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Introduction

What this talk is about

• This is the story of a paper
• . . . and what it tells us about the interface between network

science, data science, and scientific applications

My aim

• Using real-world data to drive abstract study
• The limitations we hit as a result
• How we might address these limitations
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Complex networks
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Networks and processes

Living between regularity and randomness 1

• Heterogeneous degree distribution, fragile notion of
“neighbourhood”

• Evaluate processes at each node, affecting behaviour of
neighbours, often with a stochastic component

• Canonical example is the SIR model of disease
propagation

1
A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.

URL doi://10.1126/science.286.5439.509

doi://10.1126/science.286.5439.509
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Multiplexes

A multiplex (or more correctly a
multilayer network) is a collection
of two (or more) networks 2

• Nodes in the different networks
are coupled

• Study properties of the individual
networks or of the ensemble

• One network may be “less wide”
than the other, and so offer
“shortcuts” for processes

2
M. Kivelä, A. Arenas, M. Barthélemy, J. Gleeson, Y. Moreno, and M. Porter. Multilayer networks. Journal of

Complex Networks, 2(3):203–271, 2014. URL doi://10.1093/comnet/cnu016

doi://10.1093/comnet/cnu016
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Studying the real world
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The problem: Urban transportation

Coupled transport networks 3

• Street and tube/subway form a multilayer network
• How does the addition of the tube affect travel times?
• How does this change as the tube speeds up?

3
M. Batty. The new science of cities. MIT Press, 2013. ISBN 978-0-292-01952-1
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Framing the problem

Our study 4

• Simplify to treat as a purely topological problem
• This study doesn’t include explicit consideration of flows

(although later work does)
• Study the betweenness centrality of nodes as the relative

speeds of the two networks changes
• How does outreach change?

4
E. Strano, S. Shai, S. Dobson, and M. Barthélemy. Multiplex networks in metropolitan areas: generic features

and local effects. Journal of the Royal Society Interface, 12(111), October 2015. URL
doi://10.1098/rsif.2015.0651

doi://10.1098/rsif.2015.0651
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Setting up the study

Acquired street and tube data from Open Street Map

• London: Ns = |Vs| = 325K street nodes, Nt = |Vt | = 263
tube nodes

• New York: Ns = 68K , Nt = 454

Data hygiene

• Needed substantial manual cleaning
• Streets don’t meet, tubes don’t come up where they

should, . . .
• Some slight simplifications, i.e., tubes always emerge at

street junctions
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Methodology

Travel costs

• τs(i , j) the travel cost (in time units) between i , j ∈ Vs using
only street edges

• τm(i , j) the travel cost using the multiplex (street and tube)
• 0 ≤ β ≤ 1 the ratio of speed between street and tube (tube

is faster for smaller β)

Shortest paths

• σi,j the number of shortest paths between i , j ∈ Vs using
only the street network

• Similarly define σm
i,j the number of shortest paths using the

mulitiplex
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How much does the tube affect travel costs?

Metric

• Ratio of travel costs from a
node i ∈ Vs to all other nodes
using the multiplex vs using
the streets only

qms(i) =
1

Ns − 1

∑
j∈Vs

τm(i , j)
τs(i , j)

• Halving β reduces 〈qms〉 by
about 20%

(ii) the local outreach and the urban horizon, and (iii) the spatial
distribution of betweenness centrality (BC). It is important to
stress that studies on urban transportation networks have
important implications for urban policies and private invest-
ment, and, in general, play an important role in the urban
planning chain. In fact, inter-modality transportation efficiency
and simulations have been extensively studied in the
transportation engineering literature [39], where the typical
supply–demand approach prevails but where the analysis of
topological properties of networks is almost wholly neglected
and where the different transportation modes are often treated
separately. One goal in this study is to shift the focus onto this
topological coupling aspect of transportation network design:
we show this to be extremely relevant, and suggest that the
multilayer network view of these systems should be integrated
into elaborated models of urban planning.

2. Data and network construction
Using data from Open Street Map (http://www.openstreetmap.
org/ (accessed on 8 December 2014)), we construct both the
street and the subway networks for London (UK) and
New York City (USA). We downloaded data on street and
underground networks in geo-referenced vectorial format
from Open Street Map, which contains detailed streets and
rail tracks networks, including train depots and double
tracks. (The rationale behind the geographical extent of these
networks is to include the full underground systems and sur-
rounding street networks.) In addition, a series of automatic
and manual topological cleaning operations were needed in
order to extract consistent and usable graphs. The size and
geography of the two cities are clearly different as we can
observe it in figure 1a,b.

We thus obtained the weighted graph Gs ¼ ðVs, EsÞ of the
connected street network in its ‘primal’ representation, with
nodes being street junctions and edges representing the street
segments connecting them, and the weights given by the
street length. Similarly, we obtained the connected under-
ground network Gu ¼ ðVu, VuÞ with nodes representing

underground stations and links connecting successive stations
on the same line, and weighted by the length of the line seg-
ment. From a theoretical point of view, the interdependent or
multilayer [31] network, Gmulti is defined as the union of
these two networks. Here, we have subway stations and road
intersections that we consider to be different nodes. Under-
ground stations are accessible from more than one access on
the street, but for the sake of simplicity we construct the multi-
layer network by connecting each underground station to its
closest street junction only (a simplification that would not
change the structure of quickest paths). In order to create the
adjacency lists, we used a combination of Python scripts, Arch-
Map geo-tools (ArchGIS 10.2) and ad hoc manual corrections.
Tools have been set to remove link redundancies, to correct
the topology of the networks and to create the proximity
matrix between street nodes (street junctions) and underground
nodes (stations). The scripts have been corroborated with a full
check of the data and corrections of the topology in editing ses-
sions in the ArchMap environment (the computation of the
various statistical measures have been done in the Python
environment using NetworkX library and the maps have
been produced using ArchGIS v. 10.2).

3. The generic nature of quickest paths
New York is composed of two large and almost disconnected
components with the underground systems covering a simi-
lar spatial extent and carving-up the different boroughs.
London instead presents—at a large scale—a typical radio-
centric urban structure with the underground systems
connecting satellite districts and peripheries to the urban
core. Differences both in size and geography between these
cities are also reflected by basic network descriptors shown
in table 1. For both cities, the (spatial) diameter of the multi-
plex is essentially dominated by the street network. We also
observe that the topological diameter of the multiplex is
lower than the street layer, thanks to the subway structure
allowing for topologically shorter paths. The efficiency of
the subway is however also due to its speed which is in
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Figure 1. (a,b) The spatial extent of the two metropolitan areas considered here. Note that the Greater London area (a) is not covered by the underground system,
in contrast to New York (b) where most areas are connected by the subway. (c) Distribution of normalized quickest path times (computed in the multilayer system)
zbðtmÞ ¼ tm $ ktml=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðtmÞ

p
: (d ) The quantity kqmsl averaged over all nodes as a function of b (the error bars indicate here the dispersion around the

average). The average ratio of travel times with and without the subway layer is typically 0.5 and does not vary much with b. (The figures a,b were created using
vectorial map extracted in ArchMap environment and assembled with Adobe Illustrator.) (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150651
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Interdependence

where deði, jÞ is the Euclidean distance between i and j and
N(d ) is the number of pairs of nodes at Euclidean distance
d. In figure 2a, we show the average interdependence
among all street nodes as a function of b and the resulting
interdependence profile figure 2b.

We see from these figures that, in both cities, the existence
of the underground has a very large impact. For example, for
b ¼ 0.8 we obtain l around 0.7, meaning that even when the
underground is only 1.25 times faster than the street network,
already about 70% of the quickest paths are going through
the underground. A slight decrease in b for b close to one
thus has a large impact on the structure of the quickest
paths, while for smaller values of b, improving the subway
speed does not bring a significant improvement of the quick-
est paths. In both cities, there is a sharp increase in l for small
Euclidian distances, meaning that already for relatively short
trips, it is worth ‘hopping on’ to the underground. (Note that
we neglect here waiting, walking and connecting times which
can be significant [38].) The slope of the interdependence pro-
file at small deucl ≃ 0 is increasing as b is decreasing,
suggesting that a slight increase in the underground speed
could make the networks highly interdependent even at
very small scales.

Both cities therefore display a remarkably similar behav-
iour over all these interdependency-related quantities (in
particular, see figure 2b), suggesting here again a possible
common behaviour for multiplex transportation networks
in cities. While further studies are needed to substantiate a
claim of ‘universality’, our results point to the possible exist-
ence of some kind of statistical law of large numbers that

applies to quickest paths in multiplex urban transportation
networks.

We note that it is not trivial that the central limit theorem
applies here, and it does not mean that the network topology
is irrelevant. The fact that we can sum a large number of
quantities, which are essentially uncorrelated (a necessary
condition for the central limit theorem to apply) comes
from the specific structure of these transportation systems
(spatial constraints for example certainly play an important
role). In addition, more complex quantities (such as the inter-
dependence for example) also display a high level of
similarity for the two cities, a fact that cannot at this stage
be simply related to a central limit theorem. These different
results point to the potentially useful fact that actually
few parameters seem to govern the behaviour of these quan-
tities, which could lead to many useful simplifications in
more elaborated models that contain a large number
of parameters.

4. Local outreach and the urban spatial horizon
The presence of a transportation mode such as a subway
affects the overall performance of a city in terms of efficiency
of transport and the accessibility of certain locations, but also
has an important impact on how pairs of locations are
connected. In order to measure this effect, we define the
spatial outreach of a street node i [ Vstreet as the average Eucli-
dean distance from i to all other street nodes that are
reachable within a given travel cost, t:

LtðiÞ ¼
1

NðtÞ
X

jjtmði,jÞ,t

deði, jÞ, ð4:1Þ

where deði, jÞ is the Euclidean distance between node i and j,
and NðtÞ is the number of nodes reachable on the multilayer
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Figure 2. (a) Average interdependence, kll as a function of b. (b) Normal-
ized interdependence profile computed for different values of b. Both cities
exhibit a similar behaviour despite very different geographical structures.
Inset: zoom on the small distance range. (Online version in colour.)
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Figure 3. Average local outreach kLl normalized by the square root of area,
for (a) London and (b) New York. (Online version in colour.)
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Ratios of shortest paths

• Already known in the
planning literature as
inter-modal connectivity

• λ(i , j) =
σm

i,j
σi,j

• Large tube influence
• For β = 0.8, 〈λ〉 = 0.7:

70% of journeys use
the tube
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Outreach

• Spatial outreach of a node i is the average Euclidean
distance to all nodes reachable with a travel cost τ

• Lτ (i) = 1
N(τ)

∑
j∈{k |τm(i,k)≤τ} d(i , j)

• How “commutable” is a city
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So far so good. . .

Analysis of real cities

• Mathematically and computationally tractable
• Use publicly-available data (with a little work)

Implications for urban planning

• Impact of planning decisions
• Provides a quantitative underpinning for ideas that urban

planners already use informally
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Reality intrudes
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But there’s a problem with reality. . .

• There’s only one of it

(Carl Sagan’s Pale Blue Dot, taken on Valentine’s Day 1976.)
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Universality

Want to know that ideas work everywhere

• Our paper was originally titled “Multiplex networks in
metropolitan areas: universal features and local effects”

• . . . and the referees asked, “how do you know?”
• . . . which of course is a fair question: how could you know?
• . . . so we changed the title of the paper ,
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Repetition and reality

The usual network science approach

• Characterise a network topology (e.g., 〈k〉)
• Generate thousands of random instances
• Compute summary statistics over processes on each

different instance

This doesn’t work for the topologies of real cities (and
other networks)

• A limited number of instances
• Topologies that really are complex
• Multiplexes with complex coupling constraints and

probabilities
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Faking it
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A challenge

Can we synthesise realistic “really complex” networks?

• Complex dependencies between node degrees, spatial
locations, and couplings between networks

• It’s know that degree couplings have a major impact on
epeidemic processes, for example 5

5
S. Shai and S. Dobson. Effect of resource constraints on intersimilar coupled networks. Physical Review E, 86

(6), December 2012. URL doi://10.1103/PhysRevE.86.066120

doi://10.1103/PhysRevE.86.066120
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A possible approach

Study the topologies independently

• Of each component network in the multiplex
• Degree distribution, degree correlations between adjacent

nodes, . . .

Two ways to form the multiplex

1. Identify and couple corresponding nodes
2. Identify a growth process – the dynamics of the multiplex
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Benefits

Aim for universaility

• Even in problems that are sensitive to the detailed
mathematical structure

• Project forward and back
• Easier “what if?” analysis

Canonical example is the Black Death

• Why was it so deadly?
• Interactions between topology, survival times, disease

dynamics
• Which factors were the most critical?



Complex networks Studying the real world Reality intrudes Faking it Conclusion

Conclusion

• Realistic to study urban-scale networks using network
science

• Data publicly-available, but needs care and cleaning
• Multiplex networks of interest are too complex to

synthesise currently
• . . . but it would be nice to learn how to, and would

enormously increase the phenomena we could study
• Including the effects of past and projected changes to

actual locations
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Thank you

Topology! The stratosphere of human thought! In the
twenty-fourth century it might possibly be of use to
someone. . .

Alexander Solzhenitsyn, The First Circle
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