
From Missions to Systems: Generating Transparently
Distributable Programs for Sensor-Oriented Systems

Barry Porter Alan Dearle Simon Dobson

University of St Andrews, UK

{bfp, alan.dearle, simon.dobson}@st-andrews.ac.uk

ABSTRACT
Early Wireless Sensor Networks aimed simply to collect as
much data as possible for as long as possible. While this
remains true in selected cases, the majority of future sensor
network applications will demand much more intelligent use
of their resources as networks increase in scale and support
multiple applications and users. Specifically, we argue that a
computational model is needed in which the ways that data
flows through networks, and the ways in which decisions
are made based on that data, is transparently distributable
and relocatable as requirements evolve. In this paper we
present an approach to achieving this using high-level mis-
sion specifications from which we can automatically derive
transparently distributable programs.

Categories and Subject Descriptors
D.2 [Software]: Software engineering; D.1 [Programming]:
Programming techniques; C.2.4 [Computer-communication
networks]: Distributed Systems

1. INTRODUCTION
Early wireless sensor networks had the relatively simple

aim of collecting as much data as possible for as long as
possible, with the majority of research focusing on energy-
e�cient communication protocols to maximise lifetime. This
early vision is now evolving as WSNs increase in scale and
complexity, break into new application domains and remain
relatively expensive and di�cult to deploy.

In particular the distinction between the Internet and sen-
sor network worlds is disappearing with the realisation that
sensor networks can and should perform significant process-
ing duties on the data that they serve; in addition the ser-
vices and taskings of sensor networks are seeing an increasing
need to evolve over time as stakeholders come and go and
their requirements change. These factors are particularly
true of the emerging smart cities domain in which a wide
range of services is deployed – in some cases on-demand –

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

MidSens ’12 Montreal, Canada

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

from multiple stakeholders into a pervasive city-wide sen-
sor network and those services are integrated with systems
outwith the sensor network.

In this paper we argue that a high-level mission program-
ming language is needed for the benefit of non-embedded-
programming-experts to enable a much wider range of stake-
holders to take advantage of deployed sensor infrastructure.
Programs written in such a language should be able to be
automatically translated (or ‘compiled’) into a deployable
form. We further propose that this approach be underpinned
by a computational model in which the ways that data flows
through networks, and the ways in which decisions are made
based on that data, is transparently distributable and relo-
catable as requirements evolve.

The specific contributions of this paper are (i) a mission
programming paradigm in which programs are constructed
from, and reflective of, deployable components; (ii) a taxon-
omy of component classes and semantic annotations allow-
ing compilation of missions to transparently distributable
deployments; and (iii) the identification of automated de-
ployment and refactoring strategies towards optimality.

Our approach is intended to express the elements of a pro-
gram that exist both inside and outside of a sensor network,
ideally allowing seamless deployment and migration of logic
between the two spaces as appropriate.

In the remainder of this paper we first discuss related work
in Sec. 2; then in Sec. 3 present the key elements of our
approach; and in Sec. 4 o↵er a summary and outlook.

2. RELATED WORK
In the following we discuss the two main bodies of work

that relate to ours: research on higher-level software specifi-
cation and deployment; and research on software evolution
in sensor networks (including inter-node code migration).

The desire for higher-level programming abstractions in
WSNs has produced a range of ideas such as TinyDB [11],
Regiment [16], Logical Neighbourhoods [15] and Flask [12].
The majority of such work proposes a fixed communication
/ interaction paradigm that is observed to perform well in
ad-hoc networks. By contrast we propose an entire system-
building model using a mission-programming paradigm from
which distributable programs can be generated, involving
both control logic and data flow. Regiment and Flask are the
closest works to this model that we are aware of, with Reg-
iment proposing an abstraction based on ‘streams’ and ‘ar-
eas’ over which functions can be applied, and Flask propos-
ing a data-flow model together with a programmatic wiring
language. Both however aim at a more fine-grained specifi-

location

isEqual
<B.house>

mycloud
<ptrack>

time
isAfter
<5pm>

<A>

Until

If

Track

send
<Alert>

mux

DSC DP DP CS

CB

CS DSC DP

DS CSC

DS

DataSink

DataSourCe

DataProcessor

ControlSink

ControlSourCe

ControlBlock

key

Figure 1: An example high-level mission program
to track a person’s location. The program is con-
structed from a set of verbs, nouns and functions,
each of which map to a distibutable component.

cation of system behaviour than that proposed here, leaning
more towards ‘compilation’ down to code rather than ‘com-
position’ of pre-built units; both Regiment and Flask also
result in a far more static end-result of their compilation
process in comparison to our work.

The low-level issues surrounding the remote updating of
software in WSNs have been studied in considerable detail.
The majority of work focuses on the delivery mechanisms for
updates including early work on TinyOS [7, 18] and more
recent work on modular solutions [8, 17] and interpreted ap-
proaches [9, 1]. The ‘stateful mobile modules’ in [19] further
demonstrate the potential to migrate functionality to en-
hance performance. While some of this work is relevant to
our aims in a low-level mechanical respect, here we examine
higher-level reasoning in terms of when and why to modify
software, both within a WSN and outside it.

Finally, a smaller body of work has examined the use of
policies and automated adaptation in WSNs: [6] for exam-
ple examines switching between di↵erent radio stacks to bal-
ance performance with resilience; [20] and [10] suggest the
potential to adapt the parameters of components based on
context and resource availability; and [3] proposes localised
triggering of scripted maintenance protocols when observing
pre-set conditions. While we can draw some inspiration from
these works in terms of potential performance metrics they
fall short of our aim to migrate and refactor software in a
much broader sense to optimise entire distributed programs.

3. APPROACH

3.1 Overview
Our aim for high-level mission specification is to provide

a programming methodology that is easy to understand for
programmers familiar with popular scripting languages.

Missions are therefore expressed in a notation that is rel-
atively close to natural language as shown in Fig. 1. This
demonstrates a program to monitor the location of a person
and provide alerts if that person fails to arrive home before
an expected time or enters a location considered dangerous.
The program also tracks the person’s location on a contin-
uous basis to a cloud storage service in order to provide
further trace information in case an alert occurs. In Fig. 2,
part of the corresponding distributable program – composed
of a collection of interacting components – that implements
this example mission is shown.

3.1.1 Mission Language

Our mission language is designed to model potentially het-
erogeneous distributed systems. The key di↵erences to clas-
sical local programming languages are (i) mission programs

location

isEqual
<B.house>

mycloud
<ptrack>

time
isAfter
<5pm>

<A>

Until

If

Track

send
<Alert>

mux

DSC DP DP CS

CB

CS DSC DP

DS CSC

DS

DataSink

DataSourCe

DataProcessor

ControlSink

ControlSourCe

ControlBlock

key

Figure 2: Part of the deployable composition result-
ing from the mission program in Fig. 1. Solid arrows
show control flow and dotted arrows show data flow.

are composed purely of control-flow and data-flow, without
‘variables’ to hold state; (ii) each individual verb, noun and
function in a given expression may map to a separate imple-
menting component able to be arbitrarily distributed after
compilation; and (iii) the pool of available verbs (and the
syntax and semantics of verbs) is extensible via arbitrary
specifications in the components that implement those verbs.

In detail, mission program statements are composed of
verbs, nouns and functions, where functions are sometimes
represented as infix connective terms like ‘==’. Each ‘pa-
rameter’ of a function is either a noun or another function.
Each verb, noun and function is represented at runtime by a
corresponding component (discussed below), where compo-
nents interact via wirings of their interfaces. A parameter
to a component representing a function is therefore an in-
put data wire from another component. The syntax of nouns
and functions is standardised, while the syntax of verbs is
extensible and defined within the implementing component
of each verb. Each mission program statement begins with a
verb and is followed by nouns / functions arranged in a form
indicated by the syntactic meta-description of that verb.

3.1.2 Implementing Components

Key to our approach is that we do not aim to compile the
high-level representation down to low-level code, but instead
compose programs from a pool of ready-made components.

These ready-made components fall into a fixed taxonomy
of component ‘classes’ with known behaviour and interfaces.
Enforcing such a taxonomy of building blocks helps to au-
tomate compilation and also aids in general computational
reasoning about a system. The taxonomy is based around
the need to support both the control flow and the data flow
of a distributed program and comprises:

Control Blocks, which are used to unconditionally pass
control to other components (in sequence or in parallel);
Control Sinks, which conditionally pass control to other con-
trol components when events of interest occur from a data
component; Control Sources, which produce specific data
on a given wire; Data Sources, which produce data such as
temperature or location readings; Data Processors, which
transform data from one or more input sources to produce
one or more output sources; and Data Sinks, which record
data to a device. The example components in Fig. 2 are
labeled with their taxonomy class.

Composer

Deployer

Monitor

Component
Repository

Host
Host

Host
Host

Mission

Discovery
?

?

Figure 3: The distributed architecture of our ap-
proach relating to the composition, deployment and
monitoring of distributed programs. Hosts are ex-
pected to include servers and embedded devices.

For control purposes we employ an interface with two op-
erations, start and stop. The start operation passes control
to the component and returns when that program branch
finishes its execution (or, in the case of infinitely-looping
behaviour, may never return); while stop forcibly ceases ex-
ecution of a control component and its associated program
branch. For data purposes we employ an interface with the
operation put which is parameterised with a particular type
by implementing components. The way in which this tax-
onomy is used is described in more detail later.

3.1.3 Distributed Architecture

The distributed architecture of our approach is shown in
Fig. 3, also showing the stages used to move from a mis-
sion program to a deployed system. A mission program
is used as input to a Composer, which parses the mission
program and makes semantic matches against ready-made
implementation components that are stored in a repository.
As output, the composer generates a component graph to
pass to the discovery system. The discovery system checks
for already-deployed components that match any of the re-
quirements given in the component graph, altering the graph
to use such components where possible, before passing the
component graph on to the deployer.

The deployer then uses this graph, along with a database
of known hosts, to deploy remaining components to appro-
priate hosts (communicating with runtime support systems
on those hosts to do so). Some components, particularly
Data Sources such as sensors, will have deployment locations
that are implied by their role (e.g. data sources to sense the
temperature at a given locale must be deployed on sensor
nodes around that locale) while other components, includ-
ing Data Processors and control elements, can be placed in a
variety of locations (i.e. all potential deployment locations
are equally ‘correct’ in terms of program specification but
some locations may o↵er better performance than others).

Finally, to inform refactoring, monitoring feedback filters
through the host architecture towards the composer. This
feedback may either be acted on before it reaches the com-

poser, in cases where nodes have su�cient knowledge and
authority to make autonomous decisions, or else may be
acted on only when reaching the composer which (poten-
tially with the involvement of human action) has complete
knowledge and permissions to make changes as it sees fit.

The execution of a deployed program then proceeds as fol-
lows: control is injected into the first ‘line’ of the program
by a distinguished ‘Program’ Control Block which executes
each line sequentially (thus using the start operation and
waiting for it to complete). In our example, this entry-point
is the ‘Until’ Control Sink shown in Fig. 2. Control compo-
nents on which the start() operation is used may start addi-
tional components including initiating data flow from Data
Sources. Control and data flow thus branches through the
distributed program as selected components are activated
and de-activated following the control logic of the mission.

The above approach has two key benefits: firstly it sup-
ports a mapping from high-level language down to a dis-
tributable implementation that is su�ciently simple to be
machine-automated; and secondly it supports transparent
distribution of elemental program components such that each
component need not be aware of the physical location of the
other components with which it interacts (i.e., they may be
on the same host or on di↵erent hosts). The latter benefit in
particular suggests that we can optimise computation by (for
example) moving processing closer to data sources. When
actuation is involved we can also move control logic closer
to the data sources on which control decisions are based.
This, in turn, suggests that we can minimise the amount of
data that travels through networks and in sensor networks
in particular we can therefore minimise energy consumption.

There are three main problems in realising this approach:
(i) the initial compilation procedure to derive an equivalent
distributed system matching the mission; (ii) the deploy-
ment of these components to appropriate hosts; and (iii)
the post-deployment optimisation of the distributed system
to adapt to real-time observations. We discuss our work in
each of these areas in the following sections.

3.2 Compilation/Composition
A mission program is compiled into an equivalent com-

ponent graph, the components of which can then be dis-
tributed to arbitrary locations (with inter-component con-
nections that span networks transparently proxied through
appropriate technologies as required). This procedure is in
fact a mixture of compilation and composition – and we
generally use the terms interchangeably in this paper – as
our approach is not to compile a high-level specification all
the way down to machine code, but rather to select from
a pool of ready-made components to fit each part of the
mission program. The structure of a distributed system is
then maintained post-deployment such that it is amenable
to refactoring in service of optimisation or fault-tolerance.
In the following sections, the meta-annotations that are used
on components to support the compilation process are de-
scribed, followed by the compilation process itself.

Terms used in a mission program are directly mapped to
components in our taxonomy. Examining our example pro-
gram more closely, each statement is comprised of verbs,
nouns and functions. A statement must begin with a verb
and be followed by one or more nouns / functions and syn-
tactic particles as indicated by the syntactic definition of
the particular verb. In Fig. 1, verbs are highlighted in bold;

nouns are provided in square brackets, and functions appear
as plain text (in this example all functions are of infix form).

The basis of our compilation process is then that verbs
map to Control components; nouns map to Data Sources or
Data Sinks; and functions map to Data Processors.

Building on these simple rules, additional meta-structural
information and semantic data associated with each concrete
component is used to complete the process.

3.2.1 Annotations

Components are annotated in the following ways to aid
with the compilation/composition process:

Category and meta-structure.

The mission language particle (verb, noun or function)
that a component implements is provided as meta-data along
with the component’s local structure. This includes the set
of required and provided control and data interfaces along
with the concrete data types of each data interface.

Name and syntax.

All components provide the name of the verb / noun /
function that they implement, and thus the name that can
be used to select that component (or more precisely, the
set of potential components with this name) within the mis-
sion program. In the case of a component implementing a
noun or function (i.e. a data component), this information
in addition to the component’s meta-structure description is
su�cient to provide the remaining information using stan-
dard syntax. In the case of a component implementing a
verb (i.e. a control component), a syntactic specification is
also provided as meta-data which contains a first symbol
that is used to drive the parsing procedure and is followed
by terminal and non-terminal symbols describing the syn-
tax of the component. The non-terminal symbols refer (by
name) to the component’s input data and output control
interfaces thus tying structure to syntax. This e↵ectively
enables extensible syntax for verb implementations to de-
scribe elements such as loops and branches as required.

Semantics.

Finally, the semantics of a component – a description of
its abstract behaviour – are provided as meta-data to aid
the mission programmer in understanding the way in which
a particular component works. While not strictly required
for the purposes of compilation, this information is intended
to assist the programmer in resolving potential ambiguity.
How to describe the semantics of such systems in a mean-
ingful way is an open question. On the one hand we would
like something more tractable than structured comments,
and richer than normal type signatures. A language such as
Promela [14] o↵ers one option here; while process-algebraic
approaches o↵er promise in describing interactions and de-
riving macroscopic descriptions of global behaviour [2].

Sample components annotated with meta-data in the ways
described above are shown in Fig. 4 (with the exception of
semantics which are omitted in the interest of brevity).

3.2.2 Compilation

Compilation/composition then proceeds in an automated
fashion as follows (using the example in Fig. 1):

The verb until is matched to a verb component using the
terminal ‘until’. If this symbol does not uniquely identify a














 







    











Figure 4: Sample implementing components with
concrete meta-annotations.

component, user interaction is solicited to disambiguate the
choice of components. Assuming that the desired Until com-
ponent has been found, its meta-data is queried to establish
the number of its interfaces, their type and the component’s
syntax. An abstract representation of the Until component
is shown in Fig. 4 showing that Until has exactly one data
input of type boolean and a collection of 0-N output control
wires. The syntactic descriptor in the meta-data specifies
that the syntax of an Until is:

until <data> { control[] }

This descriptor is used to drive the parse and match the
syntactic structure in the mission language with the com-
ponent’s syntax and structure. The first syntactic child of
the component is <data> and is specified to be of type
data<boolean> in the structural description (see Fig. 4).
In the mission program, the statement continues with two
nouns (B.location and B.house) and an infix function (equal-
ity). The infix function, matched against a Data Processor
annotated with the infix-name ‘==’, is first pulled out of the
expression and converted to a standard function call with
two parameters. The output of this function is taken as the
input to the Until component to satisfy its data<boolean>
input. The two Data Sources then act as parameters to the
isEqual Data Processor (which on a structural level maps to
satisfying the data input wirings of isEqual). Type-checks
verify compatibility of interactions between selected compo-
nents, for example that the isEqual Data Processor satisfies
the Until component’s requirement for a (stream of) boolean
value(s). Following the opening ’{’ the verb components
comprising the control outputs of the Until component are
matched in the same manner as the Until and this process
continues until the closing ‘}’ is parsed.

3.3 Deployment and Refactoring
After the above phase is complete, a distributed program

is ready for deployment to appropriate hosts, which may in-
clude servers, sensor nodes, and other devices of interest.
Matching components to hosts is an NP-hard problem (see
e.g. [13]) the details of which we do not examine here. For
the purposes of this paper we simply assume that a mix-
ture of heuristics and historical data will provide su�cient
guidance for an initial ‘rough’ deployment plan. After ini-
tial deployment, using the component-based model outlined

above, we argue that real-time observations can then be used
to hone the deployment plan or refactor the distributed pro-
gram towards an optimal solution. In the remainder of this
section we discuss potential refactoring solutions and the
metrics that may inform them.

Note we are interested primarily in automated refactor-
ing solutions that can be made without human intervention.
We also currently focus on structural refactoring rather than
parametric adaptation, though ultimately a mixture of both
is likely to be necessary (we leave this to future work). If our
mission program composer is viewed as a compiler, the goal
of structural refactoring can be likened to the goal of com-
piler optimisation: to boost the performance of a program
without changing its logic. The di↵erence is that we aim to
optimise in response to real-time, real-world observations.

Under our approach the components that are most eli-
gible for refactoring are Data Processors, Control Blocks,
Control Sinks and Control Sources. Both Data Source and
Data Sink components by contrast tend to have more static
locations/configurations that are implied by their function.

Migration.

Migration of a component to a di↵erent host is the sim-
plest form of refactoring (identified e.g. in [19]). In sim-
ple terms, by moving a component whose data input rate
is higher than its data output rate (or vice-versa) we can
increase performance by decreasing the distance that the
larger volume of data has to travel. Migration may also be
triggered by a critical resource drain on a component’s cur-
rent host, for example reaching a state in which energy is
about to be depleted, or by a state in which a component’s
current host becomes isolated from the network (in which
case the migration will need to be triggered by other hosts).
The migration (or not) of a component to a given host may
additionally be based on non-real-time metrics such as the
historical reliability of that host.

As an example, consider an actuation controller (such as
those for HVAC or power distribution [4]), deployed on a
server, which makes decisions about when to perform ac-
tuations within a WSAN based on data received from that
same WSAN. Because this component will likely have a rela-
tively high data input rate in comparison to its data output
rate it is reasonable to migrate it from its server position
into the WSAN itself. This has the additional benefit that
the WSAN gateway nodes are not critical points of failure
since the control logic is performed within the WSAN.

Split and Join.

A data processor that is aggregating data from multiple
sources to produce a computed output over that data is not
always available for simple migration because eventually it
will arrive at an equi-distant point from all of its data in-
put sources (or else will oscillate between positions). In this
case, to gain further performance benefits in network tra�c
reduction, it is necessary to split the processor into two or
more sub-elements that can migrate down di↵erent paths to-
wards the data sources and so provide pre-processing on the
input data to reduce the overall tra�c level. As an example,
consider a component that is computing the average temper-
ature of an entire deployment. It is clearly not possible to
migrate such a component close to each of its data sources,
so we must split the component into sub-tasks which can
migrate towards di↵erent regions of the network to perform

cluster-based aggregation, computing over locally-available
data before sending smaller result packages to the overall
averager. A range of similar aggregation approaches may be
applied, as surveyed in [5], though care must of course be
taken in all aggregation techniques to assure that the func-
tional logic of the original mission program (in this case the
fidelity of the data on which it relies) is not compromised.

Load-division.

If a component C is overloaded by input data, and cannot
be split into migrateable sub-units (e.g. because there are
no available hosts closer to any of the data sources), a fur-
ther strategy that can be employed is one of load-division
in which C is replicated onto a nearby host and an input-
splitter is inserted between the data sources and the repli-
cas of C to perform load-balancing (according to a partic-
ular algorithm). This strategy is valid for all components
whose output, or state machine, does not depend on the en-
tirety of available input data. Examples here include Con-
trol Sink components whose sub-behaviours are idempotent
or request/response-based (such that action taken pertains
to a specific input); Data Processor components that are
able to perform valid computation on partial data sets for
pipelined processing to further components; or simple Data
Sink components that write input data to disk.

Cross-program optimisation.

Finally, when multiple mission programs are distributed
into the same network – as will increasingly be the case in
infrastructural WSANs – cross-program optimisations are
likely to be identifiable by the overall system composers.
Common behaviour that is being replicated can thus be
shared to the mutual benefit of all deployed systems.

The above collection of strategies represent the kinds of
reasoning that – it is hypothesised – it is possible to machine-
automate using relatively simple rule-sets without fear of
compromising the functional logic of deployed systems. It is
envisioned for example that additional meta-annotations on
components can be used to understand the ways in which
each component can potentially be split, migrated or load-
balanced. By applying these kinds of runtime optimisations
based on real-time observations, the initial problem of de-
ployment becomes less important in its precision because
the system can later optimise autonomously.

4. SUMMARY AND OUTLOOK
This paper presents an approach to generating transpar-

ently distributable programs from high-level missions. Each
statement in a mission is composed of verbs, nouns and func-
tions which, with the help of meta-annotations, can be used
by a compiler to directly map a mission program to im-
plementing components using a taxonomy built around the
notions of control flow and data flow.

We have demonstrated the potential to automatically com-
pose such programs and have discussed the ways in which
they may be distributed and later refactored taking into ac-
count real-time observations. Our approach is novel firstly
in its use of extensible high-level language that is inherently
mappable to a component implementation, and secondly
in the maintenance of system structure post-deployment to
support online refactoring towards optimality.

Our current prototypes consist of collections of imple-
menting components (with hand-crafted compositions and
deployment plans) that demonstrate the end result of mission-
to-system generation, including support for transparent prox-
ying over networks where inter-component wirings span hosts.

In future work we intend to investigate in more detail each
of the key problem spaces identified, with particular focus
on fully automating compilation and autonomous software
refactoring in a variety of scenarios beginning with simple
collection and actuation examples. We are also working on
developing a concept of ‘envelopes’ for missions, which will
augment the functional logic of a mission program described
here with non-functional requirements for concerns such as
timeliness and data fidelity. This information will in turn
be used further guide the autonomous refactoring strategies
that are applied to the deployed system.

5. REFERENCES
[1] N. Brouwers, P. Corke, and K. Langendoen.

Darjeeling, a java compatible virtual machine for
microcontrollers. In Companion ’08: Proceedings of
the ACM/IFIP/USENIX Middleware ’08 Conference
Companion, pages 18–23, New York, NY, USA, 2008.
ACM.

[2] M. Calder, S. Gilmore, and J. Hillston. Automatically
deriving ODEs from process algebra models of
signalling pathways. In Proceedings of Computational
Methods in Systems Biology (CMSB 2005), pages
204–215, 2005.

[3] Q. Cao and J. A. Stankovic. An in-field-maintenance
framework for wireless sensor networks. In DCOSS
’08: Proceedings of the 4th IEEE international
conference on Distributed Computing in Sensor
Systems, pages 457–468, Berlin, Heidelberg, 2008.
Springer-Verlag.

[4] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. Culler. smap: a simple measurement and actuation
profile for physical information. In Proceedings of the
8th ACM Conference on Embedded Networked Sensor
Systems, SenSys ’10, pages 197–210, New York, NY,
USA, 2010. ACM.

[5] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi.
In-network aggregation techniques for wireless sensor
networks: a survey. Wireless Communications, IEEE,
14(2):70–87, april 2007.

[6] D. Hughes, P. Greenwood, G. Blair, G. Coulson,
P. Grace, F. Pappenberger, P. Smith, and K. Beven.
An experiment with reflective middleware to support
grid-based flood monitoring. Concurrency and
Computation: Practice and Experience,
20(11):1303–1316, 2008.

[7] J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked
sensor systems, pages 81–94. ACM, 2004.

[8] K. Klues, C.-J. M. Liang, J. Paek, R. Musăloiu-E,
P. Levis, A. Terzis, and R. Govindan. Tosthreads:
thread-safe and non-invasive preemption in tinyos. In
SenSys ’09: Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, pages
127–140, New York, NY, USA, 2009. ACM.

[9] P. Levis and D. Culler. Maté: a tiny virtual machine
for sensor networks. SIGOPS Operating Systems
Review, 36(5):85–95, 2002.

[10] K. Lorincz, B.-r. Chen, J. Waterman,
G. Werner-Allen, and M. Welsh. Resource aware
programming in the pixie os. In SenSys ’08:
Proceedings of the 6th ACM conference on Embedded
network sensor systems, pages 211–224, New York,
NY, USA, 2008. ACM.

[11] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: An acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, Mar. 2005.

[12] G. Mainland, G. Morrisett, M. Welsh, and R. Newton.
Sensor network programming with flask. In
Proceedings of the 5th international conference on
Embedded networked sensor systems, SenSys ’07, pages
385–386, New York, NY, USA, 2007. ACM.

[13] D. Menasce and E. Casalicchio. A framework for
resource allocation in grid computing. In Proceedings
of 12th International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunications Systems, 2004. (IEEE
MASCOTS 2004), pages 259 – 267, oct. 2004.

[14] E. Mikk, Y. Lakhnech, M. Siegel, and G. J.
Holzmann. Implementing statecharts in
PROMELA/SPIN. In Proceedings of the Second IEEE
Workshop on Industrial Strength Formal Specification
Techniques, WIFT ’98, pages 90–101, Washington,
DC, USA, 1998. IEEE Computer Society.

[15] L. Mottola and G. P. Picco. Programming wireless
sensor networks with logical neighborhoods: a road
tunnel use case. In Proceedings of the 5th international
conference on Embedded networked sensor systems,
SenSys ’07, pages 393–394, New York, NY, USA,
2007. ACM.

[16] R. Newton and M. Welsh. Region streams: functional
macroprogramming for sensor networks. In
Proceeedings of the 1st international workshop on
Data management for sensor networks: in conjunction
with VLDB 2004, DMSN ’04, pages 78–87, New York,
NY, USA, 2004. ACM.

[17] B. Porter, U. Roedig, and G. Coulson. Type-safe
updating for modular WSN software. In Proceedings of
the 7th IEEE International Conference on Distributed
Computing in Sensor Systems, DCOSS ’11.

[18] N. Reijers and K. Langendoen. E�cient code
distribution in wireless sensor networks. In 2nd ACM
International Conference on Wireless sensor networks
and applications, pages 60–67, 2003.

[19] M. Strübe, R. Kapitza, K. Stengel, M. Daum, and
F. Dressler. Stateful Mobile Modules for Sensor
Networks. In 6th IEEE/ACM International
Conference on Distributed Computing in Sensor
Systems (DCOSS 2010), volume LNCS 6131, pages
63–76, Santa Barbara, CA, June 2010. Springer.

[20] A. Taherkordi, R. Rouvoy, Q. Le-Trung, and
F. Eliassen. A self-adaptive context processing
framework for wireless sensor networks. In MidSens
’08: Proceedings of the 3rd international workshop on
Middleware for sensor networks, pages 7–12, New
York, NY, USA, 2008. ACM.

