
Using Temporal Correlation and Time Series to
Detect Missing Activity-Driven Sensor Events

Juan Ye
School of Computer Science

University of St Andrews
St Andrews, Fife, UK

Email: juan.ye@st-andrews.ac.uk

Graeme Stevenson
School of Computer Science

University of St Andrews
St Andrews, Fife, UK

Email: graeme.stevenson@st-andrews.ac.uk

Simon Dobson
School of Computer Science

University of St Andrews
St Andrews, Fife, UK

Email: simon.dobson@st-andrews.ac.uk

Abstract—Increasing numbers of sensors are being deployed

in environments to monitor our behaviours and environmental

phenomena. Missing data is an inevitable problem in almost every

sensorised environment, due to physical failure, poor connection,

or dislodgement. This results in an incomplete view of the real-

world, leading to poor prediction and consequently, degraded

quality of system services. This paper explores generic solutions

towards detecting missing data on event-driven sensors using both

temporal correlation and time series analysis. The solutions are

evaluated on a real-world dataset and achieve promising results

with accuracy around 80%.

I. INTRODUCTION

Missing sensor data is a common, nearly inevitable issue
in many sensorised environments which can be caused by
temporary or permanent communication disconnection, battery
failure, or the physical degradation of sensors [9]. The effect of
missing sensor data is an incomplete view on the real world,
which can greatly impact a system’s capability to infer the
current situation or activity being carried out by a person,
leading to degradation of the quality of services provided by
the system as a result.

Missing data is a well understood problem in wireless
sensor networks, and many techniques have been proposed to
address numeric-valued, frequent-sampling sensors, including
Kalman filters [11], time series analysis [10], and Gaus-
sian Processes [8]. However, the missing data problem on
characteristic-valued, event-driven sensors has not been well
studied, because such data is less regular and predictable. Sen-
sors that fit this category include RFID, state-change sensors,
and infrared positioning sensors, all of which have been widely
used in environments to detect human activities.

A naive approach to detect missing data from these sensors
is to set a reasonably long period (say one day) over which if
the sensor has not reported any reading, then it is considered
to have fail. This approach only targets detection of the
complete breakdown of sensors, and, as such, is unable to
detect intermittent missing data from the sensors. Furthermore,
the firing of sensors is closely related to activities and some
activities might not be performed over a long period (say one
week). For example, if the user does not cook spaghetti for
a long time, then the sensor on the spaghetti box will stay
inactive during that time, or if the user goes out for a couple
of days, then no activities will be performed and hence no
sensor will fire. Clearly, this does not imply their failure.

From above, we can see that the challenge of detecting
missing data on such sensors is a subtle one. In this paper, we
propose a generic technique to detect missing data in event-
driven sensors using temporal correlation and time series anal-
ysis. The temporal correlation captures how different sensors
are correlated in a streaming sequence of sensor events. Given
that two sensors are highly correlated, if one of the sensors
fires, then we would expect the other also to fire. The time
series characterises the firing intervals of individual sensors,
reflecting their usage patterns, which suggests a pattern of
activities, and thus can be used to predict the next firing time.
According to the recorded firing history of a sensor, if we
predict the sensor should fire at the current time and it does
not, then we derive the missing data from this sensor.

The proposed technique is evaluated on the dataset from
the University of Amsterdam [5] (known as ‘House A’).
The dataset was collected from the real-world single-resident
house instrumented with wireless sensor network. The sensor
network in the first house is composed of 14 state-change
sensors on the household objects like doors, cupboards, and
toilet flush. All these sensors output binary readings (0 or
1), indicating whether or not a sensor fires. This dataset is
quite clean, that is, involving less noise and leading to high
recognition accuracies over various techniques. Thus it is a
good candidate for proof of concept; that is, it allows us to
focus on the missing data while not worrying about the other
noise [12]. We will form our analysis and discussion on this
dataset throughout the paper.

The rest of the paper is organised as follows. Section II
reviews the existing work in dealing with missing sensor
data. Section III explores the solution space in both tempo-
ral correlation and time series of sensor events from both
assumptions and theoretical background. Section IV sets up the
experiments to evaluate the different strategies of combining
the two solutions and compares and discusses the implications
of each strategy. Section V concludes the paper and points out
the direction of the future work.

II. RELATED WORK

The missing data problem is well recognised in the field
of wireless sensor networks. From an early stage, Madden
et al. [7] propose to estimate missing values by taking the
average of all the values reported by nearby sensors during
the same time window. Jiang et al. [3] improve this approach



by making use of a sliding window where the values reported
in the latest w time windows are considered and the weighted
average is performed; that is, the more recent value is assigned
with a higher weight. Ciampi et al. [1] go further to take
spatial correlation into account and propose a trend cluster
discovery process to determine prominent data trends and
estimate the missing data from the recorded geographically
data window. Pan et al. [9] design the K-nearest neighbour
estimation algorithm to estimate the missing data based on
the spatial correlation of sensor data. In our work, we only
consider the temporal correlation of sensors. The reasons are:
(1) smart home environments are often much smaller than the
open environments where the above techniques apply and thus
it becomes feasible to consider all the sensors together without
the need of separating them into regions; and (2) the spatial
correlation is more useful to detect added noise rather than
missing data. That is, if the sensors in one region report, then
we cannot guarantee all the other sensors in the same region
should fire but we can specify that a sensor in another disjoint
region should not report.

Approaches from the field of database management have
been applied to handle missing data in sensor streams, like
sampling, histograms, and wavelets. For example, Vijayakumar
et al. [11] model the input sensor stream as a time series and
use Kalman filters to predict the missing event. The Kalman
filter is an optimal recursive data processing and mathematical
estimation algorithm that is often used for data assimilation and
prediction. In this work, they only consider the univariate time
series that consists of single observations recorded sequentially
over equal time increments. Due to the different nature of
event-driven sensors, we consider the non-linear time series,
which will be explained in details in Section III.

Osborne et al. [8] use the Gaussian process to build a prob-
abilistic model of the environment variables being measured
by the sensors, which is supposed to be tolerant to missing
data. The model then can be used to model the accuracy of
the sensor readings, and predict the future reading and as well
as the trend of change of the environment variables.

All the above approaches target scalar observations that
sample frequently and regularly. These observations often mea-
sure a single environmental variable or multiple environment
variables that are highly correlated, for example, temperature
and humidity. They are not applicable to event-driven sensors
due to the numeric nature of the observations and their
sampling frequencies.

Gruenwald et al. [2] apply the association rule mining
algorithm to detect missing data. One example of the rule
is: if a sensor A reports a value v, then it is very likely
that a sensor B will report a value u. Based on the original
association mining algorithm, the approach associates more
recent data with a higher reliability. The principle of this work
is similar to ours. However, the way to generate transactions as
the input for the algorithm still requires the regularly sampled
sensor stream. In Section III, we will discuss different ways
to generate temporal correlations of sensors.

III. SOLUTION FRAMEWORK

In this section, we explore the solution space in terms of
temporal correlation and time series. We will look at different

types of correlations and what series to construct, which one
is more suitable for detecting missing data, and how we use
them to detect.

A. Temporal Correlation of Sensors

Generally we consider two types of temporal relationships
between sensors: sequential – where one sensor reports before
another sensor, and correlation – where two sensors report
within a close time interval (say, one minute) but in no
particular order. For each type, we look at continuous and
discontinuous relationships. In the following we present a
detailed definition of these temporal relationships and also give
examples of their occurrence from within our chosen dataset.

Let a sensor event be represented as (t, s), indicating a
sensor s fires at the timestamp t, and the entire sensor stream
be represented as L = h(t1, s1), ..., (tn, sn)i, where n is the
total number of events. Continuous sequential relationship
(CS) captures where one sensor fires immediately after the
other sensor in the entire sensor stream. The CS relationship
between any two sensors s

i

and s

j

is defined as [6]:

CS(i, j) =

Pn�1

k=1
�((tk, sk), (tk+1, sk+1))

n

�((tk, sk), (tk+1, sk+1) =
n

1 if sk = si ^ sk+1 = sj
0 otherwise.

Fig. 1. Continuous correlations between sensors

The continuous correlation relationship (CC) captures
when two sensors s

i

and s

j

indicate fire consecutively, ig-
noring order: CC(i, j) = CS(i, j) + CS(j, i). Often the CS
relationship is rather sparse because human users rarely follow
the exactly same procedure when performing an activity. Thus,
we only present the CC relationships in the dataset in Figure 1.
The figure shows that the highest continuous correlation exists
between the bathroom door (i.e., Sensor 3) and the toilet flush
(i.e., Sensor 9), which takes up 12% and can be observed in
the majority of toileting activities.

As continuous sequential relationships are few, we also
examine discontinuous sequential relationship (DS) where one
sensors fires after the other sensor within a certain interval
in the entire sensor stream. The discontinuous sequential



relationship between any two sensors s

i

and s

j

within the
interval d is defined as:

DS(i, j, d) =

Pn�1

k=1
�((tk, sk), (tk+l, sk+l))

n
(l � 1 ^ k + l  n)

�((tk, sk), (tk+l, sk+l) =

(
1 if sk = si ^ sk+l = sj

^ |tk+l � tk| <= d,
0 otherwise.

Fig. 2. Discontinuous correlations between sensors

Similarly, the discontinuous correlation relationship (DC)
is defined as DC(i, j, d) = DS(i, j, d)+DS(i, j, d), indicating
that two sensors fire together within a certain time interval.
Figure 2 visualises the DC relationships within the 1-minute
time interval on the dataset. Figure 2 (a) shows that the highest
discontinuous correlations exist between the bed, bedroom
door, and bathroom door, which are often observed when the
user goes to toilet during the night sleep.

From the above analysis and demonstration, we can see that
the temporal correlation can suggest the pattern of underlying
activities. Here we will use a less strict correlation – the DC
relationship – to detect the missing sensor data. The process
is as follows:
1. Use the DC formula to construct the correlation matrix using
a fixed interval (say 1 minute).
2. Choose a threshold ✓, over which two sensors are considered
highly correlated. If one of these sensors fires and the other
does not fire within the interval, then we conclude that the
other sensor has failed to report.

Instead of pre-defining a threshold, we use a data-driven
approach where we order all the non-zero values in the
correlation matrix in an ascending order and choose a value
that is greater than a percentage (e.g., 60%) of all the values.
This is more flexible than the pre-defined threshold, which
could vary between datasets; that is, a dataset that contains
more sensors will have a sparse matrix, and the threshold will
be much smaller.

B. Non-linear Time Series of Sensors

As we have indicated, event-driven sensors do not report
readings at a regular interval; however, the firing history of a
sensor might suggest the pattern of how a user interacts with

an object or a place associated with this sensor. To characterise
the firing history, we construct the time series that is composed
of the temporal distance between events of the same sensor.
For example, the list [163, 33044, 6, 28045, 7222] represents
the temporal distance (in seconds) between events that are
reported from the bedroom door; that is, the distance between
the first and second report of this sensor is 163 seconds, and
that between the second and third is 33044 seconds (i.e., 9
hours), and so on so forth. This list could imply the sleep
pattern of the subject; i.e., the sleeping cycle and the night
toilet trip. Figure 3 shows the time series of the temporal
distances of all the sensors in the dataset. To note that the x-
axis indicates the serial number of reports, but not the regular
interval; e.g., ‘1’ means the first time of the sensor reporting
an event. Also the number of reports varies from sensors to
sensors; e.g., the sensors 2 and 3 (mounted on the toilet and
bathroom door) fire far more frequently than the sensor 12
(mounted on the washing machine).

As the pattern of this temporal distance series depends on
the underlying activities, rather than linear being with time, we
adopt the nonlinear time series analysis technique to predict
the next reporting time for each sensor. By definition, the time
series is a sequence of scalar measurements of some quantity
which depends on the current state of the system [4]. Here we
only explain how to use the nonlinear time series to predict the
next reporting time of a certain sensor and direct the interested
readers on the theory to the reference [4]. The process goes
as follows:
1. Construct a time series T = (o1, o2, . . . , on), consisting of
time distances between two consecutive readings of a sensor.
2. At the current time i, given the latest recorded trace of this
sensor c = (o0

i�m

, . . . , o

0
i�2, o

0
i�1), which is m-dimensioned

and consecutive, search the time series T and find all the
segments S that are similar to c; that is, 8s 2 S, s =
(o

j�m

, . . . , o

j�2, oj�1, oj), 8k 2 [1,m], |o
j�k

� o

0
i�k

|  ⌧ ,
where ⌧ is the time tolerance, indicating if the time distance
between the paired elements is no greater than ⌧ , then we
consider the paired elements are close. If all the paired
elements between the given trace c and a segment s are close,
then we consider s is similar to c, and o

j

in s suggests one
possible next predicting time distance.
3. The predicted time distance from the last report time is esti-

mated by averaging all the next values; that is, td =

P
s2S

oj

|S| .
The next reporting time for this sensor is then the last reported
timestamp plus td. If the next reporting time is close to
the current timestamp, then we expect the sensor to report;
otherwise, we derive that the data is missing from this sensor.

IV. EXPERIMENT AND EVALUATION

In this section, we evaluate the effectiveness of the pro-
posed algorithm on the dataset [5]. The effectiveness is mea-
sured in precision – the percentage of the times of detected
missing events are actually missing from the data, and recall –
the percentage of all missing events that are correctly detected.

A. Experiment Setup

To conduct the experiment, we take the whole dataset and
split it into two parts: training and testing sets. The training set
is used to compute the correlation matrix between sensors and



0 5 10 15 20 25 30 35

0e
+0
0

3e
+0
5

6e
+0
5

Sensor 1

Times

Ti
m

e 
D

is
ta

nc
e

0 50 100 150 200 250

0
50
00
0

15
00
00

Sensor 2

Times

Ti
m

e 
D

is
ta

nc
e

0 50 100 150 200 250

0
10
00
00

25
00
00

Sensor 3

Times

Ti
m

e 
D

is
ta

nc
e

0 10 20 30 40 50

0
10
00
00

25
00
00

Sensor 4

Times

Ti
m

e 
D

is
ta

nc
e

0 20 40 60 80 120

0
10
00
00

20
00
00

Sensor 5

Times

Ti
m

e 
D

is
ta

nc
e

0 10 20 30 40 50 60

0
50
00
0

15
00
00

Sensor 6

Times

Ti
m

e 
D

is
ta

nc
e

0 20 40 60 80 100

0
50
00
0

15
00
00

Sensor 7

Times

Ti
m

e 
D

is
ta

nc
e

0 5 10 15 20 25 30

0e
+0
0

2e
+0
5

4e
+0
5

Sensor 8

Times

Ti
m

e 
D

is
ta

nc
e

0 20 40 60 80 120

0
50
00
0

15
00
00

Sensor 9

Times

Ti
m

e 
D

is
ta

nc
e

0 10 20 30 40

0
10
00
00

25
00
00

Sensor 10

Times

Ti
m

e 
D

is
ta

nc
e

0 10 20 30 40 50

0e
+0
0

3e
+0
5

6e
+0
5

Sensor 11

Times

Ti
m

e 
D

is
ta

nc
e

5 10 15

0e
+0
0

4e
+0
5

8e
+0
5

Sensor 12

Times

Ti
m

e 
D

is
ta

nc
e

0 20 40 60 80

0
10
00
00

25
00
00

Sensor 13

Times

Ti
m

e 
D

is
ta

nc
e

0 50 100 150

0
10
00
00

20
00
00

Sensor 14

Times

Ti
m

e 
D

is
ta

nc
e

Fig. 3. Time series of temporal distances of all the sensors in TVK A dataset

construct the time series of firing patterns of each individual
sensor. Both require that the data are continuous, so when
generating the training and testing set we cannot randomly
shuffle or sample from the dataset. Given a split rate (say 20%),
we take the first 20% of the dataset as the training set, and the
rest 80% as the testing set. We have set the split rates from
10% to 90% to see how the amount of training data affects
the effectiveness of detection.

For the testing set, given an error percentage p , we
randomly choose the number of events (that is, p ⇤N , where
N is the total number of events in the testing set) to remove.
The removal percentage is also chosen from 10% to 90%. For
each percentage, we run the experiment 100 times to avoid
bias on certain sensors or events. The presented precision and
recall is the averaged result over the 100 runs.

We conduct the following three types of experiments:
1. TC – use the temporal correlation alone and evaluate the
impact of the correlation threshold ✓ on the performance;
2. TS – use the time series alone and evaluate the impact of
the chosen dimension m and time tolerance margin ⌧ on the
performance;
3. TC + TS – use both the temporal correlation and the time
series; that is, we join the results from both, and evaluate the
impact of the amount of training data on the performance.

B. Results

1) Temporal Correlation Only: In the temporal correlation
strategy, we need to choose a threshold over which two
sensors are considered correlated; that is, if one sensor has
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Fig. 4. Impact of thresholds on temporal correlation



reported a reading, another sensor is expected to report. The
threshold is chosen by the cut percentage; for example, given
the percentage 60%, we choose the value that is greater than
60% of the all values. Figure 4 presents the precision and recall
of missing event detection with different threshold cuts, given
that we split the whole data into half: the first half for training
and the second half for testing. The results are expected: the
higher the cut, the more selective the algorithm is at detecting
missing events, thus leading to a higher precision and the lower
the recall. However, the variety of cuts does not seem to affect
the performance significantly. One of the reasons might be that
the dataset only contains a very small number of sensors, and
the correlation between these sensors is very explicit; that is,
the cooking relevant activity tends to fire all the sensors in the
kitchen, and there is less variety in the firing patterns.

C. Time Series Only

In the time series strategy we need to decide two param-
eters: embedding dimension m and time tolerance margin ⌧ .
For the sake of the space, we do not list the results on all the
error rates, but only on selected ones, such as 10%, 50%, and
90%. Figure 5 presents the precision and recall over different
time tolerance margins on different m values, given that we
split the whole data into half and the first half for training and
the second half for testing.

We see that the size of m has little effect on precision,
but the smaller value of m consistently leads to higher recall.
The reason for higher recall is that the smaller m allows us
to capture more candidate sequences. Similarly, as the time
tolerance value increases, recall improves. However, the overall
performance does changes little, and is much lower than the
performance of the temporal correlation. The reason might be
that the dataset does not cover a long enough period (i.e.,
28 days), and the time series pattern in the test data (i.e., the
second half) is slightly different from the training data (i.e., the
first half) in that the user often leaves home for a longer time
(a couple of days). If a similar series pattern is not reflected
in both the training and test data, then the prediction of the
next firing time of the sensor is unreliable. Also, because we
need the continuous series data, we cannot shuffle the data
to generate better balanced training and test data. One of our
future works is to evaluate our proposed approach on a dataset
that covers a longer period.

D. Temporal Correlation and Time Series

Lastly, we want to compare the overall performance over
these three different strategies. From the above two experi-
ments, we can choose the parameters that best balance the
precision and recall for the former two strategies; that is, here
we choose the threshold cut for TC; and choose m as 2 and
✓ as 60 minutes. Then we compare the performance of the
three of them in Figure 6. The TS strategy achieves the best
precision and the worst recall, because it always infers a very
small set of sensors. The TS + TC strategy performs best over
the other two, but the improvement over TC is marginal. We
also evaluate the impact of the amount of training data on the
performance. We list the precision and recall for the split rates
10%, 50%, and 90%. It is clear that the more training data
used, the better the performance in all these strategies.

V. CONCLUSION AND FUTURE WORK

This paper presents our initial idea for detecting missing
data from event-driven sensors. We explore two temporal
solutions: temporal correlation and time series, both of which
aim to characterise patterns of sensor usage in different human
activities. We evaluate these solutions on a rather clean real-
world dataset and obtain promising initial results. The temporal
correlation works well on this dataset that contains a small
number of sensors and the correlation between sensors is
explicit. The time series does not work so well because the
dataset is collected over a short period and the temporal pattern
in the latter part of the dataset does not match well with the
former. Our future plan is to evaluate the solutions on larger
datasets over longer period and to also design strategies of
combining these two solutions using, for example, evidential
theory. Another extension is to include activity knowledge;
that is, if we can infer the current activity or predict the future
activity, we might derive what sensor events are expected.
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Fig. 5. Impact of embedding dimensions and time thresholds on detection precision and recall
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Fig. 6. Precision and recall of detecting missing sensor events


