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Abstract. Achieving intuitive and seamless interaction with computational arti-

facts remains a cherished objective for HCI professionals. Many have a vested 

interest in the achievement of this objective as usability remains a formidable 

barrier to the acceptance of technology in many domains and by various groups 

within the general population. Indeed, the potential of computing in its diverse 

manifestations will not be realized fully until such time as communication be-

tween humans and computational objects can occur transparently and instinc-

tively in all instances. One step towards achieving this is to harness the various 

cues that people normally use when communicating as such cues augment and 

enrich the communication act. Implicit interaction offers a model by which this 

may be understood and realized. 
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1. Introduction 

It is acknowledged that intuitive interaction is fundamental to the success of compu-

ting services. How such interaction is achieved is open to question. And the need for 

an answer to this question is increasingly urgent, given the paradigm shift that is on-

going towards pervasive computing. In the original manifesto for ubiquitous compu-

ting in the early 1990s, the need for seamless and intuitive interaction was explicitly 

acknowledged. How it was to be achieved was not stated. A decade later, the Ambient 

Intelligence initiative proposed that Intelligent User Interfaces (IUIs) would solve this 

problem. Another decade has passed and the question remains open. 

In this paper, it is proposed that a holistic view of interaction be adopted, encom-

passing its explicit and implicit components. Realizing this in practice is computa-

tionally complex; nevertheless, developments in sensor and related technologies are 

enabling hardware and software platforms from which this vision of interaction may 

be attained in practice. 



1.2  How People Interact 

If Intelligent User Interfaces (IUIs) [1] that truly enables intuitive instinctive interac-

tion are to be developed, an innate understanding of how people communicate is es-

sential. It is useful to reflect on this briefly. Humans communicate using a variety of 

means - verbal being a prominent communication modality. Yet nonverbal cues (be-

havioral signals), for example frowning, have over four times the effect of verbal cues 

[2]. For interfaces to act intelligently and instinctively, non-verbal cues need to be in-

corporated into their design and implementation. One well known classification of 

non-verbal behavior is that of Ekman & Friesen [3] who have listed 5 categories: 

 Emblems: actions that carry meaning of and in themselves, for example a thumbs 

up. 

 Illustrators: actions that help listeners better interpret what is being said, for exam-

ple, for example, finger pointing; 

 Regulators: actions that help guide communication, for example head nods; 

 Adaptors: actions that  are rarely intended to communicate but that give a good in-

dication of physiological and psychological state; 

 Affect: actions that express emotion without the use of touch, for example, sad-

ness, joy and so on. 

Thought this categorization has proved popular, it does not capture all kinesic beha-

viors, eye behavior being one key omission. Nevertheless, the model does give some 

inkling as to the complexity of the problem that must be addressed if instinctive inte-

raction between humans and machines is to be achieved. 

Capturing all kinesic behavior is desirable as studies indicate that human judg-

ments were more accurate when based on a combination of face, body, and speech 

than when just using face and body [4] though the contribution of each may be de-

pendent on the prevailing context. In practice, it may not be feasible in all circums-

tances to capture all cues; thus it may be necessary to work with a subset of the avail-

able behavioral cues. This need not be an insurmountable problem as some cues may 

be more important than others. Certainly the visual channel, through the reading of 

facial expressions and body postures, seems to be the most important as the face 

represents the dominant means of demonstrating and interpreting affective state [5]. 

Though speech is essential for communication in normal circumstances, interpreting 

the affective state from both its linguistics and paralinguistic elements is inherently 

difficult and much work remains to be completed before the emotional significance of 

these elements can be extracted and identified with confidence [6].  

Finally, the issue of physiological cues need to be considered briefly as these al-

most invariably indicate an affective state. Examples of such cues might include in-

creased heart rate, temperature and so on. Unless having undergone specific training, 

most people would not be capable of sensing such cues. Wearable computing offers 

options for harvesting such cues as garments embedded with sensors for monitoring 

heart and respiratory rate amongst others are coming to market. However, whether 

people will wear such garments in the course of their normal everyday activities is 

open to question, as is the issue of whether they would share this data with a third-

party. 

 



2. Interaction Modalities 

As has been described, human communication encompasses many modalities and  the 

depth of complexity that requires significant research is still required if the underlying 

complexity is to be resolved. This poses significant challenges for those who aspire to 

develop computing systems that can successfully capture and interpret the various 

cues and subtleties inherent in human communications. As a first step towards this, 

many researchers have focused on multimodal human computer interaction and see it 

as a promising approach to facilitating a more sophisticated interaction experience.  

2.1  Multimodal Interaction 

Multimodal interaction in a HCI context harnesses a number of different communica-

tion channels or modalities to enable interaction with a computer, either in terms of 

input or output. The key idea motivating multimodal interaction is that it would ap-

pear to be a more natural method of communications as it potentially allows the cap-

turing and interpretation of a more complete interaction context, rather than just one 

aspect of it. A key question then arises – does research support or contradict this mo-

tivation? 

One well cited study by Oviatt [7], has systematically evaluated multimodal inter-

faces. It was shown that multimodal interfaces speeded up task completion by 10%, 

and that users made 36% fewer errors than with a unimodal interface. Furthermore, 

over 95% of subjects declared a preference for multimodal interaction. Though these 

results are impressive, it must be remembered this study focused on interaction in one 

domain, namely that of map based systems. Whether these results can be generalized 

to other domains and different combinations of modalities remains to be seen. To gain 

a deeper understanding of this issue, it is useful to reflect on how multimodal interac-

tion is defined.  

Sebe [8] defines modality as being “a mode of communication according to the 

human senses and computer input devices activated by humans and measuring human 

qualities”. For each of the five human senses, a computer equivalent can be found. 

Microphones (hearing) and cameras (sight) are well established. However, haptics 

(touch) [9], olfactory (smell) [10] and taste [11] may also be harnessed, albeit usually 

in specific domains and circumstances. For a system to be considered multimodal, 

these channels must be combined. For example, a system that recognizes emotion and 

gestures using one or multiple cameras would not be multimodal, according to this 

definition, whereas one that used a mouse and keyboard would be. This definition is 

strongly influenced by the word “input”. A less rigorous interpretation might be to 

consider not only modality combinations but also select attributes of individual mod-

alities. In either case, the problem facing the software engineer is identical. Individual 

input modalities must be parsed and interpreted, and then the final meaning of the in-

teraction estimated though a fusion process. How this may be achieved is beyond the 

scope of this discussion; however one technique proposed involves the use of 

weighted finite state devices, an approach that is lightweight from a computational 

perspective and is thus suitable for deployment of a range of mobile and embedded 

devices [12].  Ultimately, the question that is being posed for an arbitrary system is 



what is it that the user intends (Fig. 1). While this may never be known with 100% 

certainty, the harnessing of select cues that are invariably used in communication may 

contribute to more complete understanding of the user’s intent thereby leading to a 

more satisfactory interactive experience. 

 

 
 

Fig. 1. At any time, a user may display a range of non-verbal cues that give a deeper 

meaning to an arbitrary interaction. Identifying and interpreting such cues is computa-

tionally complex but a prerequisite to instinctive interaction. 

2.2  Interaction as Intent 

In most encounters with computing, interaction is explicit – an action is undertaken 

with the expectation of a certain response. In computational parlance, it is event dri-

ven. The reset button is pressed and the workstation reboots. This is the default inte-

raction modality that everyone is familiar with, even in non-computing scenarios. 

When designing interfaces, a set of widgets is available that operates on this principle. 

No other issue is considered. The application is indifferent to emotions and other con-

textual parameters. Should the context be available, a number of options open up but 

the appropriate course of action may not be obvious in all circumstances.  If it is de-

termined that the user is stressed for example, is the designer justified in restricting 

what they can do? Should certain functionality be temporarily suspended while cer-

tain emotions are dominant? If applications are to act instinctively, the answer is 

probably yes; thus embedded applications will have to support multimodal I/O. 

Interaction may also be implicit, and it is here that non-verbal cues may be found. 

All people communicate implicitly. The tone of peoples’ voices, the arched eyebrow 

and other facial expressions reinforce what they say verbally. Intriguingly, it can also 

contradict it. Though people can seek to deceive with words, gestures can indicate 

when they do so. Thus if we seek interactions that are based on truth, an outstanding 

challenge is to harness and interpret implicit interaction cues. This is computationally 

complex, requiring that such cues be captured, interpreted and reconciled in parallel 

with explicit interaction events. 

One subtle point with implicit interaction is that it can, in certain circumstances, 

represent the direct opposite of explicit interaction. In short, what is NOT done, as 



opposed to what is done, may indicate a choice or preference. For example, in ignor-

ing an available option, users may be saying something important about their prefe-

rences. What this means is of course domain and context dependent. 

In all but the simplest cases, implicit interaction is multimodal. It may require the 

parallel capture of distinct modalities, for example, audio and gesture. Or it may re-

quire that one modality be captured but be interpreted from a number of perspectives. 

For example in the case of the audio modality, semantic meaning and emotional cha-

racteristics be may extracted in effort to develop a deeper meaning of the interaction.  

 

2.3 Models of Interaction 

Various models of interaction have been proposed in computational contexts, for ex-

ample, those of Norman [13] and Beale [14]. Ultimately, all frameworks coalesce 

around the notions of input and output, though the humans and computer interpreta-

tion of each is not symmetrical. Obreovic and Starcevic [15] define input modalities 

as being either stream-based or event based. In the later case, discrete events are pro-

duced in direct response to user actions, for example, clicking a mouse. In the former 

case, a time-stamped array of values is produced. In the case of output modalities, 

these are classified as either static or dynamic according to the data presented to the 

users. Static responses would usually be presented in modal dialog boxes. Dynamic 

output may present as an animation - something that must be interpreted only after a 

time interval has elapsed.  

 

 
 

Fig. 2: Interaction may be regarded as constituting both an implicit and explicit 

component.  

 

For the purposes of this discussion, interaction is considered as composing a spec-

trum that incorporates an implicit and explicit component (Fig. 2) but in which one 

dominates. An explicit interaction may be reinforced or augmented by an implicit 



one, for example, smiling while selecting a menu option. Likewise, an implicit inte-

raction may be supported by explicit one, an extreme case being somebody acting un-

der duress where they are doing something but their body language clearly states that 

they would rather not be pursuing that course of action. Thus the difficulty from a 

computational perspective is to identify the dominant and subordinate elements of an 

interaction, and to ascribe semantic meaning to them. A key determinant of this is the 

context in which the interaction occurs. 

3. Reasoning with Context 

If the context in which the user operates is fully understood, a successful interaction 

can take place. In practice, an incomplete state of the prevailing context is all that can 

be realistically expected in all but the simplest scenarios. Indeed, it is questionable as 

to whether it is possible to articulate all possible contextual elements for an arbitrary 

application [16]. Usually, software engineers will consider simpler forms of context, 

normally those that are easy to capture and interpret, and incorporate them into their 

designs. Though useful, these are just proxies for user intent [17] and are used in an 

effort to remedy the deficiency in understanding of what it is that the user is try to 

achieve. This deficiency obliges the software engineer to use incomplete models to 

best estimate the prevailing context, and to adapt system behavior accordingly.  

3.1 Context Reasoning  

Not every piece of information about a user has an equal effect on the interaction. 

Low-level context can be enormous, trivial, vulnerable to small changes, and noisy. 

Therefore, higher-level contexts (or situations) are needed to derive from an amount 

of the low-level context, which will be more accurate, human-understandable, and in-

teresting to applications.   

Earlier research on context attempted to use first-order logic to write reasoning 

rules, for example the work by Gu et al. [18], Henricksen et al. [19], and Chen et al. 

[20]. More recently, ontological reasoning mechanisms have been adopted as the 

technology of choice to make reasoning more powerful, expressive, and precise [21, 

22]. Currently, research focuses more on formalizing situation abstraction in terms of 

logic programming. Loke presents a declarative approach to representing and reason-

ing with situations at a high level of abstraction [23]. A situation is characterized by 

imposing constraints on the output or readings returned by sensors (Fig. 3). A situa-

tion occurs, when the constraints imposed on this situation are satisfied by the values 

returned by sensors. For example, an “in_meeting_now” situation occurs when a per-

son is located with more than two persons and there is an entry for meeting in a diary. 

These constraints are represented as a logic program. This approach is based on the 

logical programming language LogicCAP that embeds situation programs in Prolog, 

and provides a high level of programming and reasoning situation for the developers. 

The logical theory makes it amenable to formal analysis, and decouples the inference 

procedures of reasoning about context and situations from the acquisition procedure 



of sensor readings. This modularity and separation of concerns facilitates the devel-

opment of context-aware systems.  

 

 
 

Fig. 3: Situations can be inferred from individual contexts harnessed from a suite of sensors. 

3.2 Context Uncertainty 

In terms of software, the error-prone nature of context and contextual reasoning alter 

the ways in which we must think about interaction and adaption. If a context is incor-

rectly reported, or is considered irrelevant to users, a problem will occur when a sys-

tem makes a responsive action adapting to real-time contextual changes [24].  Resolv-

ing uncertainty in context has been a hot research topic in recent years. Henricksen et 

al. [25] refine the quality of context into five categories: 

 

1. incompleteness – if a context is missing; 

2. imprecision – if the granularity of a context is too coarsed;  

3. conflicting – if a context is inconsistent with another context;  

4. incorrectness – if a context contradicts with the real world state;  

5. out-of-dateness – if a context is not updated in response to changes.  

 

Any decision may be made incorrectly on account of any type of poor input data 

quality. Beyond the quality in context, oversimplified reasoning mechanisms could 

introduce extra noise to inferred results.  

Anagnostopoulos et al. [26] define a fuzzy function to evaluate the degree of 

membership in a situational involvement that refers to the degree of belief that a user 

is involved in a predicted situation. They define Fuzzy Inference Rules (FIR) that are 

used to deal with imprecise knowledge about situational context and the user 



behaviour/reaction and historical context. Similarly Ye et al. [27]  use the fuzzy 

function to integrate and abstract mulitple low-level contexts into high-level 

situations. The fuzzy function is used to evaluate how much the current context 

satisfies the constraints in a situation’s specification.  

Machine learning techniques are widely applied to deal with uncertainty issues in 

the inferring process. Bayesian networks have a causal semantics that encode the 

strength of causal relationships with probabilities between lower- and higher-level. 

Bayesian networks have been applied by Ranganathan et al. [28], Gu et al. [18], Ding 

et al. [29], Truong et al. [30], Dargie et al. [31], and Ye et al. [32]. For example, Gu et 

al.  encoded probabilistic information in ontologies, converted the ontological model 

into a Bayesian network, and inferred higher-level contexts from the Bayesian net-

work. Their work aimed to solve the uncertainty that is caused by the limit of sensing 

technologies and inaccuracy of the derivation mechanisms. Bayesian networks are 

best suited to applications where there is no need to represent ignorance and prior 

probabilities are available [33].  

Any decision may be made incorrectly on account of errors in input data, and we 

simultaneously cannot blame poor performance on poor input data quality: we must 

instead construct models that accommodate uncertainty and error across the software 

system, and allow low-impact recovery [34]. 

3.3 Intelligibility of Context Reasoning 

Interaction can be more useful if it is scrutable or intelligible. Intelligibility is defined 

as “an application feature including supporting users in understanding, or developing 

correct mental models of what a system is doing, providing explanations of why the 

system is taking a particular action, and supporting users in predicting how the sys-

tem might respond to a particular input. ” [35]. On one hand, a system will make de-

cisions by taking all input, explicit or implicit to users, from sensors embedded in an 

environment. It uses its knowledge base in reasoning, while it has limited ability in 

ruling out random input or understanding which input is more important than another 

in determining actions.  On the other hand, a user may have little understanding of 

what a system considers to be input and why a particular action is taken.  Making a 

system intelligible will benefit both the system and end-users.  The system will pro-

vide a suitable interaction interface to users so as to explain its actions, while users 

can provide feedback through the interface so that the system can adjust its behavior 

and provide services that match users’ desire much better in the future. 

4. Embedded Agents 

Embedded agents [36] offer an effective model for designing and implementing solu-

tions that must capture and interpret context parameters from disparate and distributed 

sources. Such agents have been deployed in a variety of situations including user in-

terface implementation on mobile devices [37], realizing an intelligent dormitory for 

students [38] and realizing mobile information systems for the tourism [39] and mo-

bile commerce domains [40] respectively. 



4.1   The Agent Paradigm 

Research in intelligent agents has been ongoing for over two decades now. What it is 

that defines an agent is open to debate. For the purposes of this discussion, agents are 

considered, somewhat simplistically perhaps, to be one of two varieties – reactive and 

deliberative. The interested reader is referred to Wooldridge and Jennings [41] for a 

more systematic treatment of agents and agent architectures.   

Reactive agents respond to stimuli in their environment. An event occurs, the agent 

perceives it and responds using a predefined plan of action. Such agents are quite 

simple to design and implement. A prerequisite for their usage is that the key events 

or situations can be clearly defined and that an equivalent plan of action can be con-

structed for each circumstance. Such agents can be easily harnessed for explicit inte-

raction modalities as their response time is quick. 

Deliberative agents reflect and reason before engaging in an action. Essential to 

their operation is a reasoning model; hence they may be demanding from a computa-

tional perspective and their response time may be unacceptable. Such agents maintain 

a model of both themselves and the environment they inhabit. Identifying changes in 

the environment enables them both to adapt to the new situation and affect changes 

within the environment in certain circumstances. Such agents are useful for implicit 

interaction in that they enable transparent monitoring of an end-user and their inherent 

reasoning ability allows to come to some decision about as to if and when an implicit 

interaction episode has occurred, and what the appropriate course of action might be. 

 

4.2  Coordination & Collaboration 

As has been discussed, all interaction takes place within a context and an understand-

ing of the prevalent context can usually make the meaning of the interaction itself 

more clear. However, gathering and interpreting select aspects of the prevalent con-

texts is process fraught with difficulty. And it is in addressing this that the agent para-

digm can be harnessed to most benefit. 

Agents are inherently distributed entities. Coordination and collaboration are of 

fundamental importance to their successful operation. To this end, all agents share a 

common language or Agent Communication Language (ACL). Indeed, the necessity 

to support inter-agent communication has resulted in the development of an interna-

tional ACL standard, which has been ratified by the Foundation for Intelligent Physi-

cal Agents (FIPA). FIPA has recently been subsumed into the IEEE computer society, 

forming an autonomous standards committee seeking to facilitate interoperability be-

tween agents and other non-agent technologies. 

4.3  The Nature of the Embedded Agents 

Embedded Agents are lightweight agents that operate on devices of limited computa-

tional resources. Ongoing developments in computational hardware have resulted in 

agents become viable on resource limited platforms such as mobile telephones and 



nodes of Wireless Sensor Networks (WSNs). While such agents may be limited in 

what they can do on such platforms, it is important to remember that they can call 

upon other agents and resources if the physical communications medium supports an 

adequate QoS. Thus a multi-agent system may itself be composed of a heterogeneous 

suite of agents – some significantly more powerful than others but all collaborating to 

fulfill the task at hand. Such a model of an MAS is reflective of the diverse suite of 

hardware that is currently available and may be harnessed in diverse domains. 

As an example of how embedded agents might collaborate, consider the following 

scenario. While observing how a user interacts with an arbitrary software package, the 

user wipes their brow. This gesture, done subconsciously, is observed and identified. 

However, what does it mean in this context? It may indicate that the user is stressed or 

it may be a cue to indicate that the ambient office temperature is too high.  In the later 

case, it would not be difficult to confer with an agent monitoring a temperature sensor 

to identify the current temperature and check whether it an average figure or maybe 

too high. If considered high, a request could be forwarded to the agent in charge of 

air-conditioning to reduce the ambient temperature. In the case where the user is 

stressed, and there may other cues to affirm this, the situation is more complicated. Is 

the user stressed because of the software or hardware itself? or because of the task 

they are trying to accomplish? or because of some other circumstance? And does it 

really matter?  In some cases, it may be quite important to know if a user is stressed, 

especially if they operating a vital piece of equipment, for example in a medical thea-

tre or air control context. As to what the equipment should do if it senses that its oper-

ator is under stress is debatable, and may even raise ethical issues. However, it can be 

reasonably conjectured that the team leader or project manager might find it useful to 

know that one of their team members could be having difficulty and that some active 

intervention, though precautionary, might be a prudent course of action.  

While agents encompass a suite of characteristics that make them an apt solution 

for identifying episodes of implicit interaction, a further level of abstraction would be 

desirable if implicit interaction is to become incorporated in mainstream computing. 

In the next section, we consider how this might achieved, specifically through the 

middleware construct. 

5.  Characteristics of a Middleware for Implicit Interaction 

In the previous sections, the issues of reasoning with uncertain contexts was dis-

cussed. Likewise, the agent paradigm was considered in light of its inherent distri-

buted nature as a means for capturing and interpreting contextual states. Except in the 

simplest cases, interaction cannot be divorced from the context in which it occurs. 

Thus the key challenge that must be addressed is how to incorporate implicit interac-

tion into the conventional software development lifecycle.  

Requirements Analysis 

Requirements analysis is concerned with the identification of what it is that either a 

new system or modified system is expected to do. Various techniques have been pro-

posed for eliciting user requirements. In particular, the key stakeholders are identified 



and their needs specified. The question of how issues relating to interaction may be 

addressed depends on the approach adopted. During interviews, there is scope for 

identifying how users perceive interaction occurring and opportunities for incorporat-

ing alternative interaction modalities, including implicit modalities. Given the time 

and budgetary constraints that a project may labor under, it may be questionable as to 

what scope software engineers have to do this. Not only must they obtain a thorough 

understanding of what a proposed system must do but they must also gain and in-

depth of the target user group including their needs, backgrounds and expectations. 

Should the requirements phase of a project include rapid prototyping, a greater un-

derstanding of how potential users envisage interaction with the proposed system may 

be gleaned. In such circumstances, a mockup is constructed resulting in users seeing 

clearly how the interaction is planned and enabling the system designers to ascertain 

the possibility and desirability of incorporating an implicit interaction component. 

Whether the average software engineer is the best person for this task is an open ques-

tion. In principle, such a task would be undertaken by usability professionals. In prac-

tice, such people may not become involved in the project until the next stage, if in-

deed at all. 

Design & Specification 

The objective here is to provide a systemic description of what a system will do. 

Naturally, all elements of how interaction will occur need to be agreed at this stage. 

First of all, there needs to be agreement on whether the interaction requirements 

would be best served by harnessing implicit interaction, or indeed, other interaction 

modalities. Various factors will influence this decision, for example, will the user 

base accept what they might perceive as non-conventional interaction modalities? 

More importantly, there may be a trade-off between system performance or respon-

siveness and what interaction modality is adopted. Such a trade-off needs to be quan-

tified. The implications for project planning must also be considered. Though there 

may be an excellent usability case for supporting an arbitrary interaction modality, the 

time-scale, budget or deployment configuration may preclude their realization in the 

project.  

Implementation 

At this stage, all the key decisions have been made. It only remains for them to be 

implemented. From an implementation perspective, realizing implicit interaction is 

just another programming task that must be completed such that it adheres to the de-

sign. However, it must be stated that programmers and designers currently have little 

to aid them should a request to include implicit interaction be forthcoming. Thus the 

resultant solution, which may operate perfectly, is really an ad-hoc solution. If such 

interaction is to be incorporated into mainstream software development, a prerequisite 

will be that this process is transparent and easy to manage. At present, that is not the 

case. How this deficiency may be remedied is considered next. 



5.1  Making Implicit Interaction Mainstream 

Conventional software development environments include a range of widgets with 

associated behaviors that programmers can use in their designs and implementations. 

Such widgets can be customized and adapted according to a range of policies and ap-

plication-specific requirements. This is the prevalent approach adopted in mainstream 

computing where the interaction modality is predominantly explicit. Thus the prin-

ciples underpinning this approach are well understood, and codes of best practice 

have been identified. This is not the case with implicit interaction. 

Once a decision has been made to either discard the classic WIMP interface, or 

even augment such interfaces with additional modalities, the creativity and ingenuity 

of the programmer will be required to craft a solution. It is worth reiterating that the 

model of interaction being adopted, at this stage of the software development process, 

will have been agreed and its behaviors specified. Thus the programmer has the sin-

gular task of implementing the design without necessarily being concerned with the 

merits or otherwise of the interaction modality being used. Their problem is that the 

lack of widgets will oblige them to create new solutions – a creative endeavor perhaps 

but one which may be costly in terms of time. Such a scenario may well be replicated 

in diverse projects; thus a key challenge is develop a framework that allow software 

developers incorporate implicit interaction seamlessly into their products. 

5.2  Towards a Middleware for Implicit Interaction 

Implicit interaction may be unimodal or multimodal. Though an implicit interaction 

“event” may be said to have occurred, the event-driven model adopted in convention-

al software systems is not appropriate in this circumstance, at least not without mod-

ification, as users are not directly interacting with the system but rather doing so indi-

rectly through a variety of behavioral cues. Though such cues are initiated by the user, 

they will not be communicated directly to the software system. Rather the software 

must act in a proactive manner to capture and interpret such cues, rather than just 

react to user stimuli. Thus developing a suite of APIs for capturing and interpreting a 

range of implicit interaction behaviors, though attractive, is not an option. A robust 

solution is called for and to this end, it is proposed that one based on the middleware 

concept offers one approach for enabling the seamless integration of implication inte-

raction into conventional computing. 

Middleware has been conventionally viewed as a service provision layer that sits 

above the OS and networking layers but below domain specific applications [42]. 

Frequently seem as framework for ensuring interoperability, the middleware construct 

has been adopted in a diverse range of applications and domains, for example smart 

phones [43] and wireless sensor networks [44] offers a useful mechanism for provid-

ing a higher level of abstraction than that offered by conventional APIs. In the context 

of this discussion, it is instructive to note that middleware has been harnessed in the 

HCI domain. For example, Yaici and Kondoz [45] describe a middleware for the gen-

eration of adaptive user interfaces on resource-constrained mobile computing devices. 

Likewise Repo and Riekki [46] adopt a middleware approach for realizing context-

aware multimodal user interfaces.  



Middleware offers an attractive framework for incorporating implicit interaction 

into mainstream computing. The framework itself may be implemented in a variety of 

ways. However, in light of the discussion on agents, it can be seen that agents encom-

pass a suite of characteristics that make them a suitable basis for such a framework.  

Indeed, the framework could be designed such that it acts as a wrapper for a Multi-

Agent System. In this way, a standardized interface to the middleware could be pro-

vided to the software developer while the developers themselves are shielded from the 

intricacies of both MAS development and the effort required to capture and classify 

instances of implicit interaction. 

5.3  Case Study: The SIXTH Middleware Architecture 

An ongoing project in our laboratory concerns the deign and development of an mid-

dleware for sensor networks. SIXTH takes a broad interpretation of what a sensor 

might actually entail. At its simplest, a sensor network might compromise a network 

of nodes, for example motes. However, sensors can vary significantly in their capabil-

ities, and might include a range of artifacts that on first sight might appear to have lit-

tle in common with the conventional  view of what a sensor actually is. For example, 

a surveillance camera network is essentially a sensor network. Likewise, fabrics im-

bued with heart rate monitors and other physiological measuring instrumentation 

might comprise a sensor network.  

SIXTH is motivated by two observations: 

1. Practical sensor networks will be heterogeneous. This heterogeneity will be ex-

pressed in a number of ways. Specifically a range of sensors differing in capability, 

communications mechanisms and supporting a range of sensed modes will form 

networks that support a range of diverse applications. Only in specialized sensor 

applications, for example, environmental applications, will homogeneous networks 

be the norm. In the case of implicit interaction, it can be seen that a network of 

cameras and audio receivers would be essential just to capture vocal cutes, gestures 

and facial expressions. 

2. Sensor networks must be usable. In essence, the functionality encapsulated in sen-

sors must be abstracted in an intuitive fashion such that it can be harvested and 

used by a variety of service providers. Only in this way, will sensor networks be-

come incorporated into mainstream computing applications and services.  

 

Thus SIXTH aims to encapsulate the following characteristics: 

 scalability; 

 reusability; 

 flexibility; 

 openness; 

 extensibility; 

 modularity. 

 

 

 



 
 

Fig. 4: Constituent components of the SIXTH middleware architecture. 

Figure 4 illustrates the key components of the SIXTH architecture. It comprises 

three core layers: 

 

1. Adaptor Layer: This layer contains device specific adaptors that utilize the native 

resources on the individual sensor itself and exposes them to the higher layers of 

the middleware.  

2. API Layer: This layer implements a set of device agnostic APIs that can be used 

(in principle) to interface with any deployed sensor device. It provides support for 

addressing, (re-) programming of sensors; discovery of devices, monitoring of de-

vices, and data access. 

3. Service Layer: This layer augments the basic functionality provided by the API 

Layer to deliver higher level services that are tailored to the specific applications 

that require access to the underlying devices. 

 



Layers 1 and 2 are designed to address the issue of heterogeneity.  Layer 3 pro-

vides a mechanism for integrating new services, enabling their transparent and intui-

tive use in a range of applications.  

At each layer, the components can be reused in many contexts to delivery multiple 

applications without the requirement for redevelopment of lower level functionality. 

The interface between the Adaptor and API Layers has been designed to embrace a 

multiplicity of abstractions that facilitate diverse modes of interaction with the em-

bedded devices. 

Finally, SIXTH supports embedded intelligence, that is, support for in-situ reason-

ing via the deployment of intelligent agents. Any agent platform that can operate on a 

Java 2, Micro-edition (Java ME) platform, for example, Agent Factory Micro Edition 

(AFME) [47] will work with SIXTH.  

6. Conclusion 

As computation technologies permeate more areas of everyday life, the need for a 

range of interaction modalities will become increasingly urgent, particularly if the 

promise of seamless and intuitive interaction is to become a reality rather than the as-

piration it is at present. This paper explored the concept of implicit interaction, ex-

plaining its genesis and reflecting on how it might be incorporated into mainstream, 

computing.  

Further basic research is needed into understanding what it is that defines implicit 

interaction. As a start, it may be feasible to develop a classification of non-verbal cues 

that people normally use and attempt to attach semantic meaning to them. A cultural 

perspective on these needs to be maintained also. Furthermore, the computational ef-

fort that must be expended in capturing implicit interaction needs to be quantified, 

particularly if a range of embedded artifacts are used for interaction capture. Likewise 

the time expended both in capturing and interpreting must be quantified so that an 

adequate response time can be estimated thus ensuring the quality of the user expe-

rience is maintained. Only when a more thorough understanding of the underlying 

principles is obtained can the practical issue of service implementation be considered. 
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