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Overview

● We're seeing more and more sensor systems
● Report accurate values for some observed

phenomenon (temperature, humidity, …)
● Classify observations into human-recognisable

categories (cooking, cleaning, burgling, …)
● Direct input to algorithms, no human in the loop

● My goal
● The characteristics of sensor-driven systems
● Addressing some specifc challenges



Multi-platform

● Lots of computational elements
● Sensor nodes
● Sinks and backhaul
● In the cloud

● Now hearing a lot about fog computing
● Locate processing at the “right” level
● Not clear where is “right”
● Programming approach is completely different at

each level: hard to migrate functionality
● And anyway this sort of misses the point...
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The sensor challenge

● Treating sensor data as input like any other
● Model with techniques like process algebras,

DTMCs, …

● But sensor data just isn't like that
● Environmental challenges and exposed equipment
● Leads to a collection of unusual failure modes
● Responding to the

input means also
responding to the
junk data that's
interleaved with it

The authors of one
famous early
experiment (Great
Duck Island, 2002)
deemed 30—60%
of their sensor
data to be junk

Image from lighthousefriends.,com
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When theory meets practice

In theory, there is no difference between
theory and practice. But, in practice, there is.

Jan L.A. van de Snepscheut
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A stochastic approach

● Re-conceptualise sensors as evidence-providers
rather than data- or value-providers
● Use to confrm/refute model hypotheses
● Learn the distributions being observed

● One way is to view the system as a Hidden
Markov process
● Works with

multiple
sensors
correlated
with each other watching the same phenomenon
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Some of the main challenges

● Noise
● Diffcult/impossible to engineer away
● Deal with confdence of the most probable signal

● Confounding variables
● Things happening that we don't know about
● Can we separate the different causes?

● Not knowing what to look for
● Classifying signals/events into activities/situations
● What are the situations we're interested in?

There's nothing in any way canonical about these, they're just problems
we happen to have been interested in over the last three years or so
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Science of Sensor Systems Software

● A fve-year, £5.2M EPSRC Programme Grant
● “Vertical slice” from formal models, through

verifcation and analysis, to deployment
● Four universities, 10 commercial and agency

partners
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Noise

● An inherent uncertainty that can't be
engineered out of a system
● Physical degradation
● Occlusion and fouling
● Positional uncertainty
● Interference, accidental or deliberate
● ...and also describes lots of other data sources

● Physical issues that give rise to faults in the data
● Change over time, need autonomic management
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Fault types

● Noise in the environment and the electronics
● Point (or wider) spikes
● De-calibration (drift) in space and time

Natural variation plus noise Not likely in your data?

Can we tell here that this is an extended
fault? Or is it a change of phenomenon?
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Multi-sensor systems

● Neighbouring nodes observing “the same”
phenomenon

● Look at the differences between them to learn the
ways in which the true signal is being convolved
with noise
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Bayesian Sequential Learning

● Learning = sequential model update

● Advantages
● Effcient, constant space
● Robust: test data against predicted distribution 

The error, given the
current observation

The model given
what's been
observed up to (and
including) now

The observation, given
what's gone (strictly)
before

Fang and Dobson. Data collection with in-network fault
detection based on spatial correlation. Proc. ICCAC. 2014.
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Example – 1

Original data

Cleaned data

Data from the Lausanne Urban
Canopy Experiment (2006)

May be a true
observation, but
not verified by
neighbours. Can't
tell without
ground truth –
which of course
we don't have
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Example – 2

Data from Grangemouth facility (2016)

 

Use confidence intervals
(rather than raw or
smoothed signal) to
trigger alarms

Re-generate “most
probable” trajectory
for missing signals, as
correlated with data
we did get
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Situation/activity recognition

● Many systems classify sensor traces
● Given a sequence of observations, what activity is

being observed?
● Very well-studied in the single-user case

● Often expressed as a stream of sensor events
● Instantaneous observations
● Fridge open, drawer open, entered kitchen, …
● Typically not labelled with the actor
● Given a stream of events, what's happening?
● Different interleavings denoting the same activity

Ye, Dobson, and McKeever. Situation identification techniques
in pervasive computing: a review. Per. Mob. Comp. 8. 2012.

“The door opened”, not
“Simon entered the room”
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Ontological descriptions of events

● Descriptions of different system aspects
● Describes the structure of a domain
● Generalise place/object/person involved
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Multiple targets

● But what if two (or more) activities are
happening concurrently?
● Making tea when the phone rings
● One person making tea, another washing up

● Two (or more) activities giving rise to
interleaved events
● Extract fragments of

event sub-sequences
relating to the different
simultaneous activities
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Semantic distance

● Hardest case
● Two people trying to do the same thing
● No way to tell the events apart

● Easier case
● Two people doing different things
● Might expect (at least some of) the component

events to be different in each case
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Pyramid matching

● A way to defne distances between images with
sets of features

Grauman and Darrell. The Pyramid Match
Kernel: Efficient learning with sets of
features. J. Mach. Learn. Res. 8. 2007.
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KCAR

● Knowledge-driven Concurrent Activity
Recognition

Ye, Stevenson, and Dobson. KCAR: A
knowledge-driven approach for concurrent
activity recognition. Per. Mob. Comp. 19. 2015.
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Results

Datasets from Van Kasteren et alia. Human activity recognition
from wireless sensor network data: Benchmark and software. In
Activity Recognition in Pervasive Intelligent Environments. 2011.
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What are we looking for again?

● Sensor data is often “big data”
● Lots of signals being streamed into analytics and/or

stored for offine processing

● Analytics tasks
● Trend analysis
● Situation/activity recognition
● Alarms/warnings

● How do we defne the “interesting things”?
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The instability of classifcation

● Often a human-centred or -infuenced process
● ...and so subject to changes in behaviour
● Unintended: different people
● Unavoidable: assisted living with cognitive decline
● Intentional: therapeutic interventions
● Unknown: frequent but unthought-of events

● Implications
● The classifcation function may need to change
● There may be interesting events in the dataset that

aren't the subject of a classifer



24

Unknown event detection

● How do we detect an event for which we
haven't explicitly built a classifer?

● Conceptualise the event space as a mixture
model
● A sequence of events drawn independently from a

set of different distributions
● May include unknown distributions
● Does a sensor event fall into a known component,

or is it better described by the unknown
component?
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Defning the sensor readings

● Give a collection of sensors, at each times slot
form a vector x

S
 = (x

1
, x

2
, …, x

S
) of events

● A vector in an s-dimensional
space of possible readings

● Can include any sort of sensed feature: continuous,
binary, category, time, ...

● Each dimension has its own semantics

● Cluster similar vectors using cosine distance

● How would events be distributed?

We normalise all the readings, e.g.,
for a binary sensor we normalise to
the proportion of “on” events
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Distribution of events

● The von Mises Fisher (vMF) model

An average vector and a “spread”
defined by the κ parameter

Large values of κ correspond to
tightly clustered observations
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Mixture model

● Construct a global distribution as:

● The probability of seeing any given event
● Identify the model it belongs to

Parameters of the underlying
model in the mixtureMixture proportions

π
h
 = p(z = h)
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Introducing unknown components

● Two strategies
● Add a top-level unknown event, the part of the

space not covered by existing classifers
● For each activity, add an unknown variant that

affects the classifer for that activity

In either case, add a
uniformly-distributed vMF
component to catch the
unknown events

An event belongs to an
unknown activity if the
probability of seeing that
event is farthest from all
known-activity classifiers
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(Very preliminary) results

● Extract an activity from the labelled dataset and
see whether the algorithm can fnd it

● Good separation of unknown events
● Strategy doesn't seem to be critical
● Needs a lot more work....

Fang, Ye, and Dobson. Discovery and recognition of unknown activities by a hierarchical
mixture of von Mises Fisher distributions. In preparation for IEEE Trans. KDE.
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Discussion

● A very unfamiliar programming environment!
● Noise convolved onto all the inputs
● Activities recognised probabilistically
● Defnition of an activity, and the population of

activities, may change over time

● No idea how to program systems effectively
● Move beyond data logging
● Control decisions
● Where in the fog?
● Presenting analysis to users
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Three things to take away

● Sensors are becoming ubiquitous, and we need
to understand how they affect us

● Statistical machine learning techniques can help
pull out the important elements
● Noise tolerance
● Multiple targets
● Unknown events

● Programming is – and will remain – an issue
● How to express automated decision-making
● What we do where
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