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Introduction

Epidemic modelling has become topical

A huge field drawing upon mathematical, statistical, and
computational techniques
I Explore one part of the space: epidemic processes working

over complex contact networks
I What possibilities can this show us?
I Can we make the tools and techniques more accessible?
I Can we generate insight for later empirical investigation?
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Real diseases – general structure

Different periods
I Incubation: from infection to onset of symptoms
I Latent: from exposure to infectiousness
I Infectious: overlapping with symptoms (usually)

Periods defined by biology, of both disease and host
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Real diseases – examples
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Real diseases – evolution

A person infected at the end of an epidemic doesn’t get the
same disease as a person infected at the start
I Pathogen is constantly mutating
I Lateral gene transfer from co-infecting pathogens
I Another reason to work to reduce transmission

Selection pressures often (but don’t necessarily)
introduce a particular dynamics
I More transmissible
I Less severe
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R and all that 1

R, the case reproduction number
I Number of secondary cases per primary
I EspeciallyR0, reproduction absent countermeasures

r, the case reproduction rate
I Doubling time for an epidemic
I Also sometimes see Tg, the inter-generation time

Typically averages over (unknown) distributions
I Details may be very significant

1Royal Society SET-C group. Reproduction number (R) and growth rate (r) of the COVID-19 epidemic in the
UK: methods of estimation, data sources, causes of heterogeneity, and use as a guide in policy formulation, August
2020. URL https://royalsociety.org/-/media/policy/projects/set-c/set-covid-19-R-estimates.pdf
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The “wickedness” of covid-19 – 1

R0 ≈ 3 is not particularly infectious
I Straightforward to getR ≈ 1.5; harder to getR < 1
I A more transmissible new variant may be emerging
I Significant overdispersion (“superspreaders”)
I Infection may convey only temporary immunity

Substantial asymptomatic transmission
I Asymmetric costs (spreading vs dying, “long covid”)
I Effective countermeasures are collective (and expensive)
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The “wickedness” of covid-19 – 2
Infection fatality rate is about 1%
I Too large to comfortably ignore, too small to generate a

universal consensus about its seriousness
I The numbers can be misrepresented
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The goals of modelling

What are we trying to find out?
I Concrete: how will this particular outbreak behave, in this

particular population?
I Abstract: how can diseases behave in general? Are there

common mathematical structures?
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Compartmented models

Traditional epidemic modelling uses the framework of a
compartmented model of a disease
I A number of compartments holding some fraction of the

population
I Can also think of a compartment as the state of each

individual within the population (we’ll come back to this)
I Rules on how these fractions change over time
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Continuous SIR

The model
I Susceptible individuals

can catch the infection
from Infected
individuals

I . . .who then are
Removed from the
dynamics by recovery
(or death)

Epidemic dynamics
I Susceptibles infected

per contact with
probability β

I Infecteds removed with
probability α

I Gives rise toR = β
α

dS
dt

= −βSI dI
dt

= βSI − αI dR
dt

= αI
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Solution

Different disease structures 2

I SIR – complete immunity post-infection
I SIS – infection confers no immunity
I SEIR – exposed individuals are

infectious before symptoms
I MSEIR – initial immunity passed from

mother to child
I SEIRS – immunity wears off with time
I . . .

2H. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599–653, December 2000. URL
doi://10.1137/S0036144500371907
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Benefits and limitations

Flexible and scalable
I Can model large populations
I Complete mixing

Limited heterogeneity
I Get heterogeneity using

sub-populations and flows
between them 3

I Makes system stochastic

3K. Prem, A. Cook, and M. Jit. Projecting social contact matrices in 152 countries using contact surveys and
demographic data. PLOS Computational Biology, 13(9), 2017. URL
https://doi.org/10.1371/journal.pcbi.1005697Ed
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The case for using network science

Use a network as the substrate for the epidemic 4

I Only adjacent nodes can interact
I Compartment = label on node
I Number of SI edges is the “locus” for infection

Pros and cons
I Doesn’t scale as well as ODEs (explicit individuals)
I Can build contact structures and systems of equations we

can’t solve (but can simulate)

4M. Newman. Spread of epidemic disease on networks. Physical Review E, 66, July 2002. URL
doi://10.1103/PhysRevE.66.016128
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Basic treatment – networks
Network degree distribution
I Probability pk of randomly-chosen node having degree k

Often start with a mean field approach
I The mean degree 〈k〉 is “representative”
I Solve equations as if all nodes have degree 〈k〉

Add fine structure
I Loops, assortativity, modules, layers, nesting, . . .
I Adaptive behaviour to change features over time and/or in

response to the disease
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Basic treatment – processes

Assign a state vector to each node
I For epidemics, this might be the node’s compartment

Process defines changes to state vectors
I A function of current states of the node and its immediate

neighbours
I Generally stochastic, applied with some probability

Seed the network with initial state vectors
I For SIR, mainly susceptible with a few infected
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How to do analysis
The “gold standard” is an analytic
model with numerical validation
I Find an analytic description for

what happens under different
infection parameters

I Run process on random networks
with different topologies

I Lots of repetitions to squeeze out
variance

I (Hopefully) sample points land
on solutions to the equations 5

5P. Mann, V. A. Smith, J. Mitchell, and S. Dobson. Random graphs with arbitrary clustering and their
applications. Physical Review E, 2020. URL http://arxiv.org/abs/2006.08427. To appear
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Gillespie simulation – 1

Originally developed for ab initio chemistry 6

I Define basic events e and their probabilities P(e)
I When will the next event occur? What will it be?

Consider SIR as a model
I I infects a S neighbour, P(infect) = βSI
I I is removed, P(remove) = αI
I Each event changes the sizes of the loci

6D. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25):
2340––2361, 1977
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Gillespie simulation – 2

Define P(τ, e) dτ as the probability that an event e occurs
in the next interval (t + τ, t + τ + dτ)

Define P(τ) =
∑

e P(τ, e) as the probability that some event
happens in the next interval τ .

Then re-arrange the joint probability distribution

P(τ, e) = P(τ)P(e|τ)

We want to draw a (τ, e) pair from this distribution
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Gillespie simulation – 3
Turn the probability density function into a cumulative
density function

P(x ≤ x0) =

∫ x0

−∞
P(a) da

If we draw a value r uniformly from [0, 1] then we can compute
x = P−1(x ≤ r) to get a value distributed according to P(x)

Letting a =
∑

e P(e), much maths then yields

τ =
1
a
ln

(
1
r1

)
e = argmaxe

( e∑
e′=e0

P(e′) ≤ r2a
)
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Tooling
There wasn’t any standard tooling, so we built some

A flexible way to express networks and processes
I epydemic, a simulation framework using networkx

I Reference epidemic (and other) processes
I Network generators

A way to perform repeated, repeatable, experiments
I epyc, a computational experiment manager
I Experiment submission, parallelism, remote evaluation
I Immutable datasets with metadata, stored in HDF5

https://github.com/simoninireland 23/41
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Example code
import numpy

import pandas

from epyc import ClusterLab , HDF5LabNotebook , RepeatedExperiment

from epydemic import ERNetwork , SIR , StochasticDynamics

# notebook for results and lab with connection to compute cluster

nb = HDF5LabNotebook(’test.h5’, description=’My experiments in networking ’)

lab = ClusterLab(profile=’hogun’, notebook=nb)

# set up the experimental parameters

lab[ERNetwork.N] = 10000

lab[ERNetwork.KMEAN] = 40

lab[SIR.P_INFECTED] = 0.001

lab[SIR.P_REMOVE] = 0.002

lab[SIR.P_INFECT] = numpy.linspace (0.00001 , 0.0002 , num =50)

# construct the experiment: a process and a class of networks

m = SIR()

g = ERNetwork ()

e = StochasticDynamics(m, g)

# repeat runs across the parameter space

lab.runExperiment(RepeatedExperiment(e, 100))

# retrieve for analysis

df = nb.current (). dataframe(only_successful=True)
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Explorations

We’ve been experimenting with different
network structures
I Especially interested in “clustered” networks:

friends-of-friends and larger cycles
I Fine structure affects how processes evolve

Make the science more accessible
I With available and re-usable code
I With explanations 7

7S. Dobson. Epidemic modelling – Some notes, maths, and code. Independent Publishing Network, 2020. ISBN
978-183853-565-0. URL https://simoninireland.github.io/introduction-to-epidemics/
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The epidemic threshold
Erdős-Rényi (ER) networks
I For N nodes build the complete network KN

I For each edge, retain (“occupy”) it with probability pinfect
I Leads to pk normally distributed around 〈k〉 = pinfectN
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Not all networks behave like this

Too “even” to be a good model of human contacts
I Powerlaw with cutoff, pk ∝ k−α eK/κ

I Relatively insensitive to pinfect, but sensitive to α and κ
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Herd immunity

Sufficient immune/recovered
individuals to stop an epidemic
propagating
I Infecteds never adjacent to

enough susceptibles
I First epidemic changes the

effective topology
I “Effective” 〈k〉 drops from 20 to

5.5
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Why pursuing herd immunity is a bad idea

Herd immunity has been seriously advocated as a
strategy for covid-198

Ignores some rather inconvenient facts
I A 1% death rate = 700K UK deaths, about one year’s excess
I At a rate that would collapse health services
I Immunity may not be permanent – which makes herd

immunity behave differently (or not appear at all)
I Long covid not accounted for in the costs

8See the “Great Barrington Declaration”, https://gbdeclaration.org
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Vaccination

“Herd immunity without the bad bits”
I Aim for the herd immunity threshold, generally about 60%

of the population
I . . .without anyone actually being infected

Epidemic proceeds at different rates
depending on topology
I “Enough” contacts stabilise the size

of outbreak
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Vaccination strategies
Randomly vaccinate 60% of the
population
I Massive reduction in epidemic size
I Only catching high-degree nodes at

random
I Sensitive to missing people

If we target vaccination we can reduce
the threshold needed to get the same
effect
I Target highest-degree 2% of nodes
I Take out the super-spreaders
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Physical distancing

What does a physically-distanced contact network look
like?
I Good question: needs lots of assumptions, especially when

considering compliance

One possible model
I Normally-distributed, fully connected family “bubbles” of

mean size 4
I A couple of members with outside contacts
I Exponentially-distributed connections between the

contacts in different bubbles
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Lockdown changes propagation

Changes the epidemic threshold
compared to an ER network
I Needs a higher infectivity to take off

Slower take-off
I Not like a powerlaw network
I Get bursts of infection if the infection

gets into a bubble

34/41



Background Epidemics on networks Some explorations Conclusions

Asymptomatic transmission

Because covid-19 is essentially SEIR (or maybe SEIRS) it
invites other countermeasures
I Self-isolating on showing symptoms is ineffective
I Try to find the asymptomatic carriers

This is the basis for track-and-trace
I Identify contacts of that person
I Quarantine them if they’re infected – means we catch

infecting individuals before they knew to self-isolate
I Quarantine the symptomatic individual too
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Track and trace in practice

A large-scale procedure, unlike the local procedure of
self-isolation when symptomatic
I Requires organisation by some authority
I What can possibly go wrong?. . .

Unlikely to be fully accurate even if done competently
I Some proportion of people don’t quarantine? (prewire)
I Only test some proportion of contacts? (pdetect)
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The impact of detection rates

Hold prewire constant and vary pdetect

I High detection is very effective
I Need to check at least 40% to

have any effect at all
I Lower rates are unstable
I All sizes of epidemic are possible
I Possibly a “smeared” phase

transition 9

I Possibly an artefact

9L. Hébert-Dufresne and A. Allard. Smeared phase transitions in percolation on real complex networks.
Physical Review Research, 1, August 2019. URL https://doi.org/10.1103/PhysRevResearch.1.013009
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Research directions
Multiple diseases
I What happens when disease evolve?
I Co-infection dynamics, when one

affects susceptibility to another

We’re now very interested in network
fine structure
I Disrupt processes by disrupting

small local features?
I Local phenomena as leading

indicators of global changes 10

10P. Mann, V. A. Smith, J. Mitchell, and S. Dobson. Random graphs with arbitrary clustering and their
applications. Physical Review E, 2020. URL http://arxiv.org/abs/2006.08427. To appear
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Three things to take away

1. Epidemic spreading still isn’t fully understood – there’s
lots of exciting work still to do, mathematically and
computationally

2. Interactions between network and process can be very
subtle, and may have significant effects

3. We can explore the space of public policy decisions as
“citizen scientists”, and also counter misinformation
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