
University of St Andrews

Mission maybe possible:
Improving the programming model for 
wireless sensor networks

Simon Dobson
School of Computer Science, University of St Andrews UK

simon.dobson@st-andrews.ac.uk
http://www.simondobson.org 

mailto:simon.dobson@st-andrews.ac.uk
http://www.simondobson.org/


Introduction

● Sensor networks for the people
● Concerned with science and engineering, not 

computing
● How can we place sensing capabilities in the hands 

of the scientists and engineers most knowledgeable 
about the “missions” they're engaged in?

● My aim:
● What makes sensor network programming different
● Some desiderata and work-in-progress on mission-

oriented programming
Will include no results, 
insights or hard conclusions...



Part I

The wider significance of
sensor networks



Sensor and sense-ability

● The most exciting new frontier
● Active data collection
● Computing and

communications
● Tiny, low-power
● Network them

together to
get capabilities

● Little or no direct user input
● The environment is the interface



What this gives us – reach

● Embed computing into the real world,
close to the phenomena of interest
● Detailed, long-term collection
● Work in hostile or unpleasant

environments for long periods
● A viable alternative to graduate students...

● Data capture is active
● Change observations over time
● Look for events, rather then just data



Of planetary importance

● Climate change, terrorism, pollution,
food, energy, population growth, …

● Solutions
● All depend on precise, timely, extensive data
● ...and only computers let you collect, model and 

analyse the problems in a proper way
● ...and therefore other subjects can't do anything 

unless backed by rigourous computer science

● So computer science is the only subject that can 
save the planet



The computer is the new microscope

Computer
Science

Microbiology



The third pillar

● Automation of observation and analysis
● Simulate what we can't experiment on directly
● Mine volumes of data for models
● Observe phenomena at any scale
● Adapt to what we see
● Conceptualise change as discrete processes
● Model relationships and provenance
● Describe the analysis a scientist would make, 

allowing it to happen automatically in the feld



Part II

How sensor networks differ from
other systems we program



Data from all around

● Integrate a bewildering range of sensors
● Precision
● Accuracy
● Timeliness
● Robustness
● Cost

● What does this
do to programming?
● GIGO



Not a new idea...

On two occasions I have been asked, "Pray, Mr. Babbage, 
if you put into the machine wrong figures, will the right 
answers come out?" ... I am not able rightly to apprehend 
the kind of confusion of ideas that could provoke such a 
question.

Charles Babbage. Passages from the Life of a Philosopher. 1864.

Quoted from http://en.wikipedia.org/wiki/Garbage_In,_Garbage_Out



Control

● Often need to do
adaptive control
in these
environments
● Change mode, duty

cycle, processing, …
● Ensure scientifc

(mission) goals are
maintained across adaptations

● Basis for control is (imprecise) measurement

Dobson et alia. A survey of 
autonomic communications. ACM 
Trans. Auto. Adapt. Sys 1(2). 2006.



Context and situations

● Context: the environment
in which a system operates,
understood symbolically

● Situation: an interpretation
of the current context in
terms of an expectation
model of the world

● Behaviour: the observables arising
from the system's responses

Typically 
represented 
using RDF

Semantics 
of what's 
happening

Affect the environment, 
possibly generating feedback



Sensor fusion

● Combine evidence from different sources

● Models of
what we
expect to
happen

● Situation
recognition

Diary says he should be here

Camera sees him here

Cell towers see 
his phone here

...but he doesn't keep it 
completely up to date

...but he's got a really 
average face

...but that's only got a 
precision of 100m

...and he might have had 
his phone stolen

Model the process we expect to 
see, use sensor information to 
confirm how it progresses

✓ ✓

✓ Ye, Dobson and McKeever. Situation 
identification techniques in pervasive 
computing: a review. PMC. To appear.



Approaches

● Predicates
● What ranges of data map to what

● Bayesian inference
● P(S|C) – being in situation given a

particular set of observations

● Dempster-Schafer evidence theory
● Distribute mass of belief

● Case-based reasoning
● Use similarity to past, human-classifed cases



Interpretation

● No certainty with which to do control

● What do you do when you can't trust any of the 
inputs and can't ask a user?

No direct sensing 
of these activities

Very well-
characterised activity



Part III

What to do when you can't trust any
of the inputs, and you can't ask a user



Characterising the problem

● Autonomic control in the
presence of rich sensor data
● Multi-modal
● Uncertain reasoning
● Stability and agility

● Maintain a rich model of the system as it is 
deployed and evolved
● Use to manipulate science and engineering aspects 

of a sensor network across its lifetime



Missions

● Sensor networks are deployed for a reason
● The mission the network is to accomplish

● Perspectives
● Scientifc: collect at particular resolution; adapt to 

changing observations; maintain/log statistical 
properties

● Engineering: adapt to failures; maintain 
communications; manage power

● These perspectives are entwined

Understood by the 
mission scientists

Understood by the 
network engineers 
and developers



Example: placement – 1

● Looking for data on
a grid; getting data
from irregular sample
points
● Can often deal with

this as long as we know



Example: placement – 2

● Looking for data on
a grid; getting data
from irregular sample
points
● Can often deal with

this as long as we know
● Changes may not all

make engineering
sense

Hello???



Example: routing – 1

● Re-arranging for
routing may not
then make scientifc
or engineering sense

Overloading this node and/or making 
failure more likely/significant



Example: routing – 2

● Re-arranging for
routing may not
then make scientifc
or engineering sense

● Functions and
communications are
multiplexed onto
the same devices

Now can't perform aggregation 
at this point, so need to change 
the functional logic

Dearle and Dobson Mission-oriented 
middleware for sensor-driven scientific 
systems. J. Int. Serv. Apps. 2011.

Overloading this node and/or making 
failure more likely/significant



Capturing mission

● What we need is to capture the mission in a way 
that we can use for both scientifc and 
engineering management
● Changes have goals, costs and consequences
● Mission science has constraints that must be and 

preferably should be maintained
● Preferences for different set-ups



Example mission

● Goals
● Sense the levels of a pollutant in a feld

● Constraints
● Estimating pollutant levels on a grid from a sparse 

set of points
● Each data point comes with provenance as to its 

location, time, precision etc
● Reliability of estimate of data degrades with space 

and time

● Maintain view of metadata properties



Changes

● Losing a sensor
● Changes error bars of estimates
● May destroy connectivity with

some (or all) of the network

● Adding a sensor
● Improves (hopefully) estimates
● Changes connectivity
● May also change functional capabilities



Impact on components

● Each mote hosts some
components providing
the various functions

● Change in routing
induces change in
in-fight processing

Routing
Statistics

Scheduling

Routing
Statistics

Scheduling

Aggregation Porter et alia. Type-safe updating for 
modular WSN software. DCOSS. 2011.



Architecture – 1

● To design a mission
● A set of components and their placement
● A description of the system's behaviour along axes of 

interest
● A set of adaptations taken in response to different 

situations identifed from the sensor input
● Implications of each adaptation in terms of the axes
● A set of invariants to be preserved across 

adaptations



Architecture – 2

● Life cycle
● Maintain the description on-line
● Adaptations affect components, their parameters 

and maintain the description

● What's left unsaid
● Open axes: don't care what they are, only that we 

can observe them and their changes
● Invariants: might be complex
● Languages: keep components in

whatever language is appropriate
We're currently looking at 
using extensible languages 
and virtual machines for 
components and missions



Entwining

● Many (most) of the adaptations will have an 
impact on motes and their results
● Mote failure changes routing
● ...which might cause another aggregator to be 

deployed elsewhere at a strategic point
● ...which has an impact on power consumption
● ...and also on the precision and certainty of data 

collected and calculated



Stability vs agility

● Conficting forces
● Stability: stay within a predictable envelope
● Agility: adapt quickly to changes

● Can we balance these two in a principled 
manner?

● Can we analyse a set of adaptations to check 
whether they're stable wrt the axes?

● Can we model the effects of all adaptations we 
might want to make?

● What are the costs incurred?



Present state

● We're confdent we can build a mission 
language; less confdent we can analyse one
● Language design
● Match against what's checkable
● As static a set of guarantees as possible

● Missions seem to make sense architecturally
● Round-trip engineering, keeping an on-line 

description
● Keeping checks lightweight will be challenging
● ...along with everything else...



Three things to take away

● Sensor networks offer unique opportunities
● Changes the way we do science and the science we do

● Coupling science and engineering
● Ensure that mission goals are kept even while 

allowing fexible adaptation and clever computing

● Describing the mission to the run-time system 
provides a basis for informed adaptation



Thank you

In theory, there is no difference between 
theory and practice. But, in practice, there is.

Jan L.A. van de Snepscheut


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

