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Introduction

● Sensor networks for the people
● Concerned with science and engineering, not 

computing
● How can we place sensing capabilities in the hands 

of the scientists and engineers most knowledgeable 
about the “missions” they're engaged in?

● My aim:
● What makes sensor network programming different
● Some desiderata and work-in-progress on mission-

oriented programming
Will include no results, 
insights or hard conclusions...



Part I

The wider significance of
sensor networks



Sensor and sense-ability

● The most exciting new frontier
● Active data collection
● Computing and

communications
● Tiny, low-power
● Network them

together to
get capabilities

● Little or no direct user input
● The environment is the interface



What this gives us – reach

● Embed computing into the real world,
close to the phenomena of interest
● Detailed, long-term collection
● Work in hostile or unpleasant

environments for long periods
● A viable alternative to graduate students...

● Data capture is active
● Change observations over time
● Look for events, rather then just data



Of planetary importance

● Climate change, terrorism, pollution,
food, energy, population growth, …

● Solutions
● All depend on precise, timely, extensive data
● ...and only computers let you collect, model and 

analyse the problems in a proper way
● ...and therefore other subjects can't do anything 

unless backed by rigourous computer science

● So computer science is the only subject that can 
save the planet



The computer is the new microscope

Computer
Science

Microbiology



The third pillar

● Automation of observation and analysis
● Simulate what we can't experiment on directly
● Mine volumes of data for models
● Observe phenomena at any scale
● Adapt to what we see
● Conceptualise change as discrete processes
● Model relationships and provenance
● Describe the analysis a scientist would make, 

allowing it to happen automatically in the feld



Part II

How sensor networks differ from
other systems we program



Data from all around

● Integrate a bewildering range of sensors
● Precision
● Accuracy
● Timeliness
● Robustness
● Cost

● What does this
do to programming?
● GIGO



Not a new idea...

On two occasions I have been asked, "Pray, Mr. Babbage, 
if you put into the machine wrong figures, will the right 
answers come out?" ... I am not able rightly to apprehend 
the kind of confusion of ideas that could provoke such a 
question.

Charles Babbage. Passages from the Life of a Philosopher. 1864.

Quoted from http://en.wikipedia.org/wiki/Garbage_In,_Garbage_Out



Control

● Often need to do
adaptive control
in these
environments
● Change mode, duty

cycle, processing, …
● Ensure scientifc

(mission) goals are
maintained across adaptations

● Basis for control is (imprecise) measurement

Dobson et alia. A survey of 
autonomic communications. ACM 
Trans. Auto. Adapt. Sys 1(2). 2006.



Context and situations

● Context: the environment
in which a system operates,
understood symbolically

● Situation: an interpretation
of the current context in
terms of an expectation
model of the world

● Behaviour: the observables arising
from the system's responses

Typically 
represented 
using RDF

Semantics 
of what's 
happening

Affect the environment, 
possibly generating feedback



Sensor fusion

● Combine evidence from different sources

● Models of
what we
expect to
happen

● Situation
recognition

Diary says he should be here

Camera sees him here

Cell towers see 
his phone here

...but he doesn't keep it 
completely up to date

...but he's got a really 
average face

...but that's only got a 
precision of 100m

...and he might have had 
his phone stolen

Model the process we expect to 
see, use sensor information to 
confirm how it progresses

✓ ✓

✓ Ye, Dobson and McKeever. Situation 
identification techniques in pervasive 
computing: a review. PMC. To appear.



Approaches

● Predicates
● What ranges of data map to what

● Bayesian inference
● P(S|C) – being in situation given a

particular set of observations

● Dempster-Schafer evidence theory
● Distribute mass of belief

● Case-based reasoning
● Use similarity to past, human-classifed cases



Interpretation

● No certainty with which to do control

● What do you do when you can't trust any of the 
inputs and can't ask a user?

No direct sensing 
of these activities

Very well-
characterised activity



Part III

What to do when you can't trust any
of the inputs, and you can't ask a user



Characterising the problem

● Autonomic control in the
presence of rich sensor data
● Multi-modal
● Uncertain reasoning
● Stability and agility

● Maintain a rich model of the system as it is 
deployed and evolved
● Use to manipulate science and engineering aspects 

of a sensor network across its lifetime



Missions

● Sensor networks are deployed for a reason
● The mission the network is to accomplish

● Perspectives
● Scientifc: collect at particular resolution; adapt to 

changing observations; maintain/log statistical 
properties

● Engineering: adapt to failures; maintain 
communications; manage power

● These perspectives are entwined

Understood by the 
mission scientists

Understood by the 
network engineers 
and developers



Example: placement – 1

● Looking for data on
a grid; getting data
from irregular sample
points
● Can often deal with

this as long as we know



Example: placement – 2

● Looking for data on
a grid; getting data
from irregular sample
points
● Can often deal with

this as long as we know
● Changes may not all

make engineering
sense

Hello???



Example: routing – 1

● Re-arranging for
routing may not
then make scientifc
or engineering sense

Overloading this node and/or making 
failure more likely/significant



Example: routing – 2

● Re-arranging for
routing may not
then make scientifc
or engineering sense

● Functions and
communications are
multiplexed onto
the same devices

Now can't perform aggregation 
at this point, so need to change 
the functional logic

Dearle and Dobson Mission-oriented 
middleware for sensor-driven scientific 
systems. J. Int. Serv. Apps. 2011.

Overloading this node and/or making 
failure more likely/significant



Capturing mission

● What we need is to capture the mission in a way 
that we can use for both scientifc and 
engineering management
● Changes have goals, costs and consequences
● Mission science has constraints that must be and 

preferably should be maintained
● Preferences for different set-ups



Example mission

● Goals
● Sense the levels of a pollutant in a feld

● Constraints
● Estimating pollutant levels on a grid from a sparse 

set of points
● Each data point comes with provenance as to its 

location, time, precision etc
● Reliability of estimate of data degrades with space 

and time

● Maintain view of metadata properties



Changes

● Losing a sensor
● Changes error bars of estimates
● May destroy connectivity with

some (or all) of the network

● Adding a sensor
● Improves (hopefully) estimates
● Changes connectivity
● May also change functional capabilities



Impact on components

● Each mote hosts some
components providing
the various functions

● Change in routing
induces change in
in-fight processing

Routing
Statistics

Scheduling

Routing
Statistics

Scheduling

Aggregation Porter et alia. Type-safe updating for 
modular WSN software. DCOSS. 2011.



Architecture – 1

● To design a mission
● A set of components and their placement
● A description of the system's behaviour along axes of 

interest
● A set of adaptations taken in response to different 

situations identifed from the sensor input
● Implications of each adaptation in terms of the axes
● A set of invariants to be preserved across 

adaptations



Architecture – 2

● Life cycle
● Maintain the description on-line
● Adaptations affect components, their parameters 

and maintain the description

● What's left unsaid
● Open axes: don't care what they are, only that we 

can observe them and their changes
● Invariants: might be complex
● Languages: keep components in

whatever language is appropriate
We're currently looking at 
using extensible languages 
and virtual machines for 
components and missions



Entwining

● Many (most) of the adaptations will have an 
impact on motes and their results
● Mote failure changes routing
● ...which might cause another aggregator to be 

deployed elsewhere at a strategic point
● ...which has an impact on power consumption
● ...and also on the precision and certainty of data 

collected and calculated



Stability vs agility

● Conficting forces
● Stability: stay within a predictable envelope
● Agility: adapt quickly to changes

● Can we balance these two in a principled 
manner?

● Can we analyse a set of adaptations to check 
whether they're stable wrt the axes?

● Can we model the effects of all adaptations we 
might want to make?

● What are the costs incurred?



Present state

● We're confdent we can build a mission 
language; less confdent we can analyse one
● Language design
● Match against what's checkable
● As static a set of guarantees as possible

● Missions seem to make sense architecturally
● Round-trip engineering, keeping an on-line 

description
● Keeping checks lightweight will be challenging
● ...along with everything else...



Three things to take away

● Sensor networks offer unique opportunities
● Changes the way we do science and the science we do

● Coupling science and engineering
● Ensure that mission goals are kept even while 

allowing fexible adaptation and clever computing

● Describing the mission to the run-time system 
provides a basis for informed adaptation



Thank you

In theory, there is no difference between 
theory and practice. But, in practice, there is.

Jan L.A. van de Snepscheut
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