplicity we shall concentrate of 2-d arrays, although Miller's work generalises to
multiple dimensions.
Arrays are defined using a “join-array” algebra:

[.]:: | |

::| | | | | |

::| | | | | |

A A

A A A

A A A

!

" !

" !

#

$

(Compare this with the join-lists of BMF.) These functions respectively create a
singleton array or join two arrays “besides” or “above” each other. Arrays joined besides
each other must have the same height whilst those joined above must have the same
width – the type constructors are partial functions over arrays.
An interesting property of the constructors is that they “abide” with each other:

() () () ()x u y v x y u v! " ! " ! "=
providing all the expressions are well-defined. This implies that an array, once
constructed, has no “memory” of the sequence of constructors used to create it.
One may now define the usual functions such as map:

f a f a

f x y f x f y

f x y f x f y

*| | | ()|

* () (*) (*)

* () (*) (*)

=

=

=

! !

" "

Other functions may be defined in a similar framework, including the transposition
operator tr, a “zip” operator !" which applies the ! operator pointwise to two arrays,
and a generalised cross product operator !" which generates a cross product of two
arrays using ! . From here we may define the usual laws of matrix algebra.

7

Conclusion

This note has briefly presented the Bird-Meertens formalism and its close relative
categorical data types. Both offer a theory of creating “bulk” data types which are then
manipulated en bloc using a small number of higher-order operators. The structure of the
theories, especially the use of homomorphisms, guarantees that efficient parallel
implementations could be built. Such functions are completely imdependent of the
number of processors on the target system.
Both theories can be extended from their basis in lists to cope with other data types.
Sequences, bags and sets have already been encoded (as well as more exotic types such
as molecules), so the theories may be seen to underpin several novel programming
models.
The parallelism obtained from the theories is implicit and data-parallel. Each function
defined as a composition of maps and homomorphisms can assume that the semantics of
each is sequentially consistent. Parallelism comes within each bulk operation, and
although a smart compiler might spot optimisations across operations there is no support
withi the theory for so doing. This is a far more restrictive form of parallelism than is
common in the MIMD world.
With this in mind, however, the ideas of bulk algebraically-specified types provide a
good starting point both for mapping and for performance-improving transformations.

Acknowledgements

Many if the ideas in this note only became clear from attending a BCS Workshop on
Bulk Data Types for Architecture Independence. Dave Skillicorn's notes and
presentations were a great help in straightening-out both categorical data types and
homomorphisms.

8

Annotated Bibliography

[1] C.R. Banger and D.B. Skillicorn, “Flat arrays as a categorical data type,”
Department of Computing and Information Science, Queen's University (1992).

 (An alternative treatment of arrays to that of [11].)

[2] Richard Bird, “An introduction to the theory of lists,” pp.5-42 in Proceedings of
Logic of Programming and Calculi of Discrete Design (1986).

 (Perhaps the most accessible treatment of BMF, although difficult to get hold of.
Substantially the same as [5] but more detailed and with a more sensible
structure.)

[3] Richard Bird and Lambert Meertens, “Two exercises found in a book on
algorithmics,” pp. 451-457 in Program specification and transformation, Elsevier
Science Publishers (1987).

 (Derivation of two functions using BMF. Possibly the most cited example text on
the theory, and very accessible.)

[4] Richard Bird, “Algebraic identities for program calculation,”, Computer Journal
32(2) (1989), pp. 122-126.

 (More a description of a transformation system a la Burstall and Darlington than
true BMF. Includes identities relating to the standard higher-order functions such
as map, foldl and foldr.)

[5] Richard Bird, “A calculus of functions for program derivation”, pp. 287-307 in
Research topics in functional programming, ed. David Turner, Addison-Wesley
(1990).

 (Presents BMF around an example of developing an algorithm for run-length
encoding. Contains all the basic ideas.)

[6] Richard Bird and O. de Moor, “List partitions,” Formal Aspects of Computing
5(1) (1993), pp. 61-78.

 (Uses BMF to derive functions to solve problems expressed in terms of list
partitions, of which there are many.)

[7] Murray Cole, “Parallel programming, list homomorphisms and the maximum
segment sum problem,” CSR-25-93, Department of Computer Science, University
of Edinburgh (May 1993).

 (An example of deriving a function using BMF, introducing the notion of an
“almost” homomorphism.)

9

[8] Murray Cole, “List homomorphic parallel algorithms for bracket matching,”
CSR-29-93, Department of Computer Science, University of Edinburgh (August
1993).

 (Another example deriving a family of functions using BMF.)

[9] Paul Hoogendijk, “(Relational) programming laws in the Boom hierarchy of
types,” pp. 163-190 in Proceedings of the 2nd International Conference on the
Mathematics of Program Construction, Springer-Verlag (June 1992).

 (Totally beyond me at present, I'm afraid!)

[10] Lambert Meertens, “Algorithmics: towards programming as a mathematical
activity”, pp. 289-334 in CWI Symposium on Mathematics and Computer Science
(1993).

 (A manifesto for BMF and algebraic program development in general. Very close
to [5] but more thorough. Includes a description of the Boom hierarchy as found
in [9].)

[11] Richard Miller, “A constructive algebra of multidimensional arrays,” presented at
the BCS Workshop on Bulk Data Types for Architecture Independence, London
(20 May 1994), but not included in the proceedings.

 (An algebraic treatment of arrays in the spirit of BMF, arising from a practical
need to specify array computations without committing to an architecture.)

[12] David Skillicorn, “Models for practical parallel computation,” International
Journal of Parallel Programming 20(2) (1991), pp. 133-158.

 (Survey article including a brief description of BMF, which it compares
favourably against other models.)

[13] David Skillicorn, “Categorical data types,” presented at the 2nd BCS Workshop
on Abstract Machine Models for Highly Parallel Computing, University of Leeds
(April 1992).

 (Introduction to CDT using molecular modelling as an example problem.)

[14] David Skillicorn, “Parallelism and the Bird-Meertens formalism,” Department of
Computing and Information Science, Queen's University (1992).

 (Comparative survey of achitecture-independent models of parallel programming
in which BMF scores highly.)

[15] David Skillicorn, “Questions and answers about categorical data types,” in
Proceedings on the BCS Workshop on Bulk Data Types for Architecture
Independence, London (20 May 1994).

 (A very lucid description of the current state of the art in CDT. Particularly good
on homomorphisms.)

