
Application Development using Modeling and Dynamical
Systems Analysis

Eleanor O!Neill, Kris McGlinn,

David Lewis
Knowledge & Data Engineering Group

School of Computer Science and
Statistics

Trinity College Dublin, Ireland

{eleanor.oneill, kris.mcglinn,
dave.lewis} @cs.tcd.ie

Eoin Bailey, Simon Dobson
Systems Research Group

School of Computer Science and
Informatics

UCD Dublin, Ireland

{eoin.bailey,
simon.dobson}@ucd.ie

Kevin McCartney
Centre for Architectural Education

College of Science, Engineering and
Food Science

University College Cork, Ireland

k.mccartney@ucc.ie

ABSTRACT

Research on context aware systems is handicapped by the lack of
readily available large scale data sets, as well as by the lack of
tools by which researchers can interact effectively with such data
sets across a range of scales and granularities. We show how
virtual reality combined with a dynamical systems analysis
approach can start to address these gaps. Simulation allows for

generation of simulated sensor data at runtime and actuations of
entities in the virtual world. The ease of sensor deployment and
configurations in a simulated environment allows for rapid
reconfigurations enabling generation of the required large scale
data sets for analysis. Using these data sets, dynamical systems
analysis can determine if a given application is functioning in a
manner that is deemed to be correct.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging – Testing
Tools. I.6.6 [Computing Methodologies]: Simulation and
Modelling - Simulation Output Analysis

General Terms

Experimentation

Keywords

context-aware systems , dynamical system analysis, simulation

1. Introduction
Context awareness and sensor technology are well suited to a
wide range of environment monitoring applications from disaster
detection to wireless compliance monitoring. Almost a decade
ago, Cerpa et al referred to environment monitoring as a
'motivator' for wireless technology [14], pointing out that these

systems can generate data at granularities and quantities not
previously feasible. Two ongoing problems for developing these
systems are firstly that working with large data sets quickly
becomes prohibitive without sophisticated analysis tools. The
second hurdle is the availability of deployed sensor networks to
generate these large data sets; many wireless sensor technologies

remain costly and time-consuming to deploy.

Challenges such as successful reasoning about spatial relations

and spatial logics are key issues that need to be addressed for a
context-aware application to be accepted by end users. Sensor
rich environments differentiate these applications from existing
mobile and distributed systems by enabling them to adapt to end
user needs. For the system developer, the problems of
heterogeneity and scalability are felt most keenly when designing
this adaptive behaviour. A context-aware system needs to operate
reliably over the wide variety of situations that may be

encountered. The context-aware system discussed for testing
purposes in this paper, is a simple temperature sensing system
used to control windows in an office space.

For the context-aware system designer, knowing how the smart
space and the application interact is invaluable information. In
complex context aware systems, the scale and heterogeneity of
data generated during testing quickly becomes unmanageable.
Developers need support to investigate both the context space

(inputs) for an application and its behavioural space (outputs).
Dynamical systems theory is an area of applied mathematics that
has been used in the analysis of complex non-linear systems [6],
such as analysis of supply chains [2]. In order to analyse the
contextual and behavioural space of an application using this
approach, a significant amount of post-experimental data must be
collected including information about window actuator control,
ambient room temperature and localised room temperature.

Gaining access to large data sets persists in being a problem for
developing analysis tools however simulation offers a way to
overcome this hurdle. Simulation has repeatedly been used by
researchers for developing and testing prototype systems e.g.
Ubiwise [9], Topiary [10] and Pudecas [22]. Simulation offers a
significant benefit for early stage testing of context-aware
prototype systems because it lowers the barrier to entry and
supports rapid testing cycles. 3D rendering engines are
particularly good at simulating context around location and spatial

relations such as containment, proximity and orientation, key
factors identified by Bandini et al [15]. However simulating other
environment conditions is not standard in many rendering
engines. Additional modelling is required to generate context
about conditions related to environment monitoring, such as
airflow, this is discussed further in section 3.1.

In this paper we discuss the role of a context generating simulator
and a context routing middleware in providing the large data sets

required for dynamical systems analysis (DSA). Via DSA the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To

copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. CAMS 2009, June
16, Dublin, Ireland. Copyright © 2009 ACM 978-1-60558-525-
3/09/06... $10.00

18

system’s stability, or instability, can be verified at an early stage,
aiding a system designer at the prototype phase. The middleware
provides three main types of information to the DSA:

! Sensor Data / Generated Context

! Behaviour exhibited by the context-aware system i.e.
Actuations

! Actual Events i.e. the delta between the simulated sensor
data and a full picture of the deployment environment.

The candidate environmental monitoring application used as the
example in this paper is a temperature moderation system. The
goal of the system is to maintain the temperature of a room at a
comfortable level for the room occupants. The system has access
to an actuator on a window, and it can open the window at various
widths; the second control that the system can access is the
radiator in the room. The smart space also consists of a
temperature sensor placed in the room.

This paper begins in the next section by discussing some
background and related work. Sections 3 and 4 present the

infrastructure behind this work in terms of the simulation,
modelling and application interface, as well as the requirements
for DSA. Section 5 discusses the dynamical systems analysis
approach followed by some conclusions about the paper in section
6.

2. Background
Ongoing problems of the cost and effort required to create
ubiquitous computing (ubicomp) test environments continue to be

barriers to large scale testing in a rapid prototyping cycle.
Additionally complexity in context-aware ubicomp systems builds
rapidly due to the multitude of contextual inputs sourced from
users, devices and the surrounding environment. Heterogeneity of
contextual information and scalability of ubicomp systems are
repeatedly listed as major challenges for ubicomp developers,
Pham et al [16] list these as the primary challenge. Research is
also indicating that context does impact on end user acceptance of
systems; Potts et al [17] have completed work using the Inquiry

cycle which has already identified that an individual’s location
impacts on that user’s acceptance of a service.

2.1 Environment Monitoring
Environmental sensing focuses on monitoring events or
phenomena in the real world; these include the temperature in a
room, the humidity in a space, or contaminants in a lake. Often
environmental monitoring will place sensors in a remote location,

in these circumstances the sensor is often used to detect an event
that can, should it occur, cause catastrophic failure of the sensor.
In [18] a context-aware system of environmental sensing for
forest fires is proposed. Pesch et al put forward a method whereby
a node's health is reflected by the temperature that node currently
detects. A linear degradation of the 'health status' occurs between
0 and 100. If a node's health is 0 it is deemed likely to fail in a
short period of time, in this circumstance the system as a whole
reconfigures to ensure connection can be maintained. Analysis of

multiple simulated scenarios can aid in determining system
criteria, e.g. sensor location.

2.2 Simulation
Morla & Davies’ [11] simulation tool focuses on addressing many
of the same issues as the platform described in this document,
however without a visualisation element. Morla and Davis use
existing simulators to rapidly and cost effectively evaluate

healthcare applications in terms of their networking performance
and ability to process GPS information. Reynolds et al [12]
address the issue of ubicomp system design from the ground up.
Their work focuses on an automated approach to simulation and
successfully models four abstractions of ubiquitous computing

scenarios: the environment, sensors, actuators and applications.
Their simulation environment supports an automated approach by
using a 2D grid tailored towards playing out traffic scenarios.

2.3 Context Aware Applications

2.3.1 Design
A central issue for evaluating ubicomp design is to show that the
presented solution is appropriate and that serves its intended
purpose as was stated by Nuseibeh in [19]. However the criteria

that must be satisfied for ‘good’ ubicomp design is yet to be
standardized. Some researchers choose their own set of metrics to
determine that a solution is successful in its appropriateness while
others deem that reusability is a measure of success. Davies [21]
points this out, stating that the lack of comparison across ubicomp
system design is a roadblock to progress. Davies lists the
development of comparative metrics for ubicomp applications as
one of four high priority issues to improve the pace moving
forward.

2.3.2 Prototyping
The context toolkit [20] was developed to make prototyping of
context aware applications easier and faster by using context
widgets. Context widgets offer a high level method for accessing
contextual information so that the application does not have to be
concerned with individual sensor and protocol implementations.

Widgets provide the benefits of abstraction, reusability and they
hide the underlying complexity of the sensor network. The
context toolkit proved useful both in creating new ubicomp
applications and also helped retrofit existing applications to
support context-awareness.

Figure 1. Simulated Environmental Research Institute (ERI),

University College Cork

2.4 Dynamical Systems Theory
Dynamical systems theory can be used to determine whether a
system is random, chaotic, periodic, or stable. Determining this
for a complex system is often an intractable problem in linear

19

mathematics. Dynamical systems theory is an approach, which
has been shown to produce results in a multitude of domains
[3][4]. When designing a system, knowing how the components
interact can aid in a number of ways. The types of interactions
include periodic stable (the system repeats a pattern over a given

period), chaotic (chaotic systems are systems which display a high
degree of sensitivity to initial conditions), or random (the system
shows little correlation between the inputs and outputs). The
application of dynamical systems theory to context-aware
computing systems was previously proposed in [7], however a
lack of large context-aware data sets has to date been problematic
for the work.

3. Simulations and Modelling
As mentioned in the introduction, 3D simulators are particularly

good at generating context related to location and spatial relations;
in this work we use the Pudecas simulation environment, figure 1.
The role of the Pudecas simulator is to enable the middleware to
supply the DSA with contextual information about the test
environment. This contextual information is generated by virtual
sensors in the same manner as real sensors i.e. by (virtual) user
activity in the test environment. The context routing system
(CRS), which will be discussed in section 4, provides for two way
asynchronous communication between the context aware

application and the test environment. This two way
communication is required to test environment monitoring
applications in this manner. These types of applicatoins exhibit
their behaviour as actuations in their environment; the CRS
provides the mechanism for these applications to instruct the
virtual environment.

The execution phase of an experimental cycle allows for either
multi-player or single user, bot populated experiments.
Multiplayer simulations allow up to 32 users to experiment with
the System Under Test (SUT) simultaneously in the context of the
virtual world. Bot driven simulations on the other hand involve a

single user testing the service while role playing bots also roam
the virtual world testing defined scenarios. During either user-
driven or bot-driven experiments, sensor data is generated and
sent to the middleware. Bots are particularly useful for
experiments of long duration because they can be left
unsupervised for prolonged periods or overnight.

Simulation in this work allows:

! Generation of simulated sensor data at runtime, based on the
activity of real users and non-player characters.

! Actuations of entities in the virtual world e.g. switching on
lights, opening doors. These actuations happen when
signalled by the SUT.

! Ease of sensor deployment and reconfiguration.

The architecture and supporting toolset for Pudecas is discussed in
more detail in O’Neill et al’s earlier publication A Simulation-

based Approach to Highly Iterative Prototyping of Ubiquitous
Computing System [22].

3.1 Airflow Modelling
The Pudecas simulator is based on the Source/Half-Life 2 game
engine [5]. Game engine technology already models and
generates the three dimensional physical space. However a key

weakness for these types of simulators is in testing applications
such as the environment monitoring system presented in this

paper. Some success has been seen using the Half-Life 2 engine
to conduct fire simulations at Durham University [13], however
for most environmental conditions additional modelling must be
provided. Work has commenced on the Pudecas simulator [22] to
introduce a ‘rule of thumb’ airflow model. Building on the

existing sophisticated calculation and rendering tools available
through the Half-Life 2 SDK, a model of airflow is being built on
top.

The inputs to this model include:

a) Wind Direction

b) Built Environment Geometry

c) Air particle density (no. of air particles) [default 1/metre]

d) Wind velocity [default 4 m/sec]

e) Edge conditions of model space (default boundaries as
building elements)

The visualisation element included in the model is for the

designer’s benefit. Air particles are used to allow tracking of the
airflow and rules have been written to determine the direction of
the airflow, for example:

! Air particles follow wind direction in free space.

! Air particles adjust position and direction to maintain equal

spacing between different air particles and enclosing built
elements (e.g. constriction of space by converging walls)

! Air particles are influenced by adjacent air particles:

velocity increases with proximity of neighbouring air
particles /building elements (and vice versa, they slow with
increasing distance)

Figure 2. Gives a high level view of the flow of context from

the Interactive Context Generator to the SUT.

3.2 SimCon Modelling
Data generated by a game engine is highly accurate, it is possible
to know the exact location (within a Euclidean geometry) and
orientation of a user at all times, and all location updates are
synchronised to the systems global clock. This is an unrealistic
level of accuracy for the real world but with this information it is
theoretically possible to simulate a wide range of different

sensors. By introducing Gaussian noise and delays to the context
flow generated by the virtual environment, a more accurate
representation of the types of context provided by low level
context sources can be generated.

The SimCon modelling tool supports rapid experimental
configuration by generating SensorML descriptions which are
used at runtime to produce the context flow supplied to an
application under test. On start-up, the SimCon Generator loads
in all sensorML context source descriptions, see figure 2, to
produce a more realistic context flow for testing and experimental
purposes. SimCon provides efficient and accessible tools to place

20

Figure 3. System Integration

and configure differing location based context sources within the
virtual environment, providing heterogeneous types of location
based context to evaluate their impact on the SUT. SimCon is
described in detail in McGlinn et al’s paper Modelling of Context
and Context Aware Services for Simulator Based Evaluation [23].

3.3 DSA Requirements
Enabling dynamical systems analysis for context aware
applications requires significant volumes of data that includes the

inputs to the context-aware system and the behaviour of the smart
space. In a real world test environment it is difficult to generate
these large data sets while also monitoring a large system and all
of its users. A simulation based approach provides the affordance
of capturing a full picture of actual events as well as the snapshot
generated by the virtual sensors, which enables DSA to analyse
the system output against the input and against actual events.
DSA can perform better if problematic behaviour can be

connected to specific outputs from the analysis, thus enabling
greater confidence in the results. Work is being conducted by
O’Neill et al [22] towards automation identification of potentially
problematic behaviour in a context aware system.

4. Context Routing
In figure 3, a high level view is shown of the system integration.
At run-time, messages flow between the virtual environment and
the context aware service. As mentioned in section 3.2, SimCon

models data leaving the simulator so that it becomes the
contextual information on which services base their decisions and
thus respond to the user’s needs. Context is routed to applications

from the test environment through a Java based context routing
system (CRS). This offers a number of advantages:

! Context aware applications designed to run on real sensors

do not have to be changed for testing in the virtual
environment. The Java system is responsible for meeting the
subscription requirements of an individual application. This
can be in terms of the sensor data supplied or the data format.
Currently XML is used for data exchange

! The CRS manages queuing of messages, taking the burden
from both the simulator and the application under test.

! Applications can be seamlessly moved between the real and
virtual world without being recoded. The simulator has
proven useful for early stage testing, especially when
working with more sophisticated technologies such as
Ubisense where configuration of the system requires
significant effort.

! The test platform can be distributed; applications can run on
mobile devices or emulators.

! The CRS can capture data that the application does not have
access to. For the purpose of fidelity, applications only
receive information from the environment which they would
receive if it was a real environment. However the CRS can

gather additional data specifically for the DSA approach so
that exhibited behaviour can be analysed against actual
environment conditions, not just sensed environment
conditions.

21

A configuration file provides the necessary information for an
experiment to begin e.g. an experiment ID, a map name, a game-
server address and data subscription information. This approach
allows other applications to subscribe to a single experiment.
This is particularly important for performing analysis; the DSA

tool must be able to subscribe to the same context flows and
environment as the application in order to perform its analysis.

Once the service is registered, the CRS invokes a new game-
server on the remote host and subsequently establishes a
connection with the simulation for experimental data transfer.
During an experiment, services may connect to or disconnect from
the proxy, thus joining or leaving experiments respectively.
Services send asynchronous instructions to alter the state of the
environment through device or entity actuation, e.g. opening a
window or altering the thermostat settings. The latency of
messages, across the system is of the order of milliseconds.

5. Dynamical Systems Analysis
In dynamical systems theory a system is composed of an ambient
space, sometimes called a 'state space'. This ambient space is a
multi-dimensional construct, whereby each input and output is a
dimension of the system. Consider the smart space previously
described, within this smart space the detected temperature, and
the speed of the airflow can both be taken as inputs and the
amount by which the window is opened is an output. If the room

is too warm, the window needs to be opened. However, in order to
prevent the room from dropping in temperature excessively, the
speed of airflow must also be considered; if there is a strong
breeze, the window will need to be opened less than if there is a
gentle breeze.

Figure 4. Effect of Airspeed on Window Actuator

Figure 4 displays this information in a 2-dimensional manner,
however the actual ambient space exists in multiple dimensions
and consists of a surface on which the system should remain. The
determination of the optimum surface can require domain specific

knowledge, however DSA can aid in the verification of these
surfaces. Dynamical systems can have a number of geometries
present in their ambient space. These include point attractors,
strange attractors, and periodic trajectories. For all of these
geometries, there exists a 'basin of attraction'; if the system enters

a state that is within this 'basin of attraction' it will converge to the
respective attractor.

Also of interest in smart spaces is the level of stability, this can be
determined by a systems Lyapunov exponent [8]. Effectively this
value represents whether a system will converge to a stable
solution, and if so, how quickly this convergence takes place. For
the purposes of this paper, all configuration is viewed from the

perspective of the application developer. In other words, it is
assumed that the smart space has already been installed and exists
in a given setup.

There exists a quantitatively intractable problem within the
temperature control system outlined in this paper, and that is the
determination of the accuracy of a given application logic; for
example is a given application's logic able to deal with outlier
circumstances, and does the system as a whole ever enter into
states or areas of the ambient space from which it cannot escape
without an external stimulus?

The dynamical systems analysis component of the system, accepts
inputs from the middleware. These inputs will be values that vary
in time for the given system. In the given example of a window-
temperature control system, the inputs would include the average

ambient temperature in the room, the temperature as given by a
temperature sensor, the position of the window (open or closed),
the temperature outside the room, the status of the heating in the
room, the applications decision in the context of all this data (for
example, to open the window, close the window,
decrease/increase the heating settings).

For a given set of context from a smart space, dynamical systems
analysis can determine if there is a correlation between inputs; a
strong correlation may indicate redundancy in the sensor
configuration, or if a system is highly sensitive to initial
conditions (moving the system into the realm of chaos theory), or

indeed if the system has a tendency to enter into a steady-state of
its own accord.

For a given application logic, coupled with the context data,

dynamical systems analysis can aid in determining if the logic
applied by the developer moved the system into a steady-state, a
chaotic state, or a random state. Following this, the application
developer can alter the logic in the application, and the same
simulation can be executed again. The benefits of simulation now
become apparent; it enables the applications logic to be compared
against the same context, while also enabling the injection of
outlier situations.

6. Conclusions
Early stage testing of context-aware systems is hampered by
limited availability of deployed sensor rich environments. In
addition to the challenges of mobile and distributed system
development, context aware systems are further complicated by
adaptivity in their exhibited behaviour. Rapid system
development, early in the design cycle, requires a middleware that
enables applications to interface with an easily configurable, test

environment. In this paper we have discussed the role of a
context routing and context modelling software which allows
prototype context aware systems to benefit from a 3D simulated
test environment. Simulation enables quick and easy deployment
of sensor rich environments, enabling large-scale dataset creation.

Analysis of these datasets, using DSA, can give application
developers access to qualitative predictions regarding the system,
and thus help to ensure that the application will remain within

22

bounds deemed by the developer to be optimum, even when that
system cannot be solved analytically. Simulation simultaneously
allows an application to be tested against long-run average
scenarios and outlier events. These results can be used to
reconfigure the system and/or environment (i.e. the simulation)

leading to improved system design. The system is not a
replacement for real-world testing, however the system should aid
rapid prototyping of systems at early stages.

7. Acknowledgements
This work was supported, in part, by Science Foundation Ireland

grant 03/CE2/I303_1 to Lero - the Irish Software Engineering
Research Centre (www.lero.ie) and by the HEA funded NEMBES
project (www.nembes.org).

8. References
[1] Li, Y. Hong, J. I. and Landay, A. Design Challenges and

Principles for Wizard of Oz Testing of Location-Enhanced
Applications. IEEE Pervasive Computing 6, 2 (Apr. 2007),
70-75.

[2] H. V. D. Parunak, R. Savit, R. L. Riolo, and S. J. Clark.
Dasch Dynamic analysis of supply chains. Technical report,
CECERIM, 1999. Final Report.

[3] E. Stone and S.A. Campbell, Stability and Bifurcation
Analysis of a Nonlinear DDE Model for Drilling. Journal of
Nonlinear Science, Volume 14, Number 1, pp27-57

[4] H. Poincare, Sur le probleme des trois corps et les equations
de la dynamique (), Acta Mathematica v.13 (1890), pp1–271

[5] Half-Life 2 http://www.valvesoftware.com/games.html.
Source Engine http://source.valvesoftware.com/

[6] George Osipenko, Dynamical Systems, Graphs, and
Algorithms. LNCS 1889. Springer, 2006

[7] Simon Dobson, Eoin Bailey, Stephen Knox, Ross Shannon

and Aaron Quigley, "A first approach to the closed-form
specification and analysis of an autonomic control system",
12th IEEE International Conference on Engineering
Complex Computer Systems, Auckland, New Zealand, July
11-14, 2007

[8] P. J. Moylan and D. J. Hill. Stability criteria for large-scale
systems. IEEE Transactions on Automatic Control, AC-
23(2):143-149, April 1978.

[9] Barton, J. and Vijayaraghavan, V., "UBIWISE, A
Ubiquitous Wireless Infrastructure Simulation Environment",
http://www.hpl.hp.com/techreports/2002/HPL-2002-
303.html

[10] Li, Y., Hong, J. I., and Landay, J. A. 2004. Topiary: a tool
for prototyping location-enhanced applications. In
Proceedings of the 17th Annual ACM Symposium on User
interface Software and Technology (Santa Fe, NM, USA,
October 24 - 27, 2004). UIST '04. ACM, New York, NY,
217-226. DOI= http://doi.acm.org/10.1145/1029632.1029671

[11] Morla, R. and Davies, N. 2004. Evaluating a Location-Based
Application: A Hybrid Test and Simulation Environment.

IEEE Pervasive Computing 3, 3 (Jul. 2004), 48-56. DOI=
http://dx.doi.org/10.1109/MPRV.2004.1321028

[12] Reynolds, V., Cahill, V., and Senart, A. 2006. Requirements
for an ubiquitous computing simulation and emulation

environment. In Proceedings of the First international
Conference on integrated internet Ad Hoc and Sensor
Networks (Nice, France, May 30 - 31, 2006). InterSense '06,
vol. 138. ACM, New York, NY, 1. DOI=
http://doi.acm.org/10.1145/1142680.1142682

[13] S.P. Smith and D. Trenholme, Rapid prototyping a virtual
fire drill environment using computer game technology, Fire

Safety Journal, Elsevier.

[14] Cerpa, A., Elson, J., Hamilton, M., Zhao, J., Estrin, D., and
Girod, L. 2001. Habitat monitoring: application driver for

wireless communications technology. In Workshop on Data
Communication in Latin America and the Caribbean (San
Jose, Costa Rica). SIGCOMM LA '01. ACM, New York,
NY, 20-41. DOI= http://doi.acm.org/10.1145/371626.371720

[15] Bandini, S., Mosca, A. and Palmonari, M. A Hybrid Logic
for Commonsense Spatial Reasoning. AI*IA 2005, LNCS,
vol. 3673, pp 25-37.

[16] Pham, H. N., Mahmoud, Q. H., Ferworn, A., and Sadeghian,
A. 2007. Applying Model-Driven Development to Pervasive
System Engineering. In Proceedings of the 29th international
Conference on Software Engineering Workshops (May 20 -
26, 2007). ICSEW. IEEE Computer Society, Washington,
DC, 193. DOI= http://dx.doi.org/10.1109/ICSEW.2007.43

[17] Potts, C., Takahashi, K., and Antón, A. I. 1994. Inquiry-
Based Requirements Analysis. IEEE Softw. 11, 2 (Mar.
1994), 21-32. DOI= http://dx.doi.org/10.1109/52.268952

[18] Bernd-Ludwig Wenning, Dirk Pesch, Andreas Timm-Giel
and Carmelita Görg. Environmental Monitoring Aware
Routing in Wireless Sensor Networks. IFIP International

Federation for Information Processing, Volume 284/2008,
pp. 5-16

[19] Nuseibeh, B. and Easterbrook, S. 2000. Requirements

engineering: a roadmap. In Proceedings of the Conference on
the Future of Software Engineering (Limerick, Ireland, June
04 - 11, 2000). ICSE '00. ACM, New York, NY, 35-46.
DOI= http://doi.acm.org/10.1145/336512.336523

[20] Salber, D., Dey, A. K., and Abowd, G. D. 1999. The context
toolkit: aiding the development of context-enabled
applications. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems: the CHI Is the Limit
(Pittsburgh, Pennsylvania, United States, May 15 - 20, 1999).
CHI '99. ACM, New York, NY, 434-441. DOI=
http://doi.acm.org/10.1145/302979.303126

[21] Davies, N. Proof-of-concept demonstrators and other evils
of application-led research: A position statement. In
Proceedings of UbiApp Workshop, Munich, Germany, 2005.
www.cl.cam.ac.uk/ubiappwsweb

[22] Eleanor O'Neill, David Lewis, Owen Conlan, A Simulation-
based Approach to Highly Iterative Prototyping of

Ubiquitous Computing System, SIMUTools 2009:
Proceedings of 2nd International Conference on Simulation
Tools and Techniques, Rome, Italy, 2-6 March, 2009

[23] Kris McGlinn, Eleanor O’Neill, David Lewis. Modelling of
Context and Context Aware Services for Simulator Based
Evaluation, MUCS 2007, 4th International Workshop on
Managing Ubiquitous Communications and Services,
Dublin, Ireland

23

