

UCD Systems Research Group

Steve Neely, Graham Williamson, Hui Zhang, Graeme Stevenson and Simon Dobson

Systems Research Group School of Computer Science and Informatics UCD Dublin Belfield, Dublin 4, Ireland

http://www.ucd.ie/csi

steve.neely@ucd.ie

Device Positioning Using Smart Zigbee Beacons

Context awareness

Pervasive applications react to sensed data

• Context-aware: react to the environment, understood symbolically

Environmental data

• Light, temperature, humidity, ...

Personal data

• Calendar entries, to-do lists, address books, social networks, ...

Location data

• Where am I?

The location problem is tricky, and doesn't have a clean, single-technology solution

Locating users

GPS

 Global scale, few meters accuracy, line-of-sight to satellite, doesn't work indoors

Mobile phone observation and triangulation

• Cell scale (needs signal to work), hundreds of meters accuracy

Ubisense, Crickets, Bats

• Room scale, costly, complex to install and maintain

WiFi access points

• Room (or larger) scale, takes advantage of existing infrastructure

PlaceLab

Place Lab

A privacy-observant location system

With all these technologies, we still need a way of translating raw sensor observations into meaningful locations

PlaceLab

- Originated as an Intel project
- Open source, community-driven, Java-based

Position devices using visible WiFi access points

- Triangulate based on observed received signal strength (RSS)
- Account for the vagaries of architecture

Requires war driving set up phase, and subsequent maintenance

- Go around and measure the signal strengths of the access points in sight to create a map
- · Upload and share maps at wigle.net to share across the community

Architecture uses *spotters* to observe the APs

- · WiFi, Bluetooth, cell towers
- ... but no Zigbee, which is now starting to become prominent

Zigbee spotter

Our project wass to build Zigbee spotters PlaceLabstyle systems

• For location tracking in the home, office, or any Zigbee enabled environment

Tyndal motes platform for this

Zigbee radios plus other goodies

Two possible architectures

- Mote as sensor: let a mote track its position using Zigbee triangulation fused with its other sensors
- Mote as beacon: place a mote as a dedicated location beacon, that can track its own position because of its extra sensors

Hardware

A smarter spotter

From previous work we know that PlaceLab-style spotting on its own is quite flaky

· Low resolution triangulation, APs move, maps "drift"

Tyndal motes also have additional sensor modalities

- Inertial measurement unit
- Accelerometer
- Gyroscope

Take advantage of these facilities to build a better mousetrap

- Beacon could facilitate location of devices whilst emitting a description of its environment
- Combined with our *Construct* contextual systems platform the mote acts as the core of a *Context co-processor*

Address the war drive problem

Am immediate win is to address the war drive problem

- APs move after they've been observed to build the map
- When a beacon moves, spotter accuracy faLls

But motes know when they move

Fuse additional sensor information

Use this knowledge to repair the maps

- Ask for a new war drive
- Or self-heal, if we can tell how far the beacon moved

Experiments

We've developed the software spotter, and are now characterising it

- Walking the corridor
- Walking the grid
- Comparison with our
 Ubisense infrastructure

Indoor versus outdoor

- Environmental factors?
- Compare against a range of location technologies
- ... and publish

Sample raw results

Device Positioning Using Smart Zigbee Beacons

What's obvious even now

Antenna design and direction make a huge difference

Environmental factors are extremely prominent

• Reflections, absorbtions, ...

Sensor fusion is definitely possible

• Can see changes on the other sensor modalities

Middleware solutions are promising

- Standard fusion algorithms and ontologies in Construct
- Insulate applications from the details of *how* they locate themselves

Interactions and extensions

This process has helped us in a number of ways

- A useful contribution to an open source project
- Practical platform for sensor fusion experimentation
- Deepened our understanding of hardware
- Given us extremely valuable programming experience with an extensible mote platform

These experiences are being extended within other projects

- Lero sensor fusion
- NEMBES embedded sensing, programmability of sensor networks

