
Autonomous Fault Detection in Self-Healing Systems
using Restricted Boltzmann Machines

Chris Schneider
School of Computer Science
University of St Andrews

Scotland, UK
chris.schneider@st-andrews.ac.uk

Adam Barker
School of Computer Science
University of St Andrews

Scotland, UK
adam.barker@st-andrews.ac.uk

Simon Dobson
School of Computer Science
University of St Andrews

Scotland, UK
simon.dobson@st-andrews.ac.uk

Abstract—Autonomously detecting and recovering from
faults is one approach for reducing the operational complexity
and costs associated with managing computing environments.
We present a novel methodology for autonomously generating
investigation leads that help identify systems faults, and extends
our previous work in this area by leveraging Restricted Boltz-
mann Machines (RBMs) and contrastive divergence learning
to analyse changes in historical feature data. This allows us to
heuristically identify the root cause of a fault, and demonstrate
an improvement to the state of the art by showing feature
data can be predicted heuristically beyond a single instance to
include entire sequences of information.
Keywords-Self-healing Systems; Fault Detection; Machine

Learning; Computational Intelligence; Autonomic Computing;
Artificial Neural Networks; Restricted Boltzmann Machines

I. INTRODUCTION
The operational costs of large-scale computing environ-

ments are continuing to increase. In order to address this
problem, self-managing systems are being developed that
reduce the supervisory needs of computing environments.
Self-healing systems are one such example, and operate
by autonomously detecting then recovering from faults.
Although there have been numerous advances in both of
these aspects, most self-healing systems continue to require
periodic human oversight [1], [2], [3], [4]. This constraint
poses challenges for the continued reduction of costs, and re-
stricts self-healing recovery strategies to reactive approaches
[5]. The importance of reducing human oversight in man-
aging computing environments is multi-faceted. Although
numerous direct benefits exist–such as the reduction staff
involvement and their associated operating costs–further
achievements can also be realised. Notably, self-healing
systems have properties that are showing inherent benefits
to change control schemas, and preserving baseline config-
urations [6].
The lack of change control or a baseline configuration can

both introduce faults and present problems in determining
their respective sources. Additionally, self-healing systems
methodologies are also showing the capability to both detect
and resolve faults without human supervision [5], [7], [8].
This is important when considering operational constraints–

such as costs and time requirements associated with training
technical members of staff–to achieve these same results. If
a system can find an appropriate recovery solution without
the need for a subject matter expert, the associated costs can
be immediately recovered.
However, achieving these goals is non-trivial and has

posed notable challenges in both Machine Learning, and
Artificial/Computational Intelligence. There is no assurance,
for example, that self-healing systems leveraging evolu-
tionary or search-space algorithms will find an appropriate
solution for a given fault, or that any solution found will
be optimal. Furthermore, computational costs of approaches
that leverage these methodologies are typically higher than
others, and inherently carry a certain amount of risk of
failing to identify or resolve faults. Anecdotal evidence
suggests that in professional computing environments the
failure to recognise or mitigate a fault is never an acceptable
state. It is clear, however, that such circumstances do happen
under human supervision, and they may be inevitable. The
fact remains that moving to a software based approach
poses challenges and questions regarding accountability–
currently associated with human administrators–and liability.
Both of these topics are outside of the scope of this paper,
but the preference in supervised management approaches
lends evidence to the desirability of these criteria [9], [10],
[11], [12], [13], [14]. The question remains: How can we
further the autonomous behaviours of self-healing systems
whilst reducing the operating costs of large-scale computing
environments?
Previous research has shown that it is possible to syn-

thesise new, valid systems configurations [7], and determine
common relationships between features [15], [16]. This has
helped to reactively build recovery solutions in an unsuper-
vised fashion and predict the validity of specific systems’
configurations, respectively. The ability to autonomously
identify anomalies has also been demonstrated by using a
special type of unsupervised artificial neural network (ANN)
[5] called a self-organising map [17], and in our previous
work using Hidden Markov Models (HMMs) [18]. These
approaches emphasise predictive behaviours by leveraging



historical configuration data collected from a local system.
However, at present there are no performance evaluations of
self-healing systems utilising these methodologies. In order
to understand how effective these approaches are they must
be compared.
In this paper we extend our previous approach for au-

tonomously evaluating the source of a fault within a system
by using Restricted Boltzmann Machines (RBMs) to predict
the state of a feature, show how that prediction can be used
to identify the source of a fault via a comparison between
the expected and actual result, and illustrate how a series of
features can be synthesised given an input vector. Using this
approach allows the application rather than an administrator
to find the specific cause of an anomaly. A comparison
is provided with the previous results using ether HMMs
or ANNs, and the respective advantages and performance
metrics are discussed.
Lastly, we conclude with groundwork for potentially

discovering new avenues to identify faults via more robust
analysis in feature locality. It is our intent to continue to
develop this research further and to eventually demonstrate
potential reductions in the cost of operating large-scale IT
environments through automation.
The rest of this paper is organised as follows: Section 2

contains details of the approach. Sections 3 and 4 describe
the implementation, and key components of the methodol-
ogy, respectively. Section 5 presents some early experimental
results whilst Section 6 concludes with some directions for
future exploration.

II. APPROACH
Using RBMs it is possible to identify the source of faults

within a system without human intervention. RBMs use
a learning algorithm to evaluate and predict changes in
feature behaviour by utilising historical performance and
configuration data periodically gathered from the system.
This data is then autonomously classified through the use of
fitness tests as either valid or invalid. Results from these tests
determine the overall state of the system, and subsequently
categorise the data collected in an identical fashion. This
information is then used to provide direction to the RBM.
If the system passes all of its fitness tests, the associated

configuration is assumed to be valid. This data is then
converted into vectors based on state changes and then
saved to disk for potential analysis. As the system passes its
fitness tests, more information is added to the existing saved
data sets, until a collection is achieved of a pre-determined
value. However, as systems behaviour can and is expected
to change over time, previously learned information is
gradually expired. This allows for elasticity in predictions
by limiting the information learned to a recent time-series.
If the system does not pass all of its fitness tests, the

associated configuration is assumed to be invalid. Once an
invalid state has been determined an evaluation is done for

each feature’s behaviours based on the previously informa-
tion. Rather than using a greedy evaluation–as in previous
instantiations–the RBM uses a lazy evaluation strategy on
features that are determined to have changed from the last
known good configuration and the faulty configuration data.
Features that are determined to have behaved in an unex-

pected manner are added to a list of potential faults, along
with a confidence value. The confidence value is determined
by how unlikely the behaviour is to have occurred according
to the RBM. Using the confidence value, the list of potential
faults is then sorted in descending order. This provides both
a measure of effectiveness of the application for determining
the root cause of the fault, and an ability to prioritise
subsequent self-healing strategies.

III. IMPLEMENTATION
In order to achieve the aforementioned approach, this

experiment leverages C# and the Windows Management In-
strumentation (WMI) framework for data collection. A small
application periodically interfaces with the WMI service
based on a polling interval. The polling interval determines
two properties: How frequently the WMI framework is
to be queried, and how much elasticity to account for in
behavioural pattern analysis. Although both values are fully
adjustable, for the purposes of this experiment the polling
interval is set at 60 seconds, and the total size of the
dataset collection is limited to 30 samples. Each dataset is
referenced within a list, and contains a collection of tables
that individually correspond to a WMI class. As the WMI
framework is queried, these tables are populated, associated
with their respective dataset, and then categorised. Lastly,
the information to be gathered is determined at run-time
via a dictionary that stores a unique identifier value and the
names of the WMI classes to be queried.
The categorisation of dataset information is accomplished

via fitness tests that validate the responsibilities of the virtual
machine. In this case the virtual machine’s primary purpose
is to act as a web-server for both internal and external clients.
Rather than using unit tests to verify a series of specific
properties, fitness tests emphasise the validation of high-
level processes and functions. This allows the application
rather than an administrator to find the specific cause the
anomaly. Furthermore, the use of fitness tests in this experi-
ment accomplishes three goals: 1.) It emulates more closely
the use of policies than unit tests–a goal for self-managing
systems described by prior research [19], [20], [21], 2.)
It roughly mirrors standard practice in existing computing
environments where operational readiness testing or service-
level agreements are required, and 3.) It establishes the
groundwork for feeding in the results of this experiment
with planned future research.
As previously stated, once a dataset is categorised as either

valid or invalid the application will either save the collected
information to disk for layer analysis, or it will look for



Figure 1: Anomaly Detection Framework Logic & Architecture Diagram

anomalies, respectively. The dataset is determined to be valid
if it passes all of its fitness tests. If this occurs, each property
within the collection of datasets is evaluated against itself.
The hardest part of this procedure is uniquely identifying
the objects that have been queried.
WMI does not provide a unique identifier for the values it

produces, so an intersection is used to identify like-objects
based on the lowest expected rate of change for a specific
value within a given WMI class. This value, identified by
column, is the primary reason for aforementioned WMI class
dictionary’s existence. After verifying that the application
has no more than the maximum number of datasets, any
changes–including removed or newly discovered properties–
are catalogued and a vector is produced that contains change
information. It is this vector that is used to autonomously
train the anomaly detection framework (ADFs) in this ex-
periment.
The ADF in this experiment leverages contrastive diver-

gent learning [22]. This algorithm was chosen due to its
suitability with RBMs object structure, and its ability to
both categorise information and synthesise a series of inputs
based on an output value. The ADF was implemented via
the AForge.NET [23] and Accord.NET Frameworks [24],
including the learning algorithm which is responsible for
processing observed feature behaviours into probabilities,
and the RBM object code. This code is used in conjunc-
tion with the ADF’s classification methods for the datasets
collected via WMI, and metrics gathering algorithms.
If the dataset is determined to be invalid, the feature’s

behaviours are analysed by the ADFs for unexpected
changes. Any feature that does not match the ADF’s
predicted values is added to a list of potential faults, along
with a confidence value. As long as the fault source is
collected within the WMI data, and the feature behaviours
are sufficiently predictable–in this case, any detectable
change within 30 samples that is also associated with the
fault–the root cause of a fault should be detected by the
ADF.
Although other learning algorithms are available, com-

paring their advantages and disadvantages remain beyond
the scope of this experiment. However, this is an area
that hopefully will be explored in the future in a separate
publication. Specifically, instead of contrastive divergence
learning (CDL), we hope to understand how effective HMMs
utilising the Viterbi algorithm are at generating or predicting
sequences of information when compared to CDL [25]. The
underlying differences between HMMs and RBMs are not
fully explored within this paper as we anticipate readers will
be versed in these topics.

IV. METHODOLOGY

This experiment leveraged a virtual machine running
Windows 7, Internet Information Services (IIS) 7.5, and one
instance of the ADF. The virtual machine was cloned from
an initial image used in our prior experiments, and consisted
of identical base configurations in hardware. The hardware
itself was unremarkable being a standard image with 1GB of
RAM, and a single disk partition divided into three volumes–



one for the OS, the ADF, and the IIS webroot, respectively.
The software was identical to the original experiment up
until the point at which the ADF was allowed to run for a
training period of 30 minutes.
During this time, the fitness tests were evaluated once

every 60 seconds. If a system passed all of its fitness tests,
the ADF would save the configuration it gathered along with
an XML schema file to a local data store. These files served
as a mechanism for loading known good systems config-
urations quickly and, as a consequence, allowed for more
rapid testing. Additionally, by approaching the experiment
in this fashion we were able to reduce the opportunity for
drift in each virtual machines’ configuration, and allow for
greater reproducibility in the experiment. Once the machine
was trained, it was exposed to either a direct fault injection
event or an adverse configuration change that was expected
to limit the system’s ability to either connect to the internet,
run IIS-related services, or the ability to access information
stored on the the system’s disk volumes.
The ADF was then responsible for detecting the presence

of the fault and generating a potential root cause, as well
as reporting on several key attributes including: the total
number of true positives, true negatives, false positives, and
false negatives, the time taken in “ElapsedTicks” from the
point in which a fault was detected until the completed
generation of the ordered list of potential root causes, and
the number of potential root causes (i.e. ‘leads’).
True and false positives were determined when a fault

was detected and whether or not it was or was not present,
respectively. Conversely, true and false negatives were deter-
mined when a fault was present but not detected. However,
due to the nature of false negatives, the number of faults
not detected by the application had to be done by hand.
This was as expected as there was no way, by definition,
for the application to detect such a state without external
validation. It is also the reason that faults in this experiment
were injected with the source already being known. From
this information inferential metrics such as precision, time-
taken, and leads generated. This data was then combined
to produce charts showing the performance of the ADFs
relative to the same tests.
The type of faults we injected had two variants: Adverse

Configuration Changes (ACCs), and Direct Fault Injections
(DFIs). The former consisted of shutting off services or
making changes to the system using normal administrative
methods. This included changing disk structures, service
states, and other properties that administrators would nor-
mally have access to. The latter consisted of copying code
directly into the address space of another process, which
in turn was expected to produce a controlled crash. These
faults were introduced in such a way that the fitness tests
implemented in the ADF were expected to fail, but it would
not be aware of how or why.
The specific ACCs that were instantiated included: Dis-

abling the network card, disabling the W3SVC service,
removing the volume upon which the IIS webroot was
contained, removing all free space from any of the three
volumes, disabling network access from one hop above the
virtual machine’s purview, and sabotaging the primary DNS
resolver entry. The DFIs we instantiated included crashing
various services such as: The IIS 7.5 W3SVC service,
the Windows IPv4 network stack, and the Windows DNS
service. Each ACC or DFI was run 6 times using the same
ADF which was allowed access to 5, 10, 15, 20, 25, and
30 configuration samples. This allowed us to realise trends
within each approach, and to see differences in both output
and ADF confidence during each specific test.
The confidence values for each result were generated

using contrastive divergence learning. Once a fault was
detected by the ADF, it loaded the sampled data from disk
and instantiated an individual RBM for any feature that did
not have matching historical change data in both the last
known good (LKG) and current (i.e. faulty) configuration
data. The RBM was then trained using the LKG values
over 5,000 epochs before attempting to produce two values
representing either an expected or unexpected result against
the faulty data series. The highest value was selected as the
most likely category of the feature’s behaviour, and as a
representation of confidence.
The training methodology used in this experiment differs

from the previous approach in two key characteristics: It
uses lazy evaluation, and a padded series of inputs. The
change from greedy evaluation to lazy was done as a general
optimisation; the reasoning for this is explained in further
detail in the results section but can be summarised as logical
improvements to the framework for skipping features that
had identical behavioural data and as an improvement in the
total number of computational operations.
In order to train an RBM it is necessary to produce a

collection of feature behaviours organised in a series–i.e. a
matrix of values that has the same dimensions as the number
of samples. To ensure that this experiment leveraged the
same total volume of input data in the previous iteration,
and to maintain consistency between the two sets of results,
‘no data’ markers were utilised to complete a series where
appropriate. In exchange, the ability to predict a series of
values was gained versus only single values in the previous
iteration.

V. RESULTS
The successful evaluation of this experiment focused

on whether or not it was possible to correctly detect the
presence of a fault, and then identify its source using
a comparison of actual and synthesised feature data by
leveraging Restricted Boltzmann Machines. The results from
this experiment show that is is possible to meet both of these
criteria and this methodology improves upon the previous
approach. However, using an RBM comes with the costs of



Figure 2: Time Taken represents the average number of
“ElapsedTicks” between when a fault was detected and the return
of an ordered list of potential root causes based on confidence
value.

a longer initial wait time for results, higher variability within
those results, and, ideally, larger training sets.
As expected the RBM required more ElapsedTicks from

the time a fault was detected by the ADF to complete its
training and evaluation tasks than the two prior methodolo-
gies (Figure 2). This was largely due to the aforementioned
switch from a greedy to a lazy evaluation, and the number
of epochs used to train each RBM. In comparison, however,
this was an improvement overall in terms of total resources
consumed.
In the two previous instances, the number of total com-

putational cycles used was much higher. Direct observation
during runtime showed that both the HMM and ANN ADFs
utilised anywhere from 1-3% of the CPU for approximately
30 seconds for every minute they were active. These cycles
were used primarily for WMI data collection and for training
the ADFs–both processes exited after 5, and 25 seconds on
average, respectively. Since the RBMs were not trained until
a fault was explicitly detected, 25 seconds of CPU time were
recovered for each minute the ADF was active.
In instances where a greater number of samples needed

to be evaluated, a steep linear increase was observed in the
number of ElapsedTicks before the process completed. This
was due to the size of the data collection, which grew faster
than previous approaches. However, the approach does scale
relatively well. Using the modest resources provided to the
VM it took about 10 seconds to parse all 30 samples in
each iteration–each sample containing up to 30 data points
on approximately 6,000 features. Naturally, changing the
amount of data collected, or how much total data is stored,
will increase the processing time.
Fault position is the primary metric upon which the

Figure 3: The average position of the correct fault as returned by the
ADF is represented in this graph. Overall the RBM was able to list
the correct fault more frequently than the two previous approaches–
with an exception at 30 samples.

success of the ADFs were evaluated–it is simply where the
correct fault is located within a list of potential root causes.
The lower the index value of the correct fault, the better the
ADFs overall performance. The ideal ADF returns an index
value of 0 every time for the correctly identified fault.
On average RBM was able to produce a lower index

position for the correct fault than the previous approaches–
with the exception of the HMM (Figure 3). When using
30 configuration samples the HMM was able to position
the correct fault slightly better than the RBM–0.83 versus
0.838, respectively. The gradient of each of these approaches
also suggests that the HMM could continue to outpace other
strategies.

The number of total leads represents the avenues of
exploration that the ADF must account for after each object
has been trained, respectively. In the case of the RBM this
value was much higher than the two previous approaches.
By switching from greedy to lazy evaluation, changes in the
system’s configuration had to be accounted for all at once
when a fault was detected. This meant storing all of the
leads over time instead of evaluating them gradually and
then accounting for them via the learning algorithm. The
result was growth over time for the total number of features
that needed to be evaluated.
Interestingly, the list size did not seem to influence the ac-

curacy of the RBM negatively (Figure 4). Based on the fault
position, the evaluation of the correct lead was given more
precisely and more accurately than previous approaches
(Figures 5 and 6, respectively). From a probabilistic
perspective, it was expected that there would be a greater
amount of variance in which leads were selected. Instead, it



Figure 4: Each ADF is responsible for generating leads when a
fault is detected. This graph represents the average total number of
suspect features (i.e. ‘leads’) per approach at each sample size.

was noticed that the results returned by the ADF had a wider
range of outputs than previous instances. In the simplest
of terms the same inputs would return similar but notably
different results.
The variance in the RBM’s output seems to be associated

with how the RBMs are instantiated. A random seed is used
to build each node within the RBM. This value dictates the
initial state of the node, and consequently as these values
get updated in different order, the paths for each output
are assumed to also be somewhat randomised. Since this
information is used to predict entire sequences of data, the
chance for a comparison to mismatch seems to manifest
at a higher rate than in previous instances. This is both
reasonable and expected considering the use of a simulated
data set–however, if a full training set were used, we would
expect the variance to drop.
In light of this, one possible explanation for the perfor-

mance improvement is that by keeping all of the potential
leads until the end the likelihood of missing the correct
feature was lessened. However, this theory has not yet
been tested and remains an avenue for future research. By
converting both the HMM and ANN ADFs to use lazy
evaluation it may be possible to duplicate the results we’ve
seen here with the RBM.
As mentioned in the previous paper, a greater list of leads

is not assumed to be better. The ideal ADF will return a list
that consists of only the correct avenues for exploration. As
such, the approach of the previous ADFs is more likely to
meet this criteria than using lazy evaluation in combination
with RBMs.
The accuracy of this experiment was measured by eval-

uating the number of correct leads in the list that matched
the fault source plus the number of leads that didn’t match,

Figure 5: Precision was measured by taking the total number of
correct leads in the list divided by the same value plus the number
of leads above these entries.

Figure 6: Accuracy in the RBM ADF showed an improvement over
prior approaches. In one instance, however, the correct fault failed
to be identified.

divided by this same information plus the number of leads
incorrectly categorised above the correct leads, plus the
number of false negatives.
Overall the results showed an improvement from previous

attempts. In the majority of cases the correct root cause
was at presented within the list of leads–often with a high
confidence value. In one instance, however, a test was run
to see if the ADF could determine the root cause of a fault
that was outside of the local system. This was outside of
the scope of the initial experiment, but we were interested
in exploring the potential results.
After shutting off a network appliance upstream from

the VM, and using 30 known good configuration samples,



Figure 7: Harmonic Mean represents the overall performance of
the contrastive divergence learning (RBM) algorithm in relation to
both Baum-Welch (HMM), and Naı̈ve Bayes (ANN).

the ADF suggested the root cause was a network adapter
throughput / speed change. This result was arguably correct–
the adapter speed was indeed reduced to zero. Considering
the ADF had no sample data to work with indicating the
existing of other potential problems, this result was surpris-
ing. With fewer configuration samples the ADF returned an
entirely incorrect root cause–the number of total processes
running on the system–and thus the accuracy dropped to
14% for this test. As such, it has been included here, but with
a normalised view that included only the tests we expected
to run, and with the outlier which included the test that had
a fault outside of the local machine’s purview.
Lastly, as in the previous experiment, using fitness func-

tions and a full virtual machine with live input allowed for
a direct approach when evaluating the ADF’s results. As
such, no pre-fabricated model needed to be provided–the
ADFs built its own expectations of the features’ behaviours
so long as the fitness tests continued to pass.

VI. CONCLUSION
This experiment successfully demonstrated that combin-

ing fitness functions and RBMs it is possible autonomously
detect faults and provide an accurate, ordered list of poten-
tial root causes. It also expanded upon prior research by
demonstrating better overall performance and the ability to
predict a series of behaviours, but with the added caveats of
requiring more time to produce results from when the fault
was initially detected, and higher variability.
Although the results from this experiment were positive,

several questions remain unanswered–including whether or
not this approach would reduce operating costs in a large-
scale production environment, if using a larger data set
would reduce variability, and if these approaches could be

used to understand the source of a fault through feature
locality.
Leveraging contrastive divergence learning in RBMs,

makes it possible to predict a sequence of feature behaviours.
This has several implications, but most notably using a
multi-step prediction algorithm means there is potential to
switch from a reactive to a pro-active detection of faults,
and to understand if the root cause of a fault has multi-
ple sources–(i.e. feature locality). By instantiating a self-
adaptive primitive with the ability to predict a sequence of
values, leveraging existing feature locality detection tech-
niques becomes more accessible [16], [26].
Using a partially simulated data set has left some ques-

tions as to whether or not the results of this experiment could
be improved further in terms of variability. Although this
approach afforded a direct comparison to the prior research
it would be interesting to see if doubling the training period
would improve the results. Similarly, it may be possible to
train the RBM in a shorter amount of time by using a series
of similarly configured virtual machines and then sharing the
data between them over a network. One of the end goals
in our research is to build a network aware, self-healing
framework that is agnostic to its computing environment.
There are still other methodologies that should be com-

pared to better understand their advantages and disadvan-
tages in anomaly detection. More advanced types of neural
network–such as long short term memory networks and bio-
directional recurrent neural networks (LSTMNs, BiRNNs,
respectively). and other so-called ‘deep-belief’ networks,
represent interesting avenues for exploration.
It’s important to note that WMI was not designed to pro-

vide the kind of functionality leveraged in this experiment.
It does not have a primary key, nor a built-in mechanism
for uniquely identifying rows of data–despite the fact that
interfacing with WMI uses ‘WQL’. This poses challenges
when trying to determine if new items have been added,
or existing items have been removed–such as a physical
device or software application. It is for this reason that the
dictionary with the unique identifier value was used. A re-
placement to WMI would provide substantial improvements
to the speed at which the data is gathered and compared,
and promote more routine analysis in similar scenarios.
Lastly, some of the research avenues recommended in

our previous work remain unexplored–including a live study
of the self-healing systems frameworks in a large-scale
computing environment, self-provisioning fitness tests, and
understanding the differences in risk between supervised and
unsupervised management techniques.

ACKNOWLEDGMENTS

Funding for this research was provided by the Scottish
Informatics and Computer Science Alliance (SICSA).



REFERENCES
[1] C. Schneider, A. Barker, and S. Dobson, “A survey of

self-healing systems frameworks,” in Software Practice and
Experience. Wiley, 2013.

[2] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey, “Fulfilling
the vision of autonomic computing,” IEEE Computer, vol. 43,
no. 1, pp. 35–41, January 2010.

[3] H. Psaier and S. Dustdar, “A survey on self-healing systems:
approaches and systems,” Computing, vol. 91, Issue: 1, pp.
43–73, 2010.

[4] J. McCann and M. Huebscher, “Evaluation issues in auto-
nomic computing,” in Grid and Cooperatve Computing -
GCC 2004 Workshops. Springer Berlin, 2004, vol. 3252,
pp. 597–608.

[5] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised
behavior learning for predicting performance anomalies in
virtualized cloud systems,” in Proceedings of the 9th inter-
national conference on Autonomic computing, ser. ICAC ’12.
New York, NY, USA: ACM, 2012, pp. 181–190. [Online].
Available: http://doi.acm.org/10.1145/2371536.2371571

[6] D. Miorandi, D. Lowe, and L. Yamamoto, “Embryonic
models for self–healing distributed services,” in Bioinspired
Models of Network, Information, and Computing Systems, ser.
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering. Springer
Berlin Heidelberg, 2010, vol. 39, pp. 152–166.

[7] A. J. Ramirez, D. B. Knoester, B. H. Cheng, and P. K.
Mckinley, “Plato: a genetic algorithm approach to run-time
reconfiguration in autonomic computing systems,” Cluster
Computing, vol. 14, no. 3, pp. 229–244, Sep. 2011.

[8] O. Shehory, A Self-healing Approach to Designing and
Deploying Complex, Distributed and Concurrent Software
Systems, ser. Lecture Notes in Computer Science. Springer-
Verlag, 2007, vol. 4411, pp. 3–13.

[9] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci,
F. Lo Presti, and R. Mirandola, “Moses: A framework
for qos driven runtime adaptation of service-oriented
systems,” IEEE Transactions on Software Engineering,
vol. PP, no. 99, pp. 1–23, 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5963694

[10] G. Li, L. Liao, D. Song, J. Wang, F. Sun, and G. Liang, “A
self-healing framework for qos-aware web service composi-
tion via case-based reasoning,” in Web Technologies and Ap-
plications, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, vol. 7808, pp. 654–661.

[11] D. Menasce, H. Gomaa, S. Malek, and J. Sousa, “Sassy:
A framework for self-architecting service-oriented systems,”
Software, IEEE, vol. 28, no. 6, pp. 78–85, 2011.

[12] L. Rilling, “Vigne: Towards a self-healing grid operating
system,” in Euro-Par 2006 Parallel Processing, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg,
2006, vol. 4128, pp. 437–447.

[13] C. Schuler, R. Weber, H. Schuldt, and H. j. Schek, “Scalable
peer-to-peer process management - the osiris approach,” in
In: Proceedings of the 2 nd International Conference on Web
Services (ICWS’2004). San Diego, CA: IEEE Computer
Society, 2004, pp. 26–34, washington DC, USA.

[14] N. Stojnic and H. Schuldt, “Osiris-sr: A safety ring for
self-healing distributed composite service execution,” in Soft-
ware Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2012 ICSE Workshop on. Zrich, Switzerland:
ACM, 2012, pp. 21–26, new York, NY.

[15] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-
dimensional root cause diagnosis via co-analysis,” in
Proceedings of the 9th international conference on
Autonomic computing, ser. ICAC ’12. New York, NY,
USA: ACM, 2012, pp. 181–190. [Online]. Available:
http://doi.acm.org/10.1145/2371536.2371571

[16] B. Garvin, M. Cohen, and M. Dwyer, “Failure
avoidance in configurable systems through feature locality,”
vol. 7740, pp. 266–296, 2013. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36249-10

[17] T. Kohonen, “The self-organizing map,” Proceedings of the
IEEE, vol. 78, no. 9, pp. 1464–1480, 1990.

[18] C. Schneider, A. Barker, and S. Dobson, “Autonomous fault
detection in self-healing systems: Comparing hidden markov
models and artificial neural networks,” in Proceedings of
International Workshop on Adaptive Self-tuning Computing
Systems, ser. ADAPT ’14. New York, NY, USA: ACM,
2014, pp. 24:24–24:31.

[19] J. O. Kephart, “Autonomic computing: The first decade,” in
International Conference on Autonomic Computing. Karl-
sruhe, Germany: ACM SIGARCH/USENIX, 2011, pp. 1–56,
new York, NY.

[20] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, Issue: 1, pp. 41–50, 2003.

[21] J. O. Kephart and W. E. Walsh, “An artificial intelligence
perspective on autonomic computing policies.” Yorktown
Heights, NY, USA: IEEE Computer Society, June 2004, pp.
3–12, washington, DC, USA.

[22] M. Carreira-Perpinan and G. Hinton, “On contrastive di-
vergence learning,” 2002, department of Computer Science,
University of Toronto.

[23] A. Kirillov, “Aforge.net framework,”
http://www.aforgenet.com/framework/members.html, 2013.

[24] C. R. Souza, “Accord.net framework,” 2013, http://accord-
framework.net/.

[25] A. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Trans-
actions on Information Theory, vol. 13, no. 2, pp. 260–269,
April 1967.

[26] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Using feature
locality: Can we leverage history to avoid failures during
reconfiguration?” in Proceedings of the 8th Workshop on
Assurances for Self-adaptive Systems, ser. ASAS ‘11. New
York, NY, USA: ACM, 2011, pp. 24–33, szeged, Hungary.


