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DASIP

● What do you talk about here?
● SoC, manycore architectures, FPGAs, hyperspectral

imaging, ...
● The Square Kilometre Array Computer System
● Resource Awareness on Heterogeneous MPSoCs for

Image Processing

● None of which I can sensibly talk about....



Introduction

● Sensors and imaging often form a (small) part
of larger systems
● Conficting measurement
● Exposure to noise, weathering, interference, …

● How do we make decisions and maximise the
value of data with these limitations?

● My goal
● Talk about the transition from sensor to systems



Where??

● 3rd oldest university in the
English-speaking world
● Been teaching computer science

since 1969
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Science of Sensor Systems Software

● A fve-year, £5.2M EPSRC Programme Grant
● “Vertical slice” from formal models, through

verifcation and analysis, to deployment
● Four universities, 10 commercial and agency

partners
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The sensor challenge

● Treating sensor data as input like any other
● Model with techniques like process algebras,

DTMCs, …

● But sensor data just isn't like that
● Environmental challenges and exposed equipment
● Leads to a collection of unusual failure modes
● Responding to the

input means also
responding to the
junk data that's
interleaved with it

The authors of one
famous early
experiment (Great
Duck Island, 2002)
deemed 30—60%
of their sensor
data to be junk

Image from lighthousefriends.,com
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When theory meets practice

In theory, there is no difference between
theory and practice. But, in practice, there is.

Jan L.A. van de Snepscheut
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Some of the interesting challenges

● Noise
● Diffcult/impossible to engineer away
● Deal with confdence of the most probable signal

● Not knowing what to look for
● “Unknown” events or anomalies
● Are there other things going on?

● Long-term storage
● How do we keep sensor data usable?
● Applying warehousing techniques to sensor data

There's nothing in any way canonical about these, they're just problems
we happen to have been interested in over the last five years or so
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Noise

● An inherent uncertainty that can't be
engineered out of a system
● Physical degradation
● Occlusion and fouling
● Positional uncertainty
● Interference, accidental or deliberate
● ...and also describes lots of other data sources

● Physical issues that give rise to faults in the data
● Change over time, need autonomic management
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Fault types

● Noise in the environment and the electronics
● Point (or wider) spikes
● De-calibration (drift) in space and time

Natural variation plus noise Not likely in your data?

Can we tell here that this is an extended
fault? Or is it a change of phenomenon?
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Approach

● Re-conceptualise sensors as evidence-providers
rather than data- or value-providers
● Learn the distributions being observed

● Sensor readings confrm or refute the hypothesis
● Add evidence rather than providing data
● Goal of the network is to adapt the model to refect

the conditions being observed on an on-going basis
● Result is a distribution learned from the data

● Correlations let nodes
verify each other
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Multi-sensor systems

● Neighbouring nodes observing “the same”
phenomenon

● Look at the differences between them to learn the
ways in which the true signal is being convolved
with noise

Also applies to correlated
sensors on different modalities
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Bayesian Sequential Learning

● Learning = sequential model update

● Advantages
● Effcient, constant space
● Robust: test data against predicted distribution 

The error, given the
current observation

The model given
what's been
observed up to
(and including) now The observation,

given what's gone
(strictly) before

Fang and Dobson. Data collection with in-network fault
detection based on spatial correlation. Proc. ICCAC. 2014.
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Why Bayesian learning?

● Formal statistical learning 
● Provides sound inference 

● Effcient and lightweight
● Constant space complexity
● Constant complexity update

● Robust
● Test incoming data against the predicted

distribution
● Only then admit data for future learning

No need to store any learning data
over a protracted period
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Example – 1

Original data

Cleaned data

Data from the Lausanne Urban
Canopy Experiment (2006)

May be a true
observation, but
not verified by
neighbours. Can't
tell without
ground truth –
which of course
we don't have
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Example – 2

Data from Grangemouth facility (2016)

 

Use confidence intervals
(rather than raw or
smoothed signal) to
trigger alarms

Re-generate “most
probable” trajectory
for missing signals, as
correlated with data
we did get
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Classifying activities

● Often we want sensor input to be classifed
● Assigned a human-meaningful interpretation
● Allows domain experts to understand observations

● The Central Dogma of Machine Learning

● (If your system isn't like this, bad things happen)
● (...and your system often isn't like this...)

The future is like the past
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A brief (yet helpful) guide to ML

Labelled data

Test data

Classification

(a) Supervised

Labelled data

Test data

Classification

(b) Semi-supervisedUnlabelled data

Unlabelled data

Test data

Classification

(c) Unsupervised
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The instability of classifcation

● Often a human-centred or -infuenced process
● ...and so subject to changes in behaviour
● Unintended: different people
● Unavoidable: assisted living with cognitive decline
● Intentional: therapeutic interventions
● Unknown: frequent but unthought-of events

● Implications
● The classifcation function may need to change
● There may be interesting events in the dataset that

aren't the subject of a classifer
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Unknown event detection

● How do we detect an event for which we
haven't explicitly built a classifer?

● Conceptualise the event space as a mixture
model
● A sequence of events drawn independently from a

set of different distributions
● May include unknown distributions
● Does a sensor event fall into a known component,

or is it better described by the unknown
component?
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Defning the sensor readings

● Give a collection of sensors, at each times slot
form a vector x

S
 = (x

1
, x

2
, …, x

S
) of events

● A vector in an s-dimensional space of possible
readings

● Can include any sort of sensed feature: continuous,
binary, category, time, ...

● Each dimension has its own semantics

● Then employ both supervised and semi-
supervised approaches to learning events
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Representing events

● An event is a cluster of similar sensor readings
● Vectors are “close” in the multidimensional space
● Different events have different profles of

“closeness”
● Some are very tight; some more diffuse

● We use directional statistics to capture this
● Normalise distances to angles: not biased by

magnitudes in different dimensions
● What will the distribution of events look like?
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The “normal distribution”

● The von Mises Fisher (vMF) model
Large values of κ correspond to
tightly clustered observations

Mean vector 

“Variance”
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Mixture model

● Construct a global distribution as:

● The probability of seeing any given event
● Identify the model within the mixture that  it

belongs to

Parameters of the underlying
model in the mixtureMixture proportions

π
h
 = p(z = h)
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Introducing unknown components

● Two strategies
● Add a top-level unknown event, the part of the

space not covered by existing classifers
● For each activity, add an unknown variant that

affects the classifer for that activity

In either case, add a
uniformly-distributed vMF
component to catch the
unknown events

An event belongs to an
unknown activity if the
probability of seeing that
event is farthest from all
known-activity classifiers
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(Preliminary) results

● Extract an activity from the labelled dataset and
see whether the algorithm can fnd it

● Good separation of unknown events
● Strategy doesn't seem to be critical
● Needs a lot more work....

Fang, Ye, and Dobson. Discovery and recognition of emerging human activities by
hierarchical mixture of directional statistical models. Submitted to IEEE Trans. KDE.



Long-term data value

● Two uses of sensor data
● Operational: what's happening now, for control
● Archival: what's happened, for analysis

● These two uses poses different constraints for
storage and representation
● Operational: effciency, performance,

transformations and processing on the fy
● Archival: interpretability, comparability, stability

This stage is increasingly valuable for trend analysis,
projection, predictive maintenance, and so forth

How do we support both use cases?



A data warehouse

● Now quite common in data-rich industries

SCM ERP CRM

Data lake BI

Data warehouse

Extract, transform, and load (ETL)

Online Analytical
Processing (OLAP)

Stream processing



Data warehousing – 1

● Accept that these are two fundamentally
different data user cases
● Operational: data structure, key-value store, …
● Archival: stable schemata with extensive cross-

linkage

● The goal of the archive
● Allow questions across the entire dataset
● Maintain integrity by storing all the relevant

elements – that might operationally be assumed

Golfarelli and Rizzi. Data warehouse design: modern
principles and methodologies. McGraw-Hill. 2009



Data warehousing – 2

● An explicit Extract-Transform-Load (ETL) stage
● De-operationalise the data ready for archive
● Regular schema in spite of changes in data lake
● Works around possibly rapid operation change
● Archive is never updated after loading

● What happens in the de-operationalising step?
● Change schemata, add extra elements, ...
● Things that don't change over operational

timescales (but do change over archival ones)



Enhanced sensor architecture

Standard collect-respond-store
architecture of whatever kind

Data lake and warehousing step

Dobson, Golfarelli, Graziani, and Rizzi. A reference
architecture and model for sensor data warehousing.
IEEE Sensors Journal. 2018.  
http://dx.doi.org/10.1109/JSEN.2018.2861327
 

http://dx.doi.org/10.1109/JSEN.2018.2861327


Data analysis

● What do we need to store in order to interpret a
dataset post facto?
● The data, obviously
● The units, any pre- or post-processing
● The physical characteristics of the sensor, its age,

placement
● The maintenance schedule for the device, since if

it's cleaned its data will become “fresher”
● ...

● A generic warehousing schema for datasets



Classes



Example



Case study: air quality – 1

Use cases taken from our work with Topolytics at the Grangemouth facility



Case study: air quality – 2

● Support drill-down by combining data from
across operational datasets
● Unlikely to

be linked at
the operational
level

● Different
stakeholders

● Whole-system
view?

We've observed similar fragmentation in other industrial settings
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Three things to take away

● We engineer systems around sensors
● Providing evidence of value, not values themselves

● Statistical machine learning techniques can help
pull important elements out of sensed data

● Data has a lifecycle that needs to be supported
– and there are known techniques for this
● Can we do things in the devices to maximise the

long-term value they generate?
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