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Abstract.  We present a programming system based around a set of highly 
concurrent, highly distributed data structures.  These shared abstract data types offer 
a uniform interface onto a set of possible implementations, each optimised for 
particular patterns of use and more relaxed coherence conditions in the data.  They 
allow applications written using a shared data model to approach the performance of 
message passing implementations through a process of pattern analysis and 
coherence relaxation.  We describe the programming system with reference to a 
sample application solving the travelling salesman problem.  Starting from a naïve 
direct implementation we show significant speed-ups on a network of workstations. 

1 Introduction 
Parallel computing offers the prospect of high application performance.  This can indeed be 
realised, but at the price of huge development and maintenance costs arising from the 
complexity of managing inter-processor interaction and application code in the same 
framework.  Ideally an application programmer should only deal with the details of the 
application problem, reducing complexity to an acceptable and manageable level.  Some 
method for abstracting away from the complexities of inter-processor interaction is therefore 
required.  This has been accomplished most successfully for algorithms having a regular form 
where static problem decomposition is possible.  Producing efficient codes for irregular 
problems is a significant challenge, as effort must be devoted to the effective management of 
an evolving computation. 

In this paper we present an approach based on shared abstract data types or SADTs – an 
abstract type that can be accessed by many distributed processes concurrently. An SADT 
insulates an application from many different implementations of the abstraction, which may 
efficiently support different patterns of use and coherence models.  The selection of the 
representation which best suits the application’s exact requirements offers the highest possible 
performance without compromising the type abstraction boundaries. 

Section two introduces an motivating problem.  Section three describes the SADT model 
and its realisation in a prototype programming environment.  Section four shows how a simple 
sequential solver for our illustrative problem may be progressively refined into a high-
performance scalable parallel application.  Section five compares and contrasts SADTs with 
related work from the literature.  Section six offers some observations and future directions. 

2 The Travelling Salesman Problem 
The Travelling Salesman Problem (TSP) is a well-known combinatorial optimisation problem.  
Given a set of cities and the distances between them an algorithm must find the shortest “tour” 
that visits all cities exactly once.  In principle the entire search tree must be explored if an 
optimal solution is to be found, making the problem NP-complete. Problems of this form are 



 

often encountered in the context of organisational scheduling[18].  There are a number of 
possible approaches to the solution of the problem which broadly fall under the headings of 
stochastic algorithms, such as simulated annealing[17], and deterministic algorithms.  
Deterministic algorithms have the advantage of guaranteeing that the optimal solution is 
found, but usually can only deal with modest problem sizes due to time and space constraints.  
Stochastic algorithms trade improved performance for sub-optimal solutions. 

One of the best-known deterministic algorithms is due to Little[14]. This algorithm 
employs two heuristics to guide the search for a solution by refining a representation of the 
solution space as a search tree.  A node in the tree represents a set of possible tours, with the 
root representing the set of all possible tours.  A step of the algorithm involves selecting a 
node in the tree and choosing a path segment not contained in this set.  The path segment is 
selected by a heuristic designed so that the set of tours including the selected segment is likely 
to contain the optimal tour, and conversely that the set of tours that excludes it is unlikely to 
contain the optimal tour. A step therefore expands a node and replaces it by its two children – 
one including and one excluding the selected path segment.  A second heuristic directs the 
algorithm to work on the most promising node next.  A lower-bound on the length of any tour 
represented by a node can be computed, and the node selected to be explored next is that with 
the lowest lower-bound.  Once a complete tour has been found, its length can be used to 
bound future exploration. 

Little's algorithm is of particular interest for two reasons: 

1. it is a fine-grained algorithm – a step of the algorithm involves only a relatively short 
computation;  and 

2. it is irregular – the evolution of the data cannot be predicted statically, and hence a 
significant amount of dynamic data management is involved. 

These make it a challenging case study for any novel programming environment. 

3 Shared Abstract Data Types 
We have been exploring the use of pattern-optimised representations and weakened 
coherence models to allow a distributed data structure to optimise both the way its data is 
stored and the degree of coherence between operations on different nodes.  These 
optimisations may occur without changing the type signature of the structure, allowing 
progressive optimisation.  We refer to types with these properties as shared abstract data 
types, or SADTs[6].  The programming model for SADTs is the common one of a collection 
of shared data objects accessed concurrently by a number of processes independent of relative 
location or internal representation. 

We have implemented a prototype programming environment to test these ideas, using 
the Modula-3[16] language with network objects[3] to implement bag, accumulator, priority 
queue and graph SADTs.  This has proved to be an excellent and flexible test-bed.  (We have 
also demonstrated more restricted environment, intended for supercomputers, using C.)  There 
were four main design goals: 

1. integration of SADTs into the underlying programming model and type system; 
2. extensibility of the environment to derive new SADTs from the existing set, and allow 

additional base SADTs to be generated where necessary; 
3. incremental development of applications using progressive optimisation;  and 
4. high performance applications when fully optimised. 

We regard these goals as being of equal importance in any serious programming system. 



 

3.1 Architecture 

The heart of the SADT architecture is a network of representatives, one per processor per 
SADT.  Each representative stores some part of the SADTs contents, and co-operates with the 
other representatives to maintain the shared data abstraction.  Interactions with and between 
representatives occur through events, representing the atomic units of activity supported over 
the SADT.  Events may be created, mapped to actions on values, buffered for later 
application, and so forth:  the way in which representatives handle events defines the 
behaviour of the SADT, and allows subtly different behaviours to be generated from the same 
set of events. 

The programmer’s view of this structure is a local instance of some front-end type – 
usually a container type such as a bag of integers. The front-end provides a set of methods 
through which the shared data may be accessed:  internally each is translated into one or more 
events which are passed to the representative for the SADT on the local node.  It is important 
to realise that the events of the SADT do not necessarily correspond exactly to the user-level 
operations. 

3.2 Events and Event Processing 

Each SADT defines its own set of events, capturing the basic behaviour of the type being 
represented.  For example, a bag SADT might define events to add an element and remove an 
element.  These events and their eventual mapping to actions characterise the SADT. 

There is a small core set of events which are applicable across all SADTs.  One may 
regard these core events as providing the essential services to support efficient shared type 
abstraction.  Many are “higher order”, in the sense of taking other events as parameters.  The 
set includes: 

LocalSync – causes a representative to synchronise its view of the SADT with the 
other representatives.  Typically this involves reading new values into local 
caches, or flushing pending events. 

Span(ev) – performs event ev on all representative concurrently. 
Broadcast(ev) – like Span(), but orders broadcasts at each representative (so 

all representatives will observe the same sequence of broadcasts). 
Bulk(ev1, ev2, …) – submits a set of events in a single operation. 

These events may be used to build higher-level operations.  For example, an SADT may 
implement global synchronisation by issuing a Span(LocalSync) event1, and fully 
replicated representations will often broadcast update events to all representatives.  These 
events have efficient implementations based on concurrent spanning trees. 

The critical importance of events is that they define “first-class” operation requests:  
representatives may manipulate events in complex ways before resolving them to an action.   
Event processing is at the core of the SADT model.  Using the same set of events with the 
same mechanisms for rendering events into actions – the same type, in fact – an SADT may 
deploy several representations which differ in the exact way the events are buffered and 
combined.  The different representations may efficiently support different coherence 
constraints and patterns in the use of the type. 

                                                             
1 Or sometimes Broadcast(LocalSync), but for many SADTs the extra ordering 
overhead is unnecessary. 



 

There are a number of common processes which may be used to manipulate events:  they 
may be resolved into an action on some storage, forwarded to another representative, deferred 
in a buffer for later handling, changed or combined or discarded.  Taken together with event 
descriptions these processes form the building blocks of a simple specification framework for 
SADT representations which is sufficiently formal to allow automatic skeleton code 
generation and a certain amount of rigorous analysis to be applied to each representation[8].  
This formal basis is essential for reasoning in the presence of weak coherence.  

 
Figure 1.   Different representation schemes for an SADT  

3.3 Programmability 

The creation of an SADT is obviously more complex than ordinary object creation, since a 
distributed family of objects must be created.  We encapsulate this complexity by using an 
abstract factory class for each  SADT[11].  The factory combines a language for expressing 
constraints – such as the degree of weakness acceptable to an algorithm or a pattern of use in 
the operations – with a decision procedure to determine which of the available representations 
of the SADT is appropriate to best satisfy these constraints.  This decouples the algorithmic 
constraints from the strategy used to select a representation, allowing both constraint language 
and representation populations to evolve over time. 

Sub-typing is an essential component of large-scale object-oriented applications.  Sub-
types may derived from SADT front-end objects in the usual way, with the SADT 
environment creating the appropriate factory object.  Sub-types have access to all the 
representations available to the parent type, and possibly to extra, more specific 
representations.  New representations for SADTs are generated by providing event-handling 
code and extending the factory decision procedure to allow the new representation to be 
selected when appropriate constraints are met.  Event handlers have access to the core events, 
which are implemented by the common super-type of representatives.  Completely new 
SADTs may be defined similarly, starting from a description of the type-specific events. 



 

The prototype environment makes extensive use of Modula-3’s generic interfaces and 
powerful configuration control language, together with simple generation and analysis tools. 

3.4 Example:  the Accumulator SADT 

The accumulator[12] is a type which combines a single value with an update function.  The 
value is updated by combining the submitted new value with the current value through the 
update function.  An example is a minimising accumulator, where the update function returns 
the smaller of the current and submitted values. 

The simplest accumulator stores the value in a single representative, performs all updates 
as they are received, and always returns the current value.  Variations[9] allow the semantics 
to be weakened with various combinations of replication, update deferral and value 
combination.  These variations lead to subtly different accumulators, which may be more 
efficient than the simple case whilst still providing acceptable guarantees for applications. 

4 TSP with SADTs 
To illustrate the issues outlined above we present a case study of implementing Little's 
algorithm on a network of workstations.  The starting point for the application code is a 
sequential version of the program, which uses two key abstract data types: 

1. a priority queue used to hold the population of nodes.  Nodes are dequeued from to be 
expanded, and the resulting child nodes enqueued.  The priority property keeps the 
“best” node as the head element;  and 

2. an accumulator used to hold the length of the shortest known tour. 

The user algorithm functions exactly as outlined in section 2. 

4.1 Direct Implementation 

A parallel application can quickly be produced by converting the priority queue and 
accumulator into SADTs and using a number of identical worker processes co-ordinated 
through these two abstractions. 

The simplest implementation of the required SADTs is to implement an object in one 
address space in the system, and use the mechanisms of the runtime system to provide access 
to this object across the system.  By protecting the object with a monitor, sequential 
consistency for the SADT is maintained.  We term this the unitary or shared object style. 

A problem immediately arises with this simple implementation.  Termination in the 
sequential case is signalled by the priority queue being empty and unable to service a dequeue 
request;  in the parallel case this condition may arise in the normal course of the algorithm and 
correctly detecting termination involves predicting when the structure is and will remain 
empty.  This can be achieved by the use of an additional accumulator counting the number of 
paths expanded. 

The application was run on a set of SGI O2 workstations connected by a 10MBit/sec 
Ethernet running TCP/IP – a platform providing high compute performance but relatively poor 
communication.  Achieving reasonable performance for a fine-grained algorithm such as the 
TSP solver therefore poses a significant challenge.  Indeed, the simple implementation 
actually exhibits a considerable slow-down as processors are added!  Profiling the application 
exposes the reasons for this.  Figure 2 shows a percentage breakdown of the execution time of 
the application on a 4-processor system by the different SADT operations that are invoked. 



 

Shortest is the accumulator for the current best-known solution, Counter is the 
accumulator used for termination detection, and Store is the priority queue.  The final 
columns on the histogram represents the available CPU time remaining to devote to the 
application problem once the SADT operations have been taken into account. Clearly, the 
operations on the SADTs dominate the runtime of the application, leaving a very small 
proportion of the time for running the actual application-specific code. 
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Figure 2.  Profiling of naïve implementation. 

4.2 Optimised Implementation 

To improve the performance of the parallel application, the excessive costs of the SADT 
operations must be addressed.  We may make a number of observations about the TSP 
algorithm.  Firstly, there are significant patterns in the use of the shared data.  We may reduce 
overheads by matching an appropriate implementation of the SADTs to their observed 
patterns of use.  Secondly, several of the “normal” coherence constraints are not actually 
required for the algorithm to function correctly, and relaxing them again gives scope for 
performance improvements.  Relaxation trades-off a decrease in the efficiency of the 
heuristics against reduced overheads in maintaining the shared data abstraction.  We 
implement these optimisations by making additional, optimised representations of the SADTs, 
and the appropriate decision procedure, available to the run-time environment. 

4.2.1 Replicated and Weakened Accumulators 
From inspection it may be seen that the accumulator holding the shortest known tour is read 
each time an element is read from the priority queue, to see whether the path should be 
pruned;  it is only updated when a shorter complete tour has been found, which typically 
happens only a few times during the application.  The frequency of reads is much higher than 
that of updates, so by replicating the accumulator (figure 1) a read may be rapidly serviced 
locally. 

By broadcasting updates the accumulator remain strongly coherent.  Weaker approaches 
apply updates locally and periodically synchronise the accumulator to propagate the best 
global value, or apply several updates en bloc in a single network transaction. 



 

4.2.2 Partitioned Priority Queue 
Similar arguments apply to the priority queue:  it may be distributed across the system, and 
relax the requirement that a dequeue operation returns the overall best element to allow the 
element returned to be locally best but not necessarily globally optimal.  Distribution also 
makes the memory of all nodes available for representing the queue, rather than bounding its 
size to the memory of a single node.  A background task at each representative periodically 
shuffling elements randomly between representatives.  This shuffling improves data balance 
and, by shuffling high-priority elements, ensures that the algorithm as a whole focuses on the 
elements with the highest global priority.  An important optimisation of shuffling is not to 
shuffle the highest priority elements, but instead to shuffle from one or two elements down.  
This ensures that a high-priority element is expanded, and is not constantly shuffled. 

4.2.3  Synchronising Priority Queue 
Termination relies on the counter accumulator, which must be strongly coherent in order to 
solve the consensus problem[13].  In the single-bus system the unitary implementation 
appears to be the best that can be done:  once the other SADTs have been optimised, however, 
operations on the counter dominate the performance of the code. 

The original reason for introducing the counter accumulator was to solve the distributed 
termination detection in the face of transient emptiness in the queue.  A key observation is that 
termination can be correctly inferred when the queue is and will remain empty, so no new 
elements can appear “spontaneously” due to other threads.  Without additional information 
about the algorithm, the only condition of the SADT in which we know this to be the case is 
when all processes sharing the queue are attempting to dequeue from it:  this is the termination 
state, as all work has been consumed and no more can arise.  On detecting this condition we 
can release all the processes simultaneously – by returning NIL, a logical extension of the 
semantics of the sequential dequeue operation to the concurrent case. 

The interface to the priority queue is extended so that each thread sharing the SADT is 
known.  A mechanism is then implemented to detect when a representative is empty and all 
local threads are performing dequeue operations.  Combining these local results using a 
consensus protocol completes the system and removes the need for the counter accumulator. 

This insight – the usefulness of scoped deadlocks – appears to capture a very general 
property of termination in parallel algorithms  which we are investigating further. 

4.2.4 Performance 
When more optimal SADTs are used, performance improves dramatically (figure 3). It is clear 
that the optimisation of the SADTs results in a dramatic increase in the proportion of the total 
CPU time available for running the (unchanged) application code. 

Figure 4 shows the speedup of the application relative to 1 processor when running on 2, 
4, 8 and 12 O2 workstations solving a 21-city problem.  Real speedups are now achieved.  The 
curve Optimised SADTs 1 shows the performance obtained when using a random data 
balancing strategy within the priority queue SADT; Optimised SADTs 2 shows the 
performance obtained using simple load information to reduce the chances of starvation.. 

The Indy SADTs 2 curve shows the speedups achieved when running the same code on a 
network of SGI Indy workstations.  The Indy has roughly half the raw compute speed of the 
O2 with the same communication bandwidth, giving a better computation-to-communication 
balance.  (This curve is normalised to a speedup of 2 on 2 processors, as the single processor 



 

code exceeds physical memory limits and incurs overheads that are avoided using several 
processors.) 
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Figure 3.  Profiling of the fully optimised implementation. 

It is obvious that the improvements in performance trail off with increasing system size.  
The reason for this is that the priority queue’s balancing strategy becomes less effective as 
size increases, due to both the inadequacy of algorithm and to the limited performance of the 
underlying network transport.  The shuffling on which the current strategy is based results in a 
network load of about 80KBytes/sec per workstation:  a small number of workstations can 
thus saturate the Ethernet.  This situation could be improved by a more informed shuffling 
strategy, a higher bandwidth transport, or a transport with better scaling properties such as a 
point-to-point ATM network – all issues demanding further work. 

The code implementing the algorithm is almost identical in sequential and parallel 
systems – the only extra code being algorithmic pattern and coherence constraints.  The 
resulting parallel application achieve high performance for a fine-grained algorithm on an 
coarse-grained architecture.  There is obviously significant scope for improving performance 
further:  however the key principle of optimising performance through constrained 
representation selection for otherwise fully abstract SADTs has been clearly demonstrated. 

5 Related Work 
A great many systems have been proposed to allow objects to be manipulated concurrently 
and location-independently – notable are the CORBA standard, the Orca language[1] and 
Modula-3 network objects.  These systems provide the mechanisms required to build shared 
data structures, but do not directly address the design of efficient systems.  The “single 
abstraction via a community of objects” approach builds on this substrate:  it is used by 
SADTs as well as a number of other systems[2][4][7][10], and is perhaps best exemplified by 
Concurrent Aggregates[5]. 

A slightly different approach is taken by languages such as HPF and HPC++, providing a 
library of effectively sequential types together with a small number of bulk operations.  The 
operations hide their efficient parallel implementations from the programmer (both 
syntactically and semantically), preventing exploitation of more relaxed coherence models. 

Berkeley’s Multipol[21] provides a library of types for irregular computations.  A 
Multipol object is multi-ported in the sense that it exports both a global view and a view of the 



 

locally-held data.  The SADT approach hides the local view, substituting bulk operations and 
weakening instead. 
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Figure 4.  Performance of optimised scheme 

The canonical example of weakening is the Bulk Synchronous Parallelism model, in 
which processes’ view of shared state may drift between global synchonisation points.  Recent 
work[19] has defined a set of BSP collection types, which provide bulk operations and high-
level interfaces but are still constrained to use the globally-agreed coherence model. 

6 Conclusion 
We have presented a programming environment based around a collection of types providing 
a sound basis for parallel programming, whose characteristics are well-matched to the 
network-of-workstations architecture.  Common programming techniques are incorporated in 
a  semantically consistent way, allowing them to be deployed without unduly complicating the 
application code.  Preliminary results indicate that the system can achieve relatively high 
performance by progressive refinement encapsulated within the run-time system.  We are 
currently performing more extensive evaluations based on the “Cowichan problems” – and it 
is encouraging to note that the problems identified in these applications are well addressed by 
the SADT approach[20].  

A major future direction is to improve our ability to detect patterns of use of an SADT for 
which a known efficient representation exists.  This would free the programmer of the need to 
provide hints to the run-time system, at the cost of typing the library closely to the analysis 
system.  We are also seeking means of integrating more closely into the type system the 
semantic constraints currently supplied to SADT factory objects. 
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