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Abstract

Control systems must increasingly be designed to involve
collections of hardware and software components, both of
which may evolve over the lifetime of the system, and which
are expected to provide self-managing, adaptive, autonomic
behaviour. Understanding the behaviour such a system will
exhibit under any specific conditions is a significant design
challenge. We present a model derived from approaches
to modelling dynamical systems in which the adaptive be-
haviour of an autonomic system may be described and anal-
ysed as a whole. We explain our ideas with reference to a
hybrid hardware/software system, and argue that it gener-
alises to other classes of autonomic systems.

1. Introduction

Software architectures involving control systems have
long been used to abstract away some of the complexity
of managing a set of interconnected software components.
However, the complexity of the control systems themselves
has recently been approaching the complexity of the sys-
tems they manage, and the costs of developing and main-
taining these systems has risen accordingly.

In recognition of this growing problem, a new branch
of software engineering was created which has come to be
known as autonomic software. Autonomic software sys-
tems are designed so that they can make modifications to
their own execution, adapting to changes in situation and
learning from the outcomes of those decisions. Eventu-
ally, this will allow the development of autonomic systems
which are entirely self-managed and require a minimum of
human interaction.

Autonomic software systems will often take a multitude
of contextual information into account when making deci-
sions. This information is gleaned from environmental sen-
sors, and sensors fitted as part of the autonomic system it-

self, which is the case for the systems built into modern
automobiles. The system extracts relevant sensor data from
the environment, filter and distill them, and transform them
into relevant situational information so that decisions can
be made in context. This allows the system to adapt in re-
sponse to changes internal and external to the system [6].

The provision of a control system which manages and
regulates the behaviour of subordinate components can be
thought of as the introduction of a distinct layers in the ar-
chitecture. We suggest that software with autonomic be-
haviours can be built in at any level of the architecture.
Rather than write entirely new systems, in which autonomic
capabilities are programmed at every level, we suggest the
establishment of autonomic control systems, that have the
capability to manage systems that are themselves not inher-
ently autonomic. This allows them to be applied to systems
that are already deployed, and could bridge the divide be-
tween traditional static systems, and fully adaptive systems.

In this paper we explore some ideas for modelling au-
tonomic systems as a whole rather than as collections of
components with possibly unclear interactions. We adopt
some techniques from dynamical systems theory to con-
struct models of systems whose properties can be examined,
and show how new aspects can be added (and removed) in
a well-founded manner. We conjecture that this approach
can be applied to improve the analysis of a wide class of
autonomic systems.

The rest of this paper is organised as follows. Section 2
surveys related work in the area of software control systems,
including a basic background on autonomic systems. Sec-
tion 3 presents our approach for developing an autonomic
control system. Section 4 concludes with some for future
work.
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2 Related work

2.1 Control systems

A control system is a set of devices which manages the
behaviour of other devices or systems. Control systems
have been used in the automotive industry [8], space ex-
ploration [18], and power plants [4] – we will focus on the
first here

In 1988, Uwe Keincke discuss the need for automotive
control systems [7]. Since then, control systems such as
ABS (Anti-lock Braking Systems) and engine control have
been implemented and are used in all modern day cars.

Lennon et al. [17] implemented a control system using
fuzzy logic in order to decide when the brakes should be ap-
plied. This was created an addition to ABS. ABS measures
wheel lock from the pressure on the brakes by the driver,
the velocity of the vehicle and the wheel speed. Brake tem-
perature is also an important factor, as hot brakes require
different braking behaviour to cold brakes. This paper de-
scribes a learning process which takes braking patterns and
temperatures into account to add to the performance of the
ABS.

Patterson and Nielson [11] describe a control system for
handling speed control in a diesel engine. The purpose of
this is to reduce drive line oscillations (shaking caused by
engine turning the driveshaft) in a car. This is done by mon-
itoring the oscillations in the car depending on how much
diesel is fed to the engine, and how this affects the speed of
the wheels.

Kiencke et al. [9] describe the impact of automatic con-
trol of vehicles in recent years. They suggest that there is a
trend towards multiple embedded components in a vehicle.
These components would be ad hoc, allowing for changes
in the structure of the network. They then identify a prob-
lem where the greater the number of separate components,
the greater the chance of mis-communication, which could
lead to incorrect behaviour. This is of particular importance
for critical systems like drive-by-wire. It is therefore clear
that a management system must be in place to control the
data flow through the system, and to manage the addition
of new components such as sensors. They also forecast a
movement from the control of individual components in a
system to a more high-level control system.

2.2 Autonomous automotives

IBM have begun research into using autonomous com-
puting in automotives with the DySCAS (Dynamically Self-
Configuring Automotive Systems) project [2]. The idea be-
hind this project is to bring autonomic computing to auto-
motive software in the simplest and most extensible way
possible. The project is still in the early stage of research.

Scarlett [13] proposes a system that allows for the
automatic discovery of devices, self-optimisation, self-
diagnostics and self-healing. This will mean that the ECUs
(Electronic Control Units) in each car, which in the past
were used in isolation, are linked, meaning that the system
as a whole is less susceptible to failure.

2.3. Control in distributed systems

Control systems are widely used in networks and dis-
tributed systems. Abdeen et al. [1] describe the use of
Markov decision processes to decide on how data is routed
through networks of different capabilities. They describe
the situation of a PDA user watching a video while walk-
ing between networks of different band withs. The system
adapts appropriately so as to keep the video streaming by
changing compression levels and frame rates.

This system displays some properties of an autonomic
control system – adaptation and decision making – but does
not self-diagnose or self-heal.

2.4. Autonomic systems

Autonomic computing and communications endeavour
to develop approaches to systems design which facilitate
self-management, self-optimisation, self-protection, self-
healing and other “self-*” properties. The area has received
considerable academic and industrial interest.

Autonomics embraces an approach which “closes the
loop” between sensors and system behaviour. Sensed data
is analysed and used to affect the system’s behaviour, and
the effects of these adaptations may then in turn be observed
and lead to further adaptations (figure 1).
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Figure 1. The autonomic control loop (from
[5])

Many examples of autonomic systems can be found
[14, 15], all of which have, by their nature, an element



of control, enabling them to adapt to situations to main-
tain service. Despite this, these autonomic systems are de-
signed with specific goals in mind, for example resource
management [16]. This specificity does not enable the easy
transfer of the systems autonomicity to other domains. The
autonomic control system proposed in this paper is a first-
approach to specifying such a system.

Sensor fusion and system aspects are two approaches
proposed here, and believed by the authors to be part of
the foundation on which a general autonomic control sys-
tem will be based. Sensor fusion is the composition of
disparate data sources into a comprehensive and meaning-
ful data space. System aspects allow system administrators
to monitor specific sensors for the beneficial, or indeed the
detrimental, effects they have on the system as a whole.

Sensor fusion takes multiple inputs from separate
sources and outputs information that should be more infor-
mative and useful than if the inputs had been taken indepen-
dently, for example extracting depth information by using
two images of a location taken from different viewpoints.
A number of authors describe approaches for sensor fusion
[3, 10]: the application of sensor fusion to the autonomic
control system described in this paper will be entered into
more detail in 3.1

Separating system aspects will enable system designers
to quickly determine the impact of adding a specific data
source will have, via sensor fusion. Adding a new sen-
sor to an autonomic system should alter the adaptive space
which an autonomic system uses to determine valid system
adaptations. This alteration could be either a constriction of
the adaptations available to the system, a broadening of the
adaptations, or have a negligible consequence on the sys-
tem, each of these scenarios is informative to the system
designer.

If the additional data show that areas within the adaptive
space that were previously believed to be safe adaptions are
now unsafe, we have constricted the behaviours available
to the system. As an example, consider a self-organising
collection of robots. Initially the robots have wireless com-
munication capabilities and the ability to move around a set
space. Their goal is to maintain wireless connectivity while
also exploring their environment. The addition of a mem-
ory capability to the collective would constrict the locations
visited by ensuring that each time a robot explores a new
area, no other robot visits that location again.

A broadening of the adaptive space would occur if a sen-
sor was added that enabled the determination of the strength
of the wireless signal between the robots. Previously extra
co-ordination would have been required to ensure that the
robots did not travel further than a set distance apart, guar-
anteeing a connection. With the new sensor installed the
extra data will allow the robots to put further distance be-
tween themselves. The equivalent within the adaptive space

is the expanding of the safe adaptations.
If adding a sensor does not affect the system at all, then

in the system’s current guise that sensor is a waste of re-
sources. This does not however rule out the sensor ever
being useful: it may be that, when used in conjunction with
other sensors not yet added, the sensor is beneficial.

When dealing with a multi-dimensional space, determin-
ing change is achieved mathematically, informing the sys-
tem designer of these changes is more problematic, due to
the difficulty in presenting information from a space higher
than third order. Aspects facilitate the generation of infor-
mative visualisations via data “freezing”: holding some of
the variables constant and displaying the rest to the user.
The system is decomposed into lower-order spaces, and the
areas of greatest change are shown to the system designer.

2.5. Whole system understanding

A lack of understanding regarding the way in which sys-
tems interact coupled with the requirement to pre-program
the manner in which systems react to change is an issue
with many legacy systems. Properly engineered complex
systems should consist of a number of distinct units or com-
ponents, held together by a shared logic. Each of these com-
ponents has a role in the overall operation of the system, and
each individual component has local knowledge and a spec-
ified interface. However, since the components will have
no knowledge of the system as a whole, it is difficult for an
individual component to take independent action that will
result in a benefit to the entire system.

In order for a system to make changes to its own oper-
ating procedures, it must have the ability to interpret how a
change will impact other elements in the system – requir-
ing an understanding of the entire system. This is more
problematic than it first appears: allowing a system to make
changes to its own operation will, by its nature, alter the
model of the system. The system must therefore also be able
to alter the model such that it reflects the changes made.

The potential for error when using a pre-programmed
model approach is not insignificant: if the model does not
capture a detail of the system that is later altered, the model
of the altered system will be incomplete at best and inaccu-
rate at worst.

2.6 Interaction between components

A well-designed system should consist of components,
or layers, permitting easy alteration to the system should
a component be found to require changes. An example of
such a system is the OSI protocol reference stack, within
which a clear definition of roles exists. In practice it is often
found that there is no perfect delineation, and interactions
not shown in the specification exist between the layers. It



may also be the case that interactions are programmed to
intentionally exist between layers. In either case the inter-
actions need to be identified to ensure smooth evolution.

Expanding the previous example to include multiple sys-
tems, each composed of multiple components and con-
nected via network links, a large number of interactions can
emerge. Systems are required to interact to perform many
of their functions. At the simplest level an issue only arises
when two components attempt to alter some aspect of the
system in a conflicting manner. This can lead to changes
being overwritten, or to oscillations between states. Neither
of these outcomes is desirable.

An autonomic control system is capable of identifying
these issues, and presents a solution: the extra context avail-
able to an autonomic control system coupled with the ability
to learn from previous events, and the system model, pro-
vides more scope for the correct application of control.

3 Modelling approach

The terminology used above to describe autonomic be-
haviour in terms of dimensions and degrees of freedom is
suggestive. It suggests that an autonomic system is en-
gaged in optimising its behaviour by moving within some
constrained space of possibilities. The problem, then, is to
provide a mechanism by which we can capture the effects
which various sensors and adaptive strategies will have on
the overall, visible behaviour of the autonomic system. The
approach we are currently developing borrows from tech-
niques developed in physics for a similar purpose.

3.1 Adaptive behavioural spaces

A simple physical system such as a pendulum can nev-
ertheless exhibit a range of interesting behaviours. The sys-
tem in figure 2(a) consists of a pendulum attached to a solid
block, swinging at a small angle of displacement. At any
point the pendulum’s state can be completely described by
two variables: its displacement d from the vertical mid-line,
and its velocity v. For any given initial displacement d0

we may plot displacement against velocity on a graph. For
a frictionless pendulum this results in a diagram like fig-
ure 2(b): the pendulum’s velocity increases until it reaches
a maximum vmax as it cross the mid-line (d = 0); it then
decreases to 0 when d = −d0, before reversing the motion
back to d0. The behaviour repeats indefinitely.

Thus, figure 2(b) completely describes the pendulum
system. Knowledge of one of the variables in the system
allows us to infer the other: given a velocity we can identify
the displacements at which it occurs; given a displacement
we can determine possible pendulum velocities; and the plot
completely captures all legal states of the system. A differ-

ent initial displacement d′
0 will result in a different circle,

but the overall behaviour remains completely predictable1.
This technique is known in physics as a phase space plot.

The diagram has one axis for each degree of freedom of
the system, either an input parameter (displacement in the
pendulum case) or a dependent variable (velocity). Addi-
tional parameters add additional axes: we might, for exam-
ple, treat the initial displacement d0 as a parameter, leading
to a three-dimensional surface describing the behaviour of
the system for each value of d0 (which would in fact be
a cone, at least if we restrict ourselves to small displace-
ments).

The important point is that values of the parameters of
the pendulum system are strictly constrained to lie on the
surface described by the phase space plot. In fact there is
even more structure: at any time t, the state of the system
at t + δt is constrained by the dynamics of the system –
the pendulum cannot suddenly reverse in the middle of a
swing. This additional structure forms a vector space, with
the vector at each point on the surface mapping that point to
another point also on the curve.

How does this relate to autonomics? An autonomic
system is one whose behaviour is expected to vary in re-
sponse to changing environmental factors, so as to optimise
in whatever sense its own service delivery. This does not of
course leave the system free to make any adaptation, since
its behaviour must remain within an acceptable design “en-
velope”, defined externally to the system itself [6]. The
more freedom we allow within it, the more possible adapta-
tions we provide. It follows that a system that is very highly
constrained will have few opportunities for adaptation than
one with fewer constraints, and that a system that is sensi-
tive to more environmental context and has more indepen-
dent or semi-independent components to its behaviour will
have more “space” in which to adapt than one with fewer
such parameters.

Hopefully the analogy is clear. The autonomic system
forms a behavioural space consisting of one dimension for
each input parameter (direct or contextual) and another di-
mension for each aspect of its observable behaviour. The
relationships between these dimensions – the possible be-
haviours that should be visible under each combination
of inputs and context – form a surface within the multi-
dimensional space2. The autonomic system is constrained
to “live” on this surface, with any adaptations it makes tak-
ing it to another point on the surface. Any point not on the
surface is “illegal” and should never be observed.

1For a pendulum with friction, the pendulum returns to a displacement
d = d0 − δd, and so eventually decays to the pendulum sitting still on the
mid-line. The plot would then describe a spiral to the origin.

2Actually it may be a more complex structure rather than purely a sur-
face, but that does not affect the discussion at this level.
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Figure 2. A simple dynamical system

3.2 Example: a braking system

If the above sounds a little abstract, let us consider a
more concrete example. As part of a project in automotive
software engineering, we are considering the modelling of
a vehicle braking system augmented with additional sen-
sors, with a view to providing a framework within which
to study the composition and impact of various design op-
tions. In this section we will outline a model of the adap-
tive behavioural space of a vehicle’s braking system. The
model we use is only a toy, and should not be taken as a
model of a real vehicle’s behaviour or control: our inten-
tion is purely to illustrate the application of a whole-system
adaptive behavioural space to a system involving hardware
and evolving software components.

Our control scenario is easily understood (figure 3). A
vehicle moving along a road encounters an obstruction, and
must stop before colliding with it.

The parameters for the braking system are straightfor-
ward. The vehicle moves with initial velocity v0 at an initial
displacement d0 from the obstruction at displacement dobs.
The brakes of the vehicle, when applied, exert a force that
retards its velocity. If we assume that the mass of the ve-
hicle is fixed, we may regard this force as a change −b in
velocity, which is proportional to the degree p ∈ [0 . . . 1] to
which the brake pedal is pressed.

The visible behaviour of the system may be described
simply the vehicle’s velocity v and displacement d at any
time. The desired behavioural envelope of the system is
equally simple: we want v to fall to zero before d = dobs.

What is the behavioural space of this system? To stop

-b

v = v0

d = dobsd = d0 = 0 d

Figure 3. A combined hardware/software
braking system.

safely – to remain within the behavioural envelope – a driver
must apply a braking force sufficient to stop the car in the
time remaining before hitting the obstruction. The possibil-
ities are shown in figure 4(a). If the driver applies no brakes
(p = 0, line (a)), or applies them too gently (line (b)) he im-
pacts with the obstruction. There is a critical braking pres-
sure pcritical at which he stops at the obstruction (line (c)).
Braking more strongly that pcritical stops the car before the
wall, within the behavioural envelope (shaded area). Ap-
plying the brakes fully (line (d)) stops the car in the shortest
physically possible distance.

Of course the driver may brake later, figure 4(b). At a
certain point, no amount of available braking force will stop
the car before impact.

To this basic model we may now add additional factors.
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Figure 4. Manual braking.

A distance sensor One useful optional accessory on high-
end cars has been a distance sensor, a forward-looking prox-
imity sensor that, if it detects an obstruction within a certain
threshold distance, applies the brakes automatically without
driver intervention. We may model this using the graph in
figure 5(a): when the distance to the obstruction reaches the
last point at which braking is possible, the braking system
applies the brakes as hard as possible to stop the vehicle.
This is a simple example of autonomic control: the system
acts without user intervention to keep its behaviour within
its envelope, facilitated by a new sensor.

Since emergency stops are likely to be uncomfortable for
passengers, we might modify the behaviour in figure 5(a) to
apply more progressive braking (figure 5(b)): as the dis-
tance gets more critical, the vehicle brakes harder.

Of course, the real world is unlikely to work like this:
a driver is more likely to observe an obstruction but brake
too gently than to ignore the obstruction entirely. This al-
lows us to model adaptive control. The distance sensor pro-
vides us with a model of the “edge” behaviour needed to
stop the vehicle safely. If the driver brakes harder than this
– so as to stay within the behavioural envelope – the ve-
hicle need perform no action; if however the driver brakes
too gently, the vehicle may apply additional braking force.
Having added a distance sensor to the car, we can therefore
use its braking profile as a lower bound on the amount of
braking needed in any particular circumstances. In terms
of the behavioural space, adding the distance sensor “clips”
the possible states of the system combining figure 4(b) with
figure 5(b) – something which is hard to display graphically
but easy to describe mathematically.

We therefore have a model of the impact that a distance
sensor should have on the behaviour of the complete sys-
tem. We also introduce the potential for autonomous brak-
ing in a way that is clearly related to other factors within
the system, and in a way that allows us to predict the over-
all adaptive behaviour a priori.

More realistic brake behaviour An automotive engineer
would observe that real brakes are not the linear devices we
have suggested. As the brakes are applied, they retard the
vehicle and dissipate its kinetic energy as heat. If the brakes
heat up too much they either lock fully on or fail. For a
given braking pressure, we therefore have a braking pro-
file that changes over time (figure 6). This function again
amends the other curves: if we brake at a certain distance
and pressure, we need to ensure that the force we exert is
sufficient to stop in time given the constraints of brake heat-
ing.

Additional sensing Additional sensors can now be added
in a principled way, and their impact assessed:
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Figure 5. An autonomous distance sensor.
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Figure 6. The effect of brake heating on brak-
ing velocity.

• A road surface sensor could characterise the road and
apply less force on rough surfaces

• An external temperature sensor might decrease brak-
ing force, and decrease the emphasis given to brake
heating, in cold conditions when roads are likely to be
icy

• A inclinometer could add an extra dimension of road
incline to the behavioural space, and brake harder on
steeper inclines

The point of this is not to suggest new vehicle designs,
but rather to illustrate the point that additional sensors can
be characterised by the effect they have on the adaptive
behavioural space, in conjunction with the characteristic
curves of other sensors and actuators.

3.3. Analysis and inference

What impact does this model have for design and analy-
sis? From a design perspective, we can describe the desired
behaviour of the system in terms of its visible characteris-
tics. Adding new sensors can (and indeed should) change
the responses of the system, as long as the result remains
within the desired envelope.

We have spoken so far about the use of sensors to change
adaptive behaviour, but the closed-form nature of the model
allows us to perform the reverse analysis too. If we apply



a certain braking force under certain conditions, we expect
the vehicle to behave in a particular way: if it does not do so,
we can make inferences about the effect of external condi-
tions, and hypothesise their nature. An example of this oc-
curs when driving in Australia, where (because of the large
temperature variations the surface is subjected to) roads that
appear to be dry and clear can actually become slippery with
very little water on them.

If we brake with a certain force and do not decelerate as
we expect, we might next time apply more force to compen-
sate. This allows the adaptive behaviour to adapt itself over
time in accordance with sensed conditions as to its own ac-
tual versus predicted behaviour – the essence of autonomic
control. This has the effect of distorting the adaptive be-
havioural space gradually as the vehicle learns new param-
eters to apply. There is a wealth of literature on how to
perform such learning; our model gives a direct geometric
meaning to such changes, and allows them to be studied in
a principled way that will ensure the system remains within
its design envelope.

3.4 Generalisation

If these ideas applied only to sensing and physical sys-
tems, they would be of limited utility in autonomic comput-
ing. However, this does not appear to be the case. Other
applications appear to be amenable to a similar modelling
and analysis approach.

One example we are interested in is the notion of rout-
ing and network management with cross-layer optimisation
[12]. A router might be regarded as having a behavioural
space controlled by its bandwidth, the congestion on the
network, the queue of packets and so forth. In response
to increasing congestion, a simple router has only a limited
range of options. If however we add a cross-layer “sen-
sor” able to (for example) determine that, of the two video
streams being transmitted, one has priority over the other,
the router might preferentially drop packets from the less
important stream. Alternatively, it may be able to proac-
tively drop the resolution of the less important stream to
create more bandwidth.

Each such strategy manifests itself as a change in the
dimensionality of the adaptive behavioural space, coupled
with a change in the visible responses of the system. One
might argue that users are only interested in best-effort de-
livery of streamed video, in which case the resolution of
the streams – while available to the router internally as an
adaptation parameter – does not form part of the constraints
on the behavioural envelope. Indeed, this almost suffices to
give a formal meaning to the notion of best-effort in stream-
ing.

The overarching point is that behaviour and adaptation
do not occur in isolation, but rather appear as a constrained

system of responses to changing conditions. There is a seri-
ous design question about the complexity of the intertwin-
ing of the responses, but at an analytical level we can gener-
ate and analyse closed-form behaviours for systems of real-
world complexity.

4. Conclusion

Autonomic systems are intended to demonstrate adap-
tive behaviour, optimising their performance without stray-
ing outside an acceptable behavioural envelope. In this pa-
per we have presented an initial approach to describing and
proving such properties for hybrid control systems, apply-
ing ideas derived from the modelling of dynamical systems
to creating and analysing a system with considerable poten-
tial for software control. The various degrees of freedom of
the system are constrained, with new dimensions both in-
fluencing and being influenced by other dimensions within
the model. We believe that this approach, whilst still at an
early stage of development, has the potential to be applied
to a range of autonomic systems.

There are of course major issues remaining. Perhaps the
most pressing is to determine whether all autonomic sys-
tems, or all components within a system, can be described
in this way, and whether mixing discrete and continuous
variables causes problems. We conjecture that the approach
is in fact fully general, but this remains to be demonstrated.

A model may be descriptive without being useful. It
is not immediately obvious how a model such as that de-
scribed translates into software. We have a strong interest
in programming models for autonomic systems, and espe-
cially in translating high-level, semantically well-founded
models into applications in as natural a way as possible.
This will be an active area of future research.
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