
University of St Andrews

From Forth to Tay:
A component-based extensible virtual machine
for compact programs

Simon Dobson
School of Computer Science, University of St Andrews UK

simon.dobson@st-andrews.ac.uk
http://www.simondobson.org

mailto:simon.dobson@st-andrews.ac.uk
http://www.simondobson.org/

Overview

● Programming for WSNs
● Nodes not governed by Moore's law
● Radically distributed, radically failure-prone

● Languages need re-thinking
● New control constructs, global behaviour

● This talk
● A idea for compact, extensible VMs

A brief history of computing

● Back in the day, we lacked a certain something
● Memory, mainly
● But also compute power, storage, IDEs, high-

resolution graphics, windowing systems, operating
systems, memory management, optimising
compilers, type checking, objects, debuggers, the
internet, portable code, …

● Then we built big compilers, bigger computers,
and hooked them together. All problems were
solved, and everything was wonderful.
The end.

Or was it?...

Abnormal environments

● Our ideas of software development have been
conditioned by Moore's law
● Larger, more complex environments generating

fexible code

● What happens when this isn't the case?
● Can't assume platforms will

ever get substantially better

● What happens when we're coding
in what isn't a “normal” environment?
● Maintain sensible behaviour in the sense of

distinctly non-sensible inputs and partial failure

Targeting a new domain

Presumably you have some set of tasks, some domain of application, for which you
think a new programming language would be better than any existing language.

Think about what people want to be able to say. What are the
problems, the applications, that this programming language is going to be used
for? How would you like to express them in that language?

What would be the most natural way to write them down?
What are the most important examples, the simplest ones that would get somebody

started? Try to make those as straightforward as possible.

Brian Kernighan, quoted in Biancuzzi and Warden.
Masterminds of programming. O'Reilly Media. 2009.

The new domain

● Sensor networks are clearly different, but we're
unclear as to what this means
● New types: uncertainty, ranges, probability, ...
● New control structures: decision-making by

reasoning, rollback, …
● New composition modes: failure is normal,

resource discovery, …

● All suggest new languages – but what?
● Because we don't know, we need to experiment
● Extend/change features on offer

Extension – 1

● Layering
● Syntactic and/or semantic sugaring
● Raise the abstraction level, but not

necessarily for the compiler

● Libraries
● No new types

or syntax

while(x>10) ...

test: if(!(x>10)
 goto loop;
 …
 goto test;
loop:

Semaphore s, t, u;
P(s);
 P(t);
 …
 if(...) V(t) else …
 …
 V(t);
V(s); Functionally, monitors and

synchronized blocks provide no
advantage over semaphores. However...

Extension – 2

● Syntax
● Re-write terms

without reducing
● Need language support,

still looks like Scheme

(define-macro when
 (lambda (test . branch)
 (list 'if test
 (cons 'begin branch))))

(apply
 (lambda (test . branch)
 (list 'if test
 (cons 'begin branch)))
 '((< (pressure tube) 60)
 (open-valve tube)
 (attach floor-pump tube)
 (depress floor-pump 5)
 (detach floor-pump tube)
 (close-valve tube)))

(when (< (pressure tube) 60)
 (open-valve tube)
 (attach floor-pump tube)
 (depress floor-pump 5)
 (detach floor-pump tube)
 (close-valve tube))

These variables are pattern variables that
aren't expanded until the macro is used

Staged compilation

● Use one language to structure another

● E.g. Flask: stage NesC via Haskell
● Leaf functions get deployed
● Structuring and data pathways done by higher-

order functions that act as code generators

Mainland et alia.
Flask: staged
functional
programming for
sensor networks.
Proc. ICFP. 2008

Processor
Higher-order code
generator wraps-up
leaf code

Deploy to network

Generate code in the
deployment language having
made use of higher-level
structuring concepts

Virtual machines

● Canonical example is the Java VM
● A machine whose machine code is in some sense

optimised for Java
● Provide a small, tight interpreter ported to each

“real” platform

Also target other languages at it, for example Scala

Worth noting that VMs have a
long pedigree, including for
Smalltalk, Pascal, .NET

public class X { … }

X.class

X.c
a.out

javacc

jit

gcc

java

The VM inner loop

● Interpret the bytecodes
● Decode instruction
● Switch on the opcode
● A small, fxed

population

 void bytecode_inner_interpreter() {
 while(TRUE) {
 bytecode = *ip++;
 opcode = unpack_opcode(bytecode);
 switch(opcode) {
 case OP_NOOP:
 break;
 ...
 case OP_JUMP:
 ip += unpack_offset(bytecode);
 break
 ...
 }
 }
 }

Bytecode may be “packed”
with offsets or other
literal information, as well
as instruction opcode

Designing the VM – 1

● For Java
● Bytecodes for a stack machine
● Arithmetic, object creation, method call, slot

update, object lock/unlock
● (Some peculiar omissions: no bytecodes create or

control threads, for example)

● A single set of decisions, made once
● Does this make sense in the modern world?

Designing the VM – 2

● Engineering decisions made early and then
fossilised: now almost impossible to change

● “Profles” outlaw some programs, i.e. real
numbers on small platforms

● Limited bytecode re-writing

● Some JVMs for sensor networks provide
“tighter” bytecode to reduce radio traffc

● Refactor some functions

● Move verifcation to gateway, nodes can
assume a “trusted compiler”

Extensible VMs

● What if we didn't fx the VM?
● Allow for changes in the bytecode (or whatever)
● Let the VM evolve alongside the rest of the

codebase

● Add – and, crucially, remove – features
● Removal is crucial: get rid of problematic

constructions, don't just wish them away
● Keep the core, extend in a structured way
● Migrate what we know about

good software engineering all
the way down

Say “no” to
fossilisation!

Components all the way down

● Tay: a component-based VM
● Components provide the primitives
● Load and wire components as required
● Add and remove features

● The rest of this talk discusses a work in
progress to build this architecture

Required interface Provided interface

No implicit
dependencies:
everything goes
through interfaces

Operations to
wire and un-wire
components as
required

Within a component

● “Dependencies” = VM operations
● A reference in one component links to an

implementation in another
Component dependencies
provide VM features

A

B

B
You'd expect
features to be
provided in a rough
hierarchy – although
this might not be
strict

Within a defnition

● “Defnition” = VM instruction
● Analogous to a bytecode
● Implementation provided by wiring

to an implementing component
● Provide as a primitive
● Provide using compound defnitions in terms of

other VM instructions

Providing the code

● Bytecode is clearly going to be problematic
● Not a bit enough namespace
● ...at least if we consider all the possible features

● Small base of functions to build on
● As few as possible, to allow specialisation

● Compact code
● Make sure we can make references small (bytecode

would be ideal...)

(Questionable) choices

● Monotyped
● Everything a “cell”
● Leave typing to higher-level stages/compilers

● Stack machine
● Fast, small,

common,
easily ported

● Threaded interpreter
● Extensible instruction set while

retaining (most) compactness
Older viewers may
recognise this as the
language Forth – and
would not be wrong...

Threaded interpretation – 1

TYPE

0 DO
 DUP C@ EMIT
 /CHAR +
LOOP DROP

EMIT

DUP 1+
CHARTABLE C@

(:)

1+

The primitive code
(“inner interpreter”)
that runs words

To run this word we recursively
evaluate its definition

Defines how the
body of a non-
primitive is executed

To run this word we recursively
evaluate its definition

Primitives in machine
code, C, or some
other language

: TYPE (addr n –)
 0 DO
 DUP C@ EMIT
 /CHAR +
 LOOP DROP ;

Threaded interpretation – 2

Execution token

: DUP (a – a a) … ;

● Execution tokens
● No run-time lookup: a direct jump
● Word invocation is very cheap, of the order of 10

machine instructions

NAME

LFA

CFA

BODY

TYPE

0x1234

0x5678

0x6423
0x6534
0x5682
0x8567
...

(LITERAL)
0
(DO)
DUP
...

Threaded VM inner loop

● Decode the execution
token and use an
“address” to
get the primitive
code to execute

 void threaded_inner_interpreter() {
 while(TRUE) {
 xt = *ip++;
 prim = xt_to_behaviour(xt);
 (*prim)(xt);
 }
 }
 void duplicate(xt) {
 v = pop(); push(v); push(v);
 }
 void do_compound(xt) {
 push_return(ip);
 ip = xt_to_code_body(xt);
 }
 void end_compound(xt) {
 ip = pop_return();
 }

Convert an xt to the
behavioural address

Behaviour may be “compound”,
which pushes the return
address onto the VM control
stack to later return

The core VM

● We defne a component providing the really
core concepts
● Inner interpreter
● Data and control (return) stack
● Stack and arithmetic operations
● Branches and basic control structures

Requires no other
components

All definitions are
primitives, exporting
the core VM
operations, wiring etc

Example: loops

COUNT
1+
(DO)
DUP
I
+
C@
EMIT
/CHAR
+
(BRANCH) -20
DROP
(NEXT)

Compile the starting behaviour
that sets up the stacks etc

Compile a jump back to
the start of the loop

Some words “compile-out”
to simpler structures

: TYPE (addr n –)
 0 DO
 DUP C@ EMIT
 /CHAR +
 LOOP DROP ;

Cell values – 1

● A reference to something else in the system
● Instruction, small literal, memory address, …

● Steal bits from a cell

“Instruction “cell

Instruction within component
Component index

“Literal” cell

Value not quite as large as a cell – but
large enough for most purposes

16-bit cells, common for a
lot of WSN systems

Cell values – 2

● Because we're treating all operations as
instructions, we can abstract an awful lot of
things that normally need complex handling
● Agree on stacks and cells
● Things like arithmetic are

the only way to “unpack”
literal cells

● Parameterise for the number of cell
kinds by stealing more bits

A minimal level of
agreement seems to be
enough to abstract all
the other details

Cell value kinds

● Seem to need to defne these globally
● Short integers and reals
● Instructions
● Real-memory addresses
● Heap references (also addresses)
● Branches
● Cell sequences landing on the stack

It's a shame this seems to be
necessary, but the cell value
structure ends up deeply
embedded in the inner loop code

These encode enough
information to make
the heap parseable

Interpretation and compositionality

● Overheads are very small
● Instruction decode, index and indirect call
● Around 10 real instructions per VM instruction

● A surprising number of language features are
orthogonal
● Very little needs global agreement
● Stacks and cells
● Defne and select features as required,

don't take the hit for those that aren't needed

Dobson et alia. Vanilla: an
open language framework.
LNCS 1799. 1999.

For example: memory management

● Real memory and managed memory
● Different cell kinds
● One component provides static allocation
● Another provides a heap making use of the static

allocator
● No overhead for systems that don't need a memory

manager
● No way to synthesise managed-memory cells

except using the appropriate components

For example: concurrency – 1

● Set up a threaded interpreter that runs a certain
number of VM instructions and then returns
● Force all instructions to

be non-blocking
● VM has an instruction

to run a sequence
of instructions and
then return

● One component can then
schedule the running of others
● Lightweight threads

 void bounded_interpreter(bound, thread) {
 oldthread = activate(thread);
 n = bound;
 while(!prioritised && n--) {
 xt = *ip++;
 prim = xt_to_behaviour(xt);
 (*prim)(xt);
 }
 activate(oldthread);
 }

Prioritisation
allows a thread
to hold onto
execution
temporarily

For example: concurrency – 2

● Main thread acts as a scheduler
● Select another thread to run

● “Surface” concurrency control into the VM
● Write VM scheduler using all the features available

within the VM
● Round-robin, priorities, interrupts, ...

● Does not have to be built-in or done outside the
instruction stream (as with the JVM)
● Architecturally consistent

Dobson, Porter and Dearle. Bounded
first-class control, In preparation.

Partially run a
continuation

Choosing the abstraction level

● Changing the VM changes the level of
abstraction
● Program in terms of higher-level constructs
● Generally leads to more compact code

● Change the abstraction level without re-
compiling or -deploying the VM
● Higher-level operations
● Target at the operations

needed by the WSN

Levis and Culler. Maté: a virtual machine
for tiny networked sensors. ACM
ASPLOS. 2002.

Does this work?

● Kind of (so far)
● Some features cross-cut: it makes no sense to use

different heap components, but hard to ensure
consistent (re-)wiring

● We've ducked the issue of typing, which can't be
addressed using cell kinds, leaving it to compilers
that target the Tay VM

● The same xt can refer to different instructions because
of the interface-relative indexing Makes debugging

interesting

Current state

● We have a basic version working
● Built using Attila, a from-the-ground-up Forth VM
● Alter the Attila cross-compiler to build Tay

components
● Basic wiring and other operations

● Will be open-sourced

Moving forward

● Looking towards experimentation
● Performance seems acceptable
● Implement a “real” WSN language, for example the

InSense language developed in St Andrews

● What are the new language features we need?
● Easier to explore the space when we only have to

provide new features, not a complete compiler/VM

Balasubramaniam, Dearle and Morrison. A composition-based approach to the construction
and dynamic reconfiguration of wireless sensor network applications. LNCS 4954. 2008.

Three things to take away

● Un-fx the virtual machine
● Components all the way down

● Allows elements to be surfaced and re-defned
that are normally hard-coded
● Minimal agreement

● Simplify experimentation with new languages
● Focus on the new, re-use what we understand

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

