
The de Bruijn principle and the compositional
design of programming languages

Simon Dobson

Systems Research Group,
School of Computer Science and Informatics, UCD Dublin, IE

simon.dobson@ucd.ie

Abstract. Component-oriented development can be applied to program-
ing languages themselves. The typical structure of languages’ semantic
definitions using natural deduction rules lends itself to modularisation
schemes in which the rules describing an individual language feature set
may be composed freely with those of other feature sets without inter-
ference. We describe initial work on a system that encapsulates this ap-
proach to language design, which can generate language tools and their
associated proof systems by composing descriptions of feature sets. The
intention is to modularise the development and proof processes and en-
courage the population of an open set of interoperable and re-composable
language elements.

1 Introduction

Any major new application domain can give rise to problems that are awkward
to express in existing programming languages. The resulting mismatch between
programmers’ conceptual views of a problem and its expression in an unsuit-
able language can easily result in increased errors and inefficiencies, in keeping
with Iverson’s characterisation of notation as a tool of thought[1]. This pro-
vides a strong justification for the development of domain-specific programming
languages whose constructs exactly match the concepts in the domain.

A dizzying array of language features have been described in the literature.
How is a designer, faced with designing a language for a specific domain, to decide
which features may be most relevant? A considerable effort will be required if
features are to be developed from scratch (as is often the case) and integrated
into each language – especially when the benefits are unclear. Adding features to
existing languages can reduce the effort required, but may in some cases make
for an even more complicated problem when features interact, while changing
production-quality compilers can be extremely challenging. And in all cases it is
hard to guarantee the correctness of the language tool or the code it produces,
often requiring whole-system ab initio proofs of properties after even minimal
changes.

However, one may observe that many language feature sets are more or less
independent of each other. One may, for example, describe the abstract syntax,
typing and behaviour of a sequence expression without understanding the details

of the expressions that will eventually be executed in sequence. We conjecture
that this effect is actually a generalised version of the well-known de Bruijn
principle that the correctness of a system depends on the correctness of a small
kernel – or in this case, several small kernels whose independence allows them to
be manipulated piecewise and then composed in a manner that preserves overall
correctness.

Our intention in this paper is to support this conjecture by describing some
initial work in the development of a programming framework – Nirvana – for
building language tools and proof systems by composing semantic descriptions of
their individual feature sets. This gives rise to an essentially functional language
in which to define other languages (not necessarily functional themselves) which
may be extended in ways that integrate formal techniques in interesting ways.
We are therefore exploring a space which is simultaneously an application of
functional languages and a way of implementing them.

Section 2 briefly explores some issues in language definition and reviews some
popular approaches to tool construction. Section 3 describes a more composi-
tional approach to language definition, showing how languages may be defined
and tools and other artifacts constructed from feature sets defined largely inde-
pendently and then composed together. Section 4 concludes with some future
directions.

2 Defining and building programming languages

When discussing programming we typically take the language as given, or at
least as being drawn from a small set of candidate languages. When thinking
about constructing or extending languages we need to examine the components
from which a language is constructed.

2.1 What goes into a language

We first need to differentiate between the components of a language and the
components of a language tool : the two are closely linked but subtly different. A
language tool will typically be composed of a parser from concrete to abstract
syntax, a static analyser for type checking and possibly other analyses, and an
interpreter or code generator for executing the type-checked program. These
phases of processing can be applied (at least abstractly) to any language.

A language itself consists of a concrete syntax, abstract syntax, typing rela-
tion and reduction relation, possibly with additional relations for sub-typing or
effects. Taking the typing relation as a prototype, we typically define a relation-
ship between an environment, a family of abstract syntax tree (AST) nodes and
a type.

We need to further differentiate between the language being defined and the
metalanguage in which it is defined. The metalanguage will typically be able to
represent concepts that are not available in the language. The typing relation
itself is a good example, which is used in defining the language but is often not

made available in its full generality within the language itself: most languages
cannot type arbitrary expressions at run-time. The metalanguage may in fact
be based on a completely different semantic model than the language: Nirvana’s
metalanguage uses structural induction over a set of rules with unification and
single-assignment of metavariables, in common with the largely standard way in
which programming language constructs are described in the literature.

2.2 Insights

The choice of what goes into a language is typically driven by domain con-
straints, such as the desire for completely static compile-time type-checking
which precludes making the typing relation available within the language for
use at run-time. However, from a purely language perspective one may decide to
reify features of the metalanguage into the language, thereby making meta-level
features available to the “ordinary” programmer. Aspect-oriented programming
does this in a selective way at language-definition time: we may see any aspect-
oriented language as a compromise between implementational constraints and
the full generality of allowing arbitrary reification from the metalanguage[2]. The
key point is that languages need not necessarily be seen purely as precursors to
applications: we may instead take a wider view in which applications can define
the syntactic, typing and semantic constructions that will simplify their own
expression. This form of extensible programming language may be better-suited
to the more modern, more open approaches to systems development[3].

Despite the large numbers of languages that have been defined, many features
appear repeatedly: conditionals, variable binding, functions, loops et alia. Their
abstract syntax, typing and reduction are typically the same across languages,
although their concrete syntax is of course more variable. This suggests that
language features (or sets of features), rather than languages themselves, are the
real locus of innovation.

In defining a relation, we may observe that most are defined in terms of
structurally-recursive calls to themselves. Using type-of as an example, the types
of expressions are generally either manifestly known or are constructed by com-
posing the types of sub-terms, perhaps under some constraints. Not all relations
are like this, however. A system with general dependent types might include the
reduces-to relation in order to determine the value on which the type depends.
A relation describing memory effects might require type information.

However, in many cases there is considerable structure to these cross-overs
between relation definitions. We may observe that some relations are applied
to check the validity of a program while others are used to determine its value
and/or effect when executed. We may potentially divide the language up into
phases and remove the information computed in one phase for later phases: this
is what the typing of many functional languages (and indeed of C) does, where
the type information (from type-of) is not at run-time (in reduces-to).

This property is important in type analysis, as it determines whether a type
system is fully static. Within Nirvana this may be determined by inspection,

since a static type system will not include any “run-time” relations in the type-
of relation.

In most cases the “staticness” of a type system is a given, one way or the
other. In compositional languages it may change, depending on the features
available. For example, adding the run-time acquisition of code will typically
force the system to make type information available at run-time in some way,
although this feature may be constrained to prevent arbitrary run-time type-
checking. More subtly one may decide to allow features to be extended, such as
(for example) extending function definitions to take types as parameters when
introduced into a language with first-class types. This saves proliferating abstract
syntax and properly reflects the conceptual generalisation which is taking place.

2.3 Related work

Languages for building programming languages have a long history. Computer
science students are typically exposed to language development by means of the
GNU toolchain (flex for lexical analysers, bison for parsers) or variants such as
the Amsterdam Compiler Kit, together with the classical approach of parsing,
abstract syntax, type checking and code generation as explained in texts such
as the “Dragon book”[4].

However, functional languages offer many features that make them attractive
for developing language tools, not least there algebraic data types and strong
support for symbol and list manipulation. The Lisp and Scheme languages have
macro systems that allow programmers to define new syntactic constructs that
can be applied to control expression evaluation, although constrained within
the normal Lisp syntax. Both Abelson and Sussman[5] and Hailperin, Kaiser
and Knight[6] show how simple language tools can be described in Scheme, and
similar techniques can be applied equally easily in ML or Haskell.

While excellent for teaching Scheme (or ML or Haskell) and more general lan-
guage concepts, these approaches do not address the complexities found when
implementing realistically complex experimental and domain-specific languages.
In particular they provide neither concept re-use nor realistic support for prov-
ing properties about the resulting language or tool. Term-rewriting systems and
higher-order logic programming systems such Lambda Prolog[7] address the sec-
ond problem but typically leave the first untouched, and typically yield tools
with low performance.

More compositional approaches to language design extend the usual notions
of component software written in a programming language to allow languages
themselves to be constructed from components. The best-known philosophy for
such compositional language design is intentional programming[8], which influ-
ences the design of the .NET framework. Intentional programming treats each
new language construct as an “intention” that is rewritten to other, more basic
intentions. A similar approach is applied in the Vanilla system[9], where individ-
ual features are implemented using Java classes and then tied together within
an interpretation framework. Both approaches involve significant coding of fea-
tures, which increases the complexity both of development and reasoning about

the resulting language, and focus almost exclusively on evaluation of languages
rather than their proof properties.

3 Language structure and construction

In building Nirvana we have four major goals:

1. To support the compositional definition of programming language tools, re-
using the definitions of feature sets to minimise the effort required to con-
struct a new language.

2. To provide a close linkage between the definition of language feature sets and
the proofs of properties of the resulting languages, tools and applications.

3. To develop a library of language feature sets and associated artifacts to
minimise the effort involved in experimenting with new languages and con-
structs.

4. To provide efficient and lightweight implementations of the resulting tools.
While performance is not an overriding driver our intention is to be able
to use the languages developed in at least proof-of-concept projects on real-
world problems, with a special emphasis on problems in pervasive computing.

A sub-goal of the third is to remain as far as possible within the standard
framework of language design so as to minimise the cost of populating the library
with existing and novel constructs.

3.1 Building relations

Suppose that, in defining a language, we want to define an if expression with the
usual if ... then ... else form. Defining this expression involves defining a
number of aspects: an abstract syntax node for the expression, its type rules
and reduction semantics. Language definitions from the literature typically use
structured natural-deduction rules for defining the last two, and will typically
elide the first by using a combination of concrete syntax with meta-variables.
Figure 1 illustrates this.

Exp if
Γ $ c : bool Γ $ t : X Γ $ f : X

Γ $ if c then t else f : X

Val if true
Γ $ c true Γ $ t v

Γ $ if c then t else f v

Val if false
Γ $ c false Γ $ f v

Γ $ if c then t else f v

Fig. 1. Languages are typically defined using structural induction

Although simple, this example illustrates the key features of the separation
of language elements discussed in section 2.2. We can define the typing and
semantics of if with very little knowledge of the rest of the language: we assume
the existence of a boolean type bool as the type of the condition, of two boolean
constants true and false for reduction, (implicitly) of an equality relation that
allows us to determine that the value that c reduces to is indeed one of these
constants, and the existence of type-of and reduces-to relations (written : and
 in the mathematical formulation), which we are extending with new rules.

We can re-phrase this as saying that the definition of the if expression im-
ports the boolean type and the global definitions of the type�of and reduces�to
relations. It then exports rules that are part of the global definitions of the re-
lations. The rules that if adds are made available to other components of the
language.

A language is constructed by combing a number of these partial definitions
together, yielding a set of relations. Each relation is defined as the fixpoint of the
rules defined by each definition, and it is this need for fixpoints that differentiates
this from a standard import/export-based module system, but otherwise we can
ensure that all the features required in a language are included within it.

3.2 Features and feature sets

We may take a further step from this piecewise definition by using the obser-
vation of feature commonality from section 2.2. One language’s if expression
is much like another’s, and the normal principles of software engineering would
suggest that we should therefore re-use the definition rather than re-specifying
it at each use. Moreover we should also be able to import additional software
engineering artifacts such as partial proofs and re-apply them in each new con-
text.

We need to recognise the limits of independence, however. While we can
define if without reference to (most) other language elements, we might not want
to re-define its semantics separately from its typing. In this simple example there
would be little reason to, but there are more complex examples in which it might
– the best being to separate the abstract syntax and typing of lambda-terms from
the decision as to whether to use normal- or applicative-order reduction, which
only changes the reduces-to relation.

Nirvana collects these issues together by describing feature sets. A feature
set collects together definitions of some or all of the following:

1. value domains
2. domain values
3. relations
4. rules in relations
5. primitives

A value domain is a set of values used by the language, the canonical examples
of which are types and abstract syntax tree nodes. These domains may then be

populated with values. Relations define n-ary relations which will typically be
defined using a structural induction defined by the rules. Primitives are basic
Scheme functions that can be called directly from within rules, and are used to
provide either non-rule-based relations or the interpretation of primitive features.

An example feature set is shown in figure 2. The first line declares the fea-
ture set with a globally-unique identifier, which allows any language to refer
unambiguously to this feature set as distinct from any other definition of a
similar idea. Each feature within the feature set is given a unique identifier de-
rived from the feature set identifier, again allowing globally unambiguous iden-
tification. For example, in the AST node (if c t f), the if tag is fully ex-
panded as http:///www.programming-nirvana.org/features/simple-if#if.
All uses of if in the feature set definition will be expanded to use this feature
identifier when loaded, and so will be distinct from any other feature that co-
incidentally defines a tag if.

The uses clause imports other feature sets and makes their features available
for use. The standard feature set1 defines the ast and type value domains and
the type-of and reduces-to relations. The boolean-arithmetic feature set
defines the boolean-type type and the literal constants together with boolean
expressions. boolean-arithmetic is used as feature set boolean which is pre-
fixed to any features within it, so the true literal is identified in this feature
set by boolean:true-literal. Again, this removes any possible confusion. In
general only the standard feature set is used without a prefix.

The ast clause defines a value which is part of the ast value domain. Values
are either symbols or lists headed by symbols, which are given a feature identifier.

The rule clauses define rules. Each rule consists of a label and a description
followed by a conclusion sequent and zero or more hypotheses sequents, each of
which is expressed in terms of relations or primitives. Nirvana combines rules in a
relation relating to a single AST tag into a single single-assignment metavariable
environment to avoid double-computation of values, which would cause problems
in a language with side effects.

Although our current technology use Scheme-style syntax, it is obviously all
but trivial to use XML instead for improved integration with other tools. It is
also worth noting that the feature identifier approach is modeled on that used
by XML namespaces and RDF ontologies.

3.3 Compositional languages

The language in figure 3 provides a simply-type lambda calculus with bindings,
integer arithmetic and conditional execution , which is normal-order evaluated
– a language which has been re-defined remarkably often!

We have so far said nothing about concrete syntax. There are three reasons
for this. Firstly, concrete syntax is extremely well-understood, and there is lit-
tle to be said about generating it for any language we might define. Secondly,

1 For the rest of this paper we use “short” names for features instead of full feature
identifiers where no confusion is likely.

(define-feature-set if "http://www.programming-nirvana.org/features/simple-if"

(uses (feature-set "http://www.programming-nirvana.org/features/standard")

(feature-set "http://www.programming-nirvana.org/features/boolean-arithmetic"

boolean))

(ast (if c t f))

(rule exp-if "Conditional expression"

(type-of env (if c t f) e)

(type-of env c boolean:boolean-type)

(type-of env t e)

(type-of env f e))

(rule val-if-true "Conditional on true"

(reduces-to env (if c t f) tv)

(reduces-to env c boolean:true-literal)

(reduces-to env t tv))

(rule val-if-false "Conditional on false"

(reduces-to env (if c t f) fv)

(reduces-to env c boolean:false-literal)

(reduces-to env f fv)))

Fig. 2. Conditional described as a feature set

concrete syntax has less commonality across languages than abstract syntax,
typing or reduction, and so is less amenable to re-use. Thirdly, in many cases
it makes more sense to exchange programs as parse trees using XML and fea-
ture identifiers[10]. Feature set identifiers may be used as XML namespaces,
so that (to use the if feature set from figure 2) an XML tag of the form
<if-feature:if>. . . </if-feature:if>, if appearing in a document with the
namespace prefix if-feature bound to the if feature set’s identifier, will be
expanded by an XML processor to the correct feature identifier.

3.4 Extension and proof

Nirvana-defined languages are easily extensible by simply providing a new feature
set and associated concrete syntax. One may envision this feature as being used
in the Nirvana workbench to generate new language tools; one may also envision
it being reified into the language so that a programmer may extend a base
language in order to execute specific code. This raises interesting questions about
the correctness of the resulting language.

When defining a type system three questions predominate: is the type system
strongly normalising?, is it static?, and does it have maximum types? In many
cases these properties are proved by structural induction over the rules of the
type-of relation: for each abstract syntax type, we prove (in the case of maximum

(define-language simple

"http://www.programming-nirvana.org/languages/simple"

"A simple language, used for demonstration"

"http://www.programming-nirvana.org/features/standard"

"http://www.programming-nirvana.org/features/binding"

"http://www.programming-nirvana.org/features/integer-arithmetic"

"http://www.programming-nirvana.org/features/boolean-arithmetic"

"http://www.programming-nirvana.org/features/if"

"http://www.programming-nirvana.org/features/simple-function"

"http://www.programming-nirvana.org/features/simple-function-normal-order")

Fig. 3. A simple language definition

typing, for example) that there is there is a maximum type assigned for all
possible combinations of sub-terms.

Proofs structured in this way are compositional in the sense that the sub-
proofs of a property for each abstract syntax type can be combined into a proof
of the property for the relation. They are not compositional in the sense that,
if new rules are added to extend the handling of an individual abstract syntax
type, then the sub-proof must be proved afresh.

It also turns out that many constructions do not provide any significant
contribution to a particular property. The if feature set, for example, has little
impact on the confluence of a type system as it simply takes the type of two of
its sub-terms. This is where the de Bruijn principle applies: the confluence of
the type system depends only on those rules which construct or eliminate values,
which will typically be a significantly smaller set of rules.

Since Nirvana features sets are expressed declaratively, they may be used
to build algebras which may then be explored using a proof systems such as
PVS[11]. This provides a close link between integrating a feature set into a
language and proving that the resulting language has the desired properties. In
general this will not be possible automatically: however, the extension operator
may generate proof obligations that must be proved in order to prove the desired
property of the language overall.

Nirvana is not limited to using the standard relations: one might, for example,
define an effect system as a parallel relation that captures the side-effect of each
AST. One might also define a parallel relation carrying proofs of sub-terms – the
constructive type theory view of programming paralleling the usual reduction
view. These issues require more research, but suggest that the extension of the
de Bruijn principle to cover allthe artifacts of programming and languages is a
promising future direction.

4 Current state and next steps

We have described a more compositional approach to the design of programming
languages and their associated tools. The approach rests on an extended version

of the de Bruijn principle, in which individual language feature sets are defined
declaratively in partial isolation, may have properties proved about them, and
are combined to create a language tool as the fixpoint of the individual piecewise
definitions.

The ability to extend languages is critical, we believe, to tackle the emerg-
ing complex domains of (for example) pervasive and autonomic systems whose
core assumptions to not match those under which most existing languages were
designed. In such experimental domains it is not yet possible to provide an a pri-
ori characterisation of the most appropriate constructions, which suggests that
experimentation should be carried out in languages as well as in applications.
Our work on Nirvana is, we hope, a contribution to allowing this experimenta-
tion to proceed with reduced costs and, we further hope, a contribution to the
well-founded development of languages and language tools.

We currently have a limited population of features sets, sufficient to imple-
ment a range of existing languages at least at experimental standard. We are
investigating the application of these features sets to piecewise proofs of prop-
erties and the closer integration of Nirvana with proof tools generally.

The blurring of language processing phases is a topic of considerable inter-
est. Code migration involves run-time typing and possibly proof, as can general
proof-carry code. In other cases is may be useful to retain some typing or other
information as annotations on one or both of the abstract syntax tree of the
domain values. We are curious as to whether this decision can be deferred (so
that the same rules can be used without change in both cases), automated (so
that information is memoised where appropriate, without manual intervention),
and generalised to other language artifacts (for example to integrate proofs di-
rectly into executing code). We believe that these issues will achieve increasing
significance in maintaining correctness as systems continue to become more open
and extensible.

References

1. Iverson, K.: Notation as a tool of thought. Communications of the ACM 23 (1980)
444–465 1979 ACM Turing Award lecture.

2. Kiczales, G., des Rivières, J., Bobrow, D.: The art of the metaobject protocol.
MIT Press (1991)

3. Wilson, G.: Extensible programming for the 21st century. ACM Queue 2 (2004)
48–57

4. Aho, A., Sethi, R., Ullman, J.: Compilers: principles, techniques and tools. Addison
Wesley (1986)

5. Abelson, H., Sussman, G.: Structure and interpretation of computer programs.
MIT Press (1985)

6. Hailperin, M., Kaiser, B., Knight, K.: Concrete abstractions: an introduction to
computer science using Scheme. Course Technology (1999)

7. Nadathur, G., Miller, D.: Higher-order logic programming. In: Handbook of Logic
in AI and Logic Programming. Volume 5. Oxford University Press (1998) 499–590

8. Simonyi, C. Interviewed in The Edge (1998)

9. Dobson, S., Nixon, P., Wade, V., Terzis, S., Fuller, J.: Vanilla: an open language
framework. In Czarnecki, K., Eisenecker, U., eds.: Generative and component-
based software engineering. LNCS. Springer-Verlag (1999)

10. Dobson, S.: Creating programming languages for (and from) the internet. In:
Workshop on Evolution and Reuse of Language Specifications for domain-specific
languages, ECOOP’04. (2004)

11. : Pvs specification and verification system home page. (http://pvs.csl.sri.com/)

