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ABSTRACT 

Research on context aware systems is handicapped by the lack of 
readily available large scale data sets, as well as by the lack of 
tools by which researchers can interact effectively with such data 
sets across a range of scales and granularities.  We show how 
virtual reality combined with a dynamical systems analysis 
approach can start to address these gaps.  Simulation allows for 

generation of simulated sensor data at runtime and actuations of 
entities in the virtual world. The ease of sensor deployment and 
configurations in a simulated environment allows for rapid 
reconfigurations enabling generation of the required large scale 
data sets for analysis.  Using these data sets, dynamical systems 
analysis can determine if a given application is functioning in a 
manner that is deemed to be correct. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging – Testing 
Tools. I.6.6 [Computing Methodologies]: Simulation and 
Modelling - Simulation Output Analysis  

General Terms 

Experimentation 
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1. Introduction 
Context awareness and sensor technology are well suited to a 
wide range of environment monitoring applications from disaster 
detection to wireless compliance monitoring.  Almost a decade 
ago, Cerpa et al referred to environment monitoring as a 
'motivator' for wireless technology [14], pointing out that these 

systems can generate data at granularities and quantities not 
previously feasible.  Two ongoing problems for developing these 
systems are firstly that working with large data sets quickly 
becomes prohibitive without sophisticated analysis tools.  The 
second hurdle is the availability of deployed sensor networks to 
generate these large data sets; many wireless sensor technologies 

remain costly and time-consuming to deploy. 

Challenges such as successful reasoning about spatial relations 

and spatial logics are key issues that need to be addressed for a 
context-aware application to be accepted by end users.  Sensor 
rich environments differentiate these applications from existing 
mobile and distributed systems by enabling them to adapt to end 
user needs. For the system developer, the problems of 
heterogeneity and scalability are felt most keenly when designing 
this adaptive behaviour. A context-aware system needs to operate 
reliably over the wide variety of situations that may be 

encountered.  The context-aware system discussed for testing 
purposes in this paper, is a simple temperature sensing system 
used to control windows in an office space. 

For the context-aware system designer, knowing how the smart 
space and the application interact is invaluable information.   In 
complex context aware systems, the scale and heterogeneity of 
data generated during testing quickly becomes unmanageable.  
Developers need support to investigate both the context space 

(inputs) for an application and its behavioural space (outputs). 
Dynamical systems theory is an area of applied mathematics that 
has been used in the analysis of complex non-linear systems [6], 
such as analysis of supply chains [2].  In order to analyse the 
contextual and behavioural space of an application using this 
approach, a significant amount of post-experimental data must be 
collected including information about window actuator control, 
ambient room temperature and localised room temperature.   

Gaining access to large data sets persists in being a problem for 
developing analysis tools however simulation offers a way to 
overcome this hurdle.  Simulation has repeatedly been used by 
researchers for developing and testing prototype systems e.g. 
Ubiwise [9], Topiary [10] and Pudecas [22].  Simulation offers a 
significant benefit for early stage testing of context-aware 
prototype systems because it lowers the barrier to entry and 
supports rapid testing cycles.  3D rendering engines are 
particularly good at simulating context around location and spatial 

relations such as containment, proximity and orientation, key 
factors identified by Bandini et al [15].  However simulating other 
environment conditions is not standard in many rendering 
engines.  Additional modelling is required to generate context 
about conditions related to environment monitoring, such as 
airflow, this is discussed further in section 3.1.   

In this paper we discuss the role of a context generating simulator 
and a context routing middleware in providing the large data sets 

required for dynamical systems analysis (DSA). Via DSA the 
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system’s stability, or instability, can be verified at an early stage, 
aiding a system designer at the prototype phase.  The middleware 
provides three main types of information to the DSA: 

! Sensor Data / Generated Context 

! Behaviour exhibited by the context-aware system i.e. 
Actuations 

! Actual Events i.e. the delta between the simulated sensor 
data and a full picture of the deployment environment. 

The candidate environmental monitoring application used as the 
example in this paper is a temperature moderation system. The 
goal of the system is to maintain the temperature of a room at a 
comfortable level for the room occupants.  The system has access 
to an actuator on a window, and it can open the window at various 
widths; the second control that the system can access is the 
radiator in the room. The smart space also consists of a 
temperature sensor placed in the room. 

This paper begins in the next section by discussing some 
background and related work.  Sections 3 and 4 present the 

infrastructure behind this work in terms of the simulation, 
modelling and application interface, as well as the requirements 
for DSA.  Section 5 discusses the dynamical systems analysis 
approach followed by some conclusions about the paper in section 
6. 

2. Background 
Ongoing problems of the cost and effort required to create 
ubiquitous computing (ubicomp) test environments continue to be 

barriers to large scale testing in a rapid prototyping cycle.  
Additionally complexity in context-aware ubicomp systems builds 
rapidly due to the multitude of contextual inputs sourced from 
users, devices and the surrounding environment.  Heterogeneity of 
contextual information and scalability of ubicomp systems are 
repeatedly listed as major challenges for ubicomp developers, 
Pham et al [16] list these as the primary challenge.  Research is 
also indicating that context does impact on end user acceptance of 
systems; Potts et al [17] have completed work using the Inquiry 

cycle which has already identified that an individual’s location 
impacts on that user’s acceptance of a service. 

2.1 Environment Monitoring 
Environmental sensing focuses on monitoring events or 
phenomena in the real world; these include the temperature in a 
room, the humidity in a space, or contaminants in a lake. Often 
environmental monitoring will place sensors in a remote location, 

in these circumstances the sensor is often used to detect an event 
that can, should it occur, cause catastrophic failure of the sensor. 
In [18] a context-aware system of environmental sensing for 
forest fires is proposed. Pesch et al put forward a method whereby 
a node's health is reflected by the temperature that node currently 
detects. A linear degradation of the 'health status' occurs between 
0 and 100. If a node's health is 0 it is deemed likely to fail in a 
short period of time, in this circumstance the system as a whole 
reconfigures to ensure connection can be maintained. Analysis of 

multiple simulated scenarios can aid in determining system 
criteria, e.g. sensor location. 

2.2 Simulation 
Morla & Davies’ [11] simulation tool focuses on addressing many 
of the same issues as the platform described in this document, 
however without a visualisation element.  Morla and Davis use 
existing simulators to rapidly and cost effectively evaluate 

healthcare applications in terms of their networking performance 
and ability to process GPS information. Reynolds et al [12] 
address the issue of ubicomp system design from the ground up.  
Their work focuses on an automated approach to simulation and 
successfully models four abstractions of ubiquitous computing 

scenarios: the environment, sensors, actuators and applications.  
Their simulation environment supports an automated approach by 
using a 2D grid tailored towards playing out traffic scenarios. 

2.3 Context Aware Applications 

2.3.1 Design  
A central issue for evaluating ubicomp design is to show that the 
presented solution is appropriate and that serves its intended 
purpose as was stated by Nuseibeh in [19].  However the criteria 

that must be satisfied for ‘good’ ubicomp design is yet to be 
standardized.  Some researchers choose their own set of metrics to 
determine that a solution is successful in its appropriateness while 
others deem that reusability is a measure of success.  Davies [21] 
points this out, stating that the lack of comparison across ubicomp 
system design is a roadblock to progress.  Davies lists the 
development of comparative metrics for ubicomp applications as 
one of four high priority issues to improve the pace moving 
forward.     

2.3.2 Prototyping 
The context toolkit [20] was developed to make prototyping of 
context aware applications easier and faster by using context 
widgets.  Context widgets offer a high level method for accessing 
contextual information so that the application does not have to be 
concerned with individual sensor and protocol implementations.  

Widgets provide the benefits of abstraction, reusability and they 
hide the underlying complexity of the sensor network.  The 
context toolkit proved useful both in creating new ubicomp 
applications and also helped retrofit existing applications to 
support context-awareness. 

 

 

Figure 1. Simulated Environmental Research Institute (ERI), 

University College Cork 

 

2.4 Dynamical Systems Theory 
Dynamical systems theory can be used to determine whether a 
system is random, chaotic, periodic, or stable. Determining this 
for a complex system is often an intractable problem in linear 
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mathematics. Dynamical systems theory is an approach, which 
has been shown to produce results in a multitude of domains 
[3][4].  When designing a system, knowing how the components 
interact can aid in a number of ways. The types of interactions 
include periodic stable (the system repeats a pattern over a given 

period), chaotic (chaotic systems are systems which display a high 
degree of sensitivity to initial conditions), or random (the system 
shows little correlation between the inputs and outputs).  The 
application of dynamical systems theory to context-aware 
computing systems was previously proposed in [7], however a 
lack of large context-aware data sets has to date been problematic 
for the work. 

 

3. Simulations and Modelling 
As mentioned in the introduction, 3D simulators are particularly 

good at generating context related to location and spatial relations; 
in this work we use the Pudecas simulation environment, figure 1.  
The role of the Pudecas simulator is to enable the middleware to 
supply the DSA with contextual information about the test 
environment.  This contextual information is generated by virtual 
sensors in the same manner as real sensors i.e. by (virtual) user 
activity in the test environment.  The context routing system 
(CRS), which will be discussed in section 4, provides for two way 
asynchronous communication between the context aware 

application and the test environment.  This two way 
communication is required to test environment monitoring 
applications in this manner.  These types of applicatoins exhibit 
their behaviour as actuations in their environment; the CRS 
provides the mechanism for these applications to instruct the 
virtual environment.   

The execution phase of an experimental cycle allows for either 
multi-player or single user, bot populated experiments. 
Multiplayer simulations allow up to 32 users to experiment with 
the System Under Test (SUT) simultaneously in the context of the 
virtual world. Bot driven simulations on the other hand involve a 

single user testing the service while role playing bots also roam 
the virtual world testing defined scenarios.  During either user-
driven or bot-driven experiments, sensor data is generated and 
sent to the middleware.  Bots are particularly useful for 
experiments of long duration because they can be left 
unsupervised for prolonged periods or overnight. 

Simulation in this work allows: 

! Generation of simulated sensor data at runtime, based on the 
activity of real users and non-player characters. 

! Actuations of entities in the virtual world e.g. switching on 
lights, opening doors. These actuations happen when 
signalled by the SUT. 

! Ease of sensor deployment and reconfiguration. 

The architecture and supporting toolset for Pudecas is discussed in 
more detail in O’Neill et al’s earlier publication A Simulation-

based Approach to Highly Iterative Prototyping of Ubiquitous 
Computing System [22]. 

3.1 Airflow Modelling 
The Pudecas simulator is based on the Source/Half-Life 2 game 
engine [5].  Game engine technology already models and 
generates the three dimensional physical space.  However a key 

weakness for these types of simulators is in testing applications 
such as the environment monitoring system presented in this 

paper.  Some success has been seen using the Half-Life 2 engine 
to conduct fire simulations at Durham University [13], however 
for most environmental conditions additional modelling must be 
provided.  Work has commenced on the Pudecas simulator [22] to 
introduce a ‘rule of thumb’ airflow model.  Building on the 

existing sophisticated calculation and rendering tools available 
through the Half-Life 2 SDK, a model of airflow is being built on 
top. 

The inputs to this model include: 

a) Wind Direction 

b) Built Environment Geometry 

c) Air particle density (no. of air particles) [default 1/metre] 

d) Wind velocity [default 4 m/sec] 

e) Edge conditions of model space (default boundaries as 
building elements) 

The visualisation element included in the model is for the 

designer’s benefit.  Air particles are used to allow tracking of the 
airflow and rules have been written to determine the direction of 
the airflow, for example: 

! Air particles follow wind direction in free space. 

! Air particles adjust position and direction to maintain equal 

spacing between different air particles and enclosing built 
elements (e.g. constriction of space by converging walls) 

! Air particles are influenced by adjacent air particles: 

velocity increases with proximity of neighbouring air 
particles /building elements (and vice versa, they slow with 
increasing distance) 
 

 

Figure 2. Gives a high level view of the flow of context from 

the Interactive Context Generator to the SUT. 

 

3.2 SimCon Modelling 
Data generated by a game engine is highly accurate, it is possible 
to know the exact location (within a Euclidean geometry) and 
orientation of a user at all times, and all location updates are 
synchronised to the systems global clock.  This is an unrealistic 
level of accuracy for the real world but with this information it is 
theoretically possible to simulate a wide range of different 

sensors.  By introducing Gaussian noise and delays to the context 
flow generated by the virtual environment, a more accurate 
representation of the types of context provided by low level 
context sources can be generated.   

The SimCon modelling tool supports rapid experimental 
configuration by generating SensorML descriptions which are 
used at runtime to produce the context flow supplied to an 
application under test.  On start-up, the SimCon Generator loads 
in all sensorML context source descriptions, see figure 2, to 
produce a more realistic context flow for testing and experimental 
purposes.  SimCon provides efficient and accessible tools to place 
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Figure 3. System Integration 

 

and configure differing location based context sources within the 
virtual environment, providing heterogeneous types of location 
based context to evaluate their impact on the SUT.  SimCon is 
described in detail in McGlinn et al’s paper Modelling of Context 
and Context Aware Services for Simulator Based Evaluation [23]. 

3.3 DSA Requirements 
Enabling dynamical systems analysis for context aware 
applications requires significant volumes of data that includes the 

inputs to the context-aware system and the behaviour of the smart 
space. In a real world test environment it is difficult to generate 
these large data sets while also monitoring a large system and all 
of its users.  A simulation based approach provides the affordance 
of capturing a full picture of actual events as well as the snapshot 
generated by the virtual sensors, which enables DSA to analyse 
the system output against the input and against actual events.  
DSA can perform better if problematic behaviour can be 

connected to specific outputs from the analysis, thus enabling 
greater confidence in the results.  Work is being conducted by 
O’Neill et al [22] towards automation identification of potentially 
problematic behaviour in a context aware system.   

4. Context Routing 
In figure 3, a high level view is shown of the system integration.  
At run-time, messages flow between the virtual environment and 
the context aware service.  As mentioned in section 3.2, SimCon 

models data leaving the simulator so that it becomes the 
contextual information on which services base their decisions and 
thus respond to the user’s needs.  Context is routed to applications 

from the test environment through a Java based context routing 
system (CRS).  This offers a number of advantages: 

! Context aware applications designed to run on real sensors 

do not have to be changed for testing in the virtual 
environment.  The Java system is responsible for meeting the 
subscription requirements of an individual application.  This 
can be in terms of the sensor data supplied or the data format.  
Currently XML is used for data exchange 

! The CRS manages queuing of messages, taking the burden 
from both the simulator and the application under test. 

! Applications can be seamlessly moved between the real and 
virtual world without being recoded.  The simulator has 
proven useful for early stage testing, especially when 
working with more sophisticated technologies such as 
Ubisense where configuration of the system requires 
significant effort. 

! The test platform can be distributed; applications can run on 
mobile devices or emulators. 

! The CRS can capture data that the application does not have 
access to.  For the purpose of fidelity, applications only 
receive information from the environment which they would 
receive if it was a real environment.  However the CRS can 

gather additional data specifically for the DSA approach so 
that exhibited behaviour can be analysed against actual 
environment conditions, not just sensed environment 
conditions. 
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A configuration file provides the necessary information for an 
experiment to begin e.g. an experiment ID, a map name, a game-
server address and data subscription information. This approach 
allows other applications to subscribe to a single experiment.  
This is particularly important for performing analysis; the DSA 

tool must be able to subscribe to the same context flows and 
environment as the application in order to perform its analysis. 

Once the service is registered, the CRS invokes a new game-
server on the remote host and subsequently establishes a 
connection with the simulation for experimental data transfer.  
During an experiment, services may connect to or disconnect from 
the proxy, thus joining or leaving experiments respectively.  
Services send asynchronous instructions to alter the state of the 
environment through device or entity actuation, e.g. opening a 
window or altering the thermostat settings.  The latency of 
messages, across the system is of the order of milliseconds.  

5. Dynamical Systems Analysis 
In dynamical systems theory a system is composed of an ambient 
space, sometimes called a 'state space'. This ambient space is a 
multi-dimensional construct, whereby each input and output is a 
dimension of the system. Consider the smart space previously 
described, within this smart space the detected temperature, and 
the speed of the airflow can both be taken as inputs and the 
amount by which the window is opened is an output. If the room 

is too warm, the window needs to be opened. However, in order to 
prevent the room from dropping in temperature excessively, the 
speed of airflow must also be considered; if there is a strong 
breeze, the window will need to be opened less than if there is a 
gentle breeze.  

 

Figure 4. Effect of Airspeed on Window Actuator 

Figure 4 displays this information in a 2-dimensional manner, 
however the actual ambient space exists in multiple dimensions 
and consists of a surface on which the system should remain. The 
determination of the optimum surface can require domain specific 

knowledge, however DSA can aid in the verification of these 
surfaces.  Dynamical systems can have a number of geometries 
present in their ambient space. These include point attractors, 
strange attractors, and periodic trajectories. For all of these 
geometries, there exists a 'basin of attraction'; if the system enters 

a state that is within this 'basin of attraction' it will converge to the 
respective attractor. 

Also of interest in smart spaces is the level of stability, this can be 
determined by a systems Lyapunov exponent [8]. Effectively this 
value represents whether a system will converge to a stable 
solution, and if so, how quickly this convergence takes place.  For 
the purposes of this paper, all configuration is viewed from the 

perspective of the application developer. In other words, it is 
assumed that the smart space has already been installed and exists 
in a given setup.  

There exists a quantitatively intractable problem within the 
temperature control system outlined in this paper, and that is the 
determination of the accuracy of a given application logic; for 
example is a given application's logic able to deal with outlier 
circumstances, and does the system as a whole ever enter into 
states or areas of the ambient space from which it cannot escape 
without an external stimulus? 

The dynamical systems analysis component of the system, accepts 
inputs from the middleware. These inputs will be values that vary 
in time for the given system. In the given example of a window-
temperature control system, the inputs would include the average 

ambient temperature in the room, the temperature as given by a 
temperature sensor, the position of the window (open or closed), 
the temperature outside the room, the status of the heating in the 
room, the applications decision in the context of all this data (for 
example, to open the window, close the window, 
decrease/increase the heating settings). 

For a given set of context from a smart space, dynamical systems 
analysis can determine if there is a correlation between inputs; a 
strong correlation may indicate redundancy in the sensor 
configuration, or if a system is highly sensitive to initial 
conditions (moving the system into the realm of chaos theory), or 

indeed if the system has a tendency to enter into a steady-state of 
its own accord. 

For a given application logic, coupled with the context data, 

dynamical systems analysis can aid in determining if the logic 
applied by the developer moved the system into a steady-state, a 
chaotic state, or a random state.  Following this, the application 
developer can alter the logic in the application, and the same 
simulation can be executed again. The benefits of simulation now 
become apparent; it enables the applications logic to be compared 
against the same context, while also enabling the injection of 
outlier situations. 

6. Conclusions 
Early stage testing of context-aware systems is hampered by 
limited availability of deployed sensor rich environments.  In 
addition to the challenges of mobile and distributed system 
development, context aware systems are further complicated by 
adaptivity in their exhibited behaviour.  Rapid system 
development, early in the design cycle, requires a middleware that 
enables applications to interface with an easily configurable, test 

environment.  In this paper we have discussed the role of a 
context routing and context modelling software which allows 
prototype context aware systems to benefit from a 3D simulated 
test environment.  Simulation enables quick and easy deployment 
of sensor rich environments, enabling large-scale dataset creation. 

Analysis of these datasets, using DSA, can give application 
developers access to qualitative predictions regarding the system, 
and thus help to ensure that the application will remain within 
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bounds deemed by the developer to be optimum, even when that 
system cannot be solved analytically.  Simulation simultaneously 
allows an application to be tested against long-run average 
scenarios and outlier events.  These results can be used to 
reconfigure the system and/or environment (i.e. the simulation) 

leading to improved system design.  The system is not a 
replacement for real-world testing, however the system should aid 
rapid prototyping of systems at early stages.  
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