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Abstract

Shared resource pools are facilities featuring a cer-

tain amount of resources which can be used by different

applications. For managing resources in such pools,

the demand of each application can be used. Such a

demand, however, is driven by the workload, which

varies over time. For that reason, adaptive approaches

have been proposed for the management of shared

resources pools. Whereas a number of solutions exist

in this context, they are either not truly decentralized

or do not apply to the problem we are dealing with.

In this paper, we then present Darma, an approach for

managing shared resource pools in a truly decentral-

ized, adaptive, and optimal way.

1. Introduction

In shared resource pools, a collection of resources,
e.g., servers, is available to be shared by different
applications [1]. In many cases, these applications have
QoS parameters that have to be met. Therefore, the
amount of resources available to each of them should
be such that their QoS parameters are met.

To distribute the resources in the pool, the demand
of each application is used. The problem is that such
a demand is driven by the workload, which varies
over time [2][3]. Allocating resources using worst or
average-case scenarios can lead to waste of resources
and shares that do not keep up with the applications’
QoS parameters [4]. It is more suitable to adapt the
share of each application, over time, considering their
QoS parameters and current workload. Usually, such
an adaptation is performed not just to meet such
parameters, but to do so in the best possible way. For
that, the resource management task is typically viewed
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as an optimization problem, whose solution yields the
best possible outcome.

Many solutions for such a management in shared
resource pools have been proposed. Some of them,
however, employ central servers for distributing the
resources. These solutions can perform well, but they
suffer from scalability and fault-tolerance. Distributed
solutions have also been proposed, but they have
been modelled hierarchically, and thus, coordination is
centralized. Whereas decentralized solutions in other
contexts can be found, they are not applicable to the
problem being studied here.

Based on that, in this paper we present Darma,
Decentralized and Adaptive Resource Management, an
approach for managing shared resource pools in a truly
decentralized, adaptive, and optimal way. To the best
of our knowledge, this is the first work in this context
contemplating those features. The rest of this paper is
then organized as follows: in Section 2 fundamental
concepts are presented; Darma is presented in Sec-
tion 3; in Section 4 we present an evaluation, using
a data center scenario; related works in the area are
presented in Section 5; finally, in Section 6, we present
our conclusions and future directions of this work.

2. Basic Concepts

Since we aim at a decentralized solution, we view
the system as a network of agents, where one agent
can be reached by any other, directly or indirectly via a
series of hops. We denote by V (t) and n(t) the set and
number of agents in the system at time t. We denote
by a

i an agent in the system, for i ∈ [1, . . . , n(t)] and
i ∈ , and by N

i(t) the set of neighbours of a
i at

time t. Finally, each agent represents an application
that consumes resources from the pool.

For optimization purposes, as proposed in [6], we
assume each agent has a utility function u

i(x), spec-



ifying how useful a particular resource share x from
the pool is. From that, an aggregate utility U(X) is
derived, as follows:

U(X) =
�

ai∈V (t)

u
i(Xi), (1)

where X = {X1, . . . ,Xn(t)} is an allocation vector
and Xi is the share allocated to agent a

i. Finally, based
on [7], the resource management task is modelled as
the following optimization problem:

max
X∈ n(t)

U(X)

subject to:
|X|�

i=1

Xi ≤ K(t).
(2)

In the above, K(t) is the amount of resources in the
pool (e.g., 200 servers). The constraint then limits the
sum of all shares received to such an amount.

3. Darma

Darma is actually composed by a set of mathemat-
ical models, formalizing the entire resource manage-
ment process. These models are then presented next.

3.1. Optimization Model

The Optimization Model defines how to solve the
optimization problem defined in a decentralized way.
For that, each agent a

i is assigned the following utility
function u

i(x):

u
i(x) = 1− e

−α
i(t)x

, (3)

where x is the amount of resources being allocated
to a

i and α
i(t) is a parameter that indicates a

i’s
demand at time t. The smaller it is, the greater is
the agent’s demand. This parameter can change over
time, but it should remain the same over the resource
management process itself. The reasons for choosing
such a utility function is that it will allow us to break
down the optimization problem into separate models
that calculate each agent’s optimal share. Like ours,
other works have also used specific utility functions
for different purposes [7][8].

From u
i(x), the optimization problem is broken

down. To this end, it is reformulated as follows:

max
X∈ n(t),λ∈

L(X,λ). (4)

In this formulation, L(X,λ) is the lagrangian of the
original optimization problem in 2, being defined as:

L(X,λ) = U(X)− λ




|X|�

i=1

Xi −K(t)



 . (5)

We break down the problem above by solving
∇L(X,λ) = 0 and isolating Xi, which yields in:

Xi =
lnα

i(t)− lnλ

αi(t)
. (6)

Equation 6 then allows each agent a
i to find its share

in a way that it solves the optimization problem in 2.
To calculate Xi, besides their own α

i(t), agents also
need the value of lnλ, which is the global information
Darma relies on. Such a value is also found when the
problem in 4 is broken down, resulting in:

lnλ =

��|X|
i=1

ln α
i(t)

αi(t)

�
−K(t)

�|X|
i=1

1
αi(t)

. (7)

With that, the original problem has been reduced to
finding the value of lnλ in a decentralized way. It is
because lnλ depends on the α of all agents that we use
epidemic algorithms in Darma. With such algorithms,
wen can have every α

i(t) to be disseminated in such
a way that it reaches every other agent in the system.
Once that happens, they are then ready to calculate
lnλ and from that their optimal share.

3.2. Epidemic Model

In this model we define the methods for dissem-
inating the α values so that lnλ can be calculated.
In principle, lnλ can be calculated using solutions
for computing aggregates. In our case, however, these
approaches would not be very feasible in practice.
That would be due to the specificity of lnλ and
our requirements in terms of precision. We restrict
ourselves from a further analysis about this for now,
but provide, in Section 5, a more in-depth discussion.

For disseminating the α values we use an Anti-

entropy epidemic approach [9]. It consists, basically,
on synchronizing replicas held by two nodes, by means
of pushing and/or pulling updates that are missing in
each of them. By having all nodes to perform such
a synchronization with a randomly chosen neighbour,
over time, the replicas can converge to the same. As we
will show, such an approach fits perfectly our needs,
and that has been the reason for choosing it in Darma.

For that, we define firstly the format of the messages
used in the dissemination, as < ρ

i
, α

i(t) >, where ρ
i is

the identifier of agent a
i, and ρ

i ∈ ∗. Because two α

values can be the same, the identifier of the agents will
allow them to determine whether they already received
a particular α or not. Based on that, let o

i(t) be the set
containing the identifiers of the agents from which a

i

has received an α value. Also, let m
i(t) be a multiset

that holds all α values an agent a
i received until time



t. We then define o
i(t) as the replica that each agent

will synchronize with the others. Consequently, m
i(t)

will be synchronized too.
A traditional implementation of an epidemic algo-

rithm, however, might not perform well when replicas
are large, which would be our case eventually. If an
agent chooses a neighbour such that their replicas are
the same, they will waste time comparing two large and
similar replicas. As proposed in [9], a checksum can
be used for that. In this case, agents would first analyze
the checksum, only comparing the replicas if their
checksums are different. Using the agents’ identifiers,
we define the checksum of the replica of agent a

i to
be represented by a function k

i(t), defined as:

k
i(t) =

�

ρ∈oi(t)

2ρ
, (8)

The k
i(t) function guarantees a unique signature in

terms of the agents from which another agent a
i has

received α values. That alone would already enable
us to check whether two replicas are similar or not,
just by checking if their checksum k

i(t) match. Such
a function, however, enable us to go further. Note that,
if the checksum of two replicas A and B do not match,
an agent still do not know if: 1) A has values that B

does not; 2) B has values that A does not; or 3) A

and B have values that the other does not. Further
verification will be necessary just for that. The k

i(t)
function enables us to not just check if two replicas
match; it can also tell us if a replica A is a subset of
another replica B, which can be done with:

�

a∈A

2a &
�

b∈B

2b
, (9)

where & is a bitwise AND operation. If the result
is

�
a∈A

2a, then A ⊂ B. Similarly, the + and
− operators can be used to obtain the union and
difference of two replicas.

We combine such properties of the k
i(t) function

for defining how an agent a
i picks neighbours for

disseminating α values. When doing that, a
i will

choose a random neighbour among those who have not
received at least one of the α it has. More precisely, to
choose such a neighbour, an agent a

i uses the G
ij(t)

function below, for each neighbour a
j :

G
ij(t) =

�
k

i(t) + 2ρ
i
�
−

�
2ρ

j

& k
i(t)

�
−

�
k

j(t) &
�
k

i(t) + 2ρ
i
��

,

(10)

which represents all the ρ and α values that a
i can

disseminate to a
j . If no such a pair exists, then G

ij(t)
is 0. Therefore, every neighbour for which G

ij(t) is
not 0 is eligible to be chosen for the dissemination.

The point of using this approach, and not a purely
random one, is that the time to deliver all α is
improved, since agents only choose neighbours such
that at least one pair of ρ and α could be disseminated.
We provide evidence of that in Section 4.

When a neighbour is chosen, a push and a pull
are performed. For the push, all the ρ and α that
a

i received, including ρ
i and α

i(t), such that the
neighbour has not, are pushed to it. For the pull,
a

i pulls from the neighbour all the ρ and α that it
received, including the neighbour’s ρ and α value, but
a

i has not. That is done by checking if

2ρ
k

& G
ij(t) = 2ρ

k

(11)

for the push, for all ρ
k ∈ o

i(t) ∪ {ρi}, and

2ρ
k

& G
ji(t) = 2ρ

k

(12)

for the pull, for all ρ
k ∈ o

j(t) ∪ {ρj}. Every pair
< ρ

k
, α

k(t) > such that ρ
k satisfies one of the above

conditions is then pushed or pulled, as appropriate.
Because the agents always choose a neighbour who
has not received some of the α it has, if any, it is
guaranteed that all α are delivered to all agents. Results
showing such a completeness of the Epidemic Model
are provided in the evaluation section.

3.3. Consensus Model

Besides disseminating the α values, agents still need
to know when they have received all of them. This is
necessary because it will tell them when they should
stop trying to disseminate information and waiting for
incoming messages, thus using the α they received to
compute lnλ and then their own share. The Consensus
Model then defines how agents will interact in order
to achieve a consensus as to when the dissemination is
finished, in a decentralized and fault-tolerant fashion.

To this end, we designed a mechanism where agents
exchange signaling information, relying solely on their
neighbourhood. For that, we define a time-varying
value x

i(t), held by each agent, defined as:

x
i(t) =

�
k

i(t) + 2ρ
i
�

+
�

aj∈Ni(t) x
j(t)

|N i(t)| + 1
, (13)

where x
i(0) = 2ρ

i
. The value of x

i(t) gives agents an
idea of how much information has been disseminated
to their neighbourhood. As it increases, so does the
amount of α disseminated. Notice that it only depends
on each agent’s neighbours’ x

i(t), thus being totally
decentralized.

The rationale behind x
i(t) is that we expect it to

converge once all α are disseminated. We call such



a state equilibrium. More precisely, it can be shown
that all x

i(t) converge to 2ρ
i
+

�
ρ∈oi(t) 2ρ at the end

of the dissemination, and that it only happens at that
point. That then guarantees that equilibrium will only
be reached when every α reaches every other agent.

Agents, however, cannot rely solely on the conver-
gence of x

i(t) for determining whether all α have been
disseminated or not. Because of network delays, the
x

i(t) of an agent could get stuck at a particular value
for some time. In turn, that would lead the agent to
believe that the dissemination is finished, when in fact
it is not. For that reason, from x

i(t), we define the
following difference function d

i(t):

d
i(t) =

�

aj∈Ni(t)

|xi(t)− x
j(t)| (14)

The importance of the difference function comes from
the fact that all x

i(t) converge to the same value at the
end of the dissemination. That consequently causes all
d

i(t) to go to 0, which is the value that agents have to
look after for determining when the dissemination is
finished. That is guaranteed to happen only at the end
of the dissemination. Even if d

i(t) gets stuck at any
value other than zero, due to delays, agents will know
that the dissemination is not over yet.

Apart from decentralization, x
i(t) and d

i(t) still
provide support for system changes. The distributed
systems we are dealing with will most likely change
over time, in terms of agents joining and leaving.
Agents might join because a new customer application
has been added to the system. Similarly, an agent might
leave because its application has been dropped, or even
because the agent, or the node where it is running,
crashed or was disconnected from the network. We
analyze how Darma supports such changes from two
scenarios; when they happen 1) in between two re-
source management processes and 2) during a resource
management process.

In the first scenario, the convergence of the system
is not affected. This is because our Consensus Model
does not rely on any global information about the
number of agents in the system. Instead, it relies solely
on the neighbourhood of each agent. Any changes in
the set of agents are then automatically picked up by
the Consensus Model once the resource management
process starts. This would ensure that planned changes
in the system structure could be made in between two
resource management processes, without the need to
restart any part of the system.

In the second scenario, a few issues might come
up. In terms of agents joining, convergence cannot
be guaranteed. If an agent joins before any of the
d

i(t) converges, the system would continue executing,

eventually reaching equilibrium. If an agent joins after
at least one d

i(t) converges, the system will not reach
equilibrium. As for agents leaving the system, con-
vergence is still guaranteed, as long as the remaining
topology consists of single graph. This scenario of
agents joining and leaving during a resource manage-
ment process is more typical of unplanned changes.
Examples include, as we mentioned, the crash of an
agent. We believe, then, that unplanned additions of ap-
plications, and consequently agents, are not to happen
in practice. Therefore, without any loss of flexibility,
we assume that applications can only join the system
in between two resource management processes.

Finally, we should also expect topology changes.
Due to the fact that our Consensus Model relies only
on the neighbourhood of the agents, it is able to
guarantee that the system will reach equilibrium in face
of topology changes, even if they happen during the
resource management process. Again, any changes in
the topology should result in a single graph. As we
will show in the evaluation presented in Section 4, all
properties of the Consensus Model hold in practice,
even in the face of the system changes supported.

3.4. Demand Model

As defined in the Optimization Model, α
i(t) indi-

cates an agent’s demand for resources at time t. Such a
demand is determined by the workload, which varies
over time. We then need a way of mapping a given
workload to α

i(t). For that reason, we defined the De-
mand Model. The problem, though, is that such a map-
ping is very application specific. Consequently, there
is no way the Demand Model could employ a general
model of calculating α

i(t). Therefore, the Demand
Model is actually a hot spot of Darma, which should be
extended for each application scenario. For that, then,
we define the following functions: 1) w

i(t): expected
workload at time t of the application associated with
agent a

i; 2) e
i(w): returns the α

i(t) representing the
demand of agent a

i given the workload w. As we will
show in the evaluation, with such a model, we can map
workload and demand features from different scenarios
into Darma, straightforwardly.

4. Evaluation

In this section we evaluate Darma using a data
center scenario where a number of Application Envi-
ronments (AEs) are deployed, as in [7], each process-
ing one type of transaction. Our evaluation scenario
consists of allocating servers from the data center to
the AEs, where each AE is represented by an agent. For



the purposes of this evaluation, we assume the resource
management processes happen at pre-defined points
over time. In a real-world setting this could represent,
for example, different hours of the day, on which some
re-allocation of the servers would take place.

Each AE has different workload values at different
points in time (i.e., w

i(t) function of the Demand
Model), in terms of requests per second. For our
experiments, the values for the w

i(t) function of each
AE have been obtained from the analytical data of
different web sites. The QoS parameter of each AE
is defined in terms of a Target Response Time (TRT)
that must be satisfied for the transactions they process.

From that, and based on the model proposed in [7],
we define r

i(s, w), the Expected Average Response
Time (EART) of an AE, representing the response time
obtained given a workload w and a number of servers s

allocated to it. We define r
i(s, w) as r

i(s, w) = w.c
i

s
,

where c
i is the CPU time of the type of transaction

processed by AE i (in seconds). From r
i(s, w), we

define q
i(w), the number of servers needed by an AE

so that its TRT can be met, as follows: q
i(w) = w.c

i

T i ,
where w and c

i are as in r
i(s, w) and T

i is the AE’s
TRT. With that, we then define the mapping function
e
i(w) of the Demand Model as e

i(w) = − ln(1−H)
qi(w) ,

where H represents the value of the agents’ utility
when the EART of its AE meets its TRT, i.e., a
value very close to 1. As defined in the Demand
model, e

i(w) then returns the demand α
i(t) of an AE.

Using this data center model, we performed several
experiments, whose results are presented next.

4.1. Allocation

Firstly, we analyzed Darma in terms of alloca-
tions. For that, our data center scenario employed 145
servers. Because the focus here is on the allocations
found and their outcome, we assumed that six AEs are
deployed in the data center. Simulations with larger-
scale systems are presented in the following sub-
sections. Each simulation, for these allocation experi-
ments, ran over 20 iterations. The values for the CPU
times (ci in q

i(w)) for these experiments were based
on [7]. Due to space constraints, however, we omitted
such values from this paper.

The workload of each AE is as illustrated in Fig-
ure 1. From that, agents use the mapping function
e
i(w) to find their demand α

i(t), which are illustrated
in Figure 2. Note that α

i(t) varies oppositely to the
way the workload does. That matches the definition of
the agent’s utility, i.e., the higher the workload is, the
higher is the demand, and thus the smaller is α

i(t).

Figure 1: w
i(t) function of each AE

Figure 2: α
i(t) of each AE

As a result of the α
i(t), the shares for each AE

ended up as in Figure 3. It is easy to see that the
shares vary similarly to the way the workload does.
That shows the ability of Darma to capture the re-
source demands properly and act towards the optimal
distribution. Consequently, the response times for the
transactions of each AE are always below their TRT.
This is illustrated in Figure 4, where the dashed line
in each graph represents the TRT of the AE.

4.2. Dissemination

We have also performed experiments to evaluate
how quick the α are disseminated throughout the sys-
tem. Firstly, we have compared our checksum dissem-
ination approach against a purely random one, where
agents choose random neighbours to disseminate to in



Figure 3: Shares of each AE

Figure 4: EARTs of each AE

a “blind” way, i.e., without considering if they have
unsynchronized replicas. This comparison has been
performed in terms of the number of cycles that it takes
to deliver all α. A cycle, in this case, is considered as
one step from each agent sequentially, where a step
means an agent choosing a neighbour to disseminate
to. Even though the system is not synchronous, this
provides a common ground for analyzing not only the
dissemination but also the convergence in Darma.

A purely random approach leads to situations where
the neighbour chosen by an agent is such that no pair ρ

i

and α
i(t) can be exchanged, but there are neighbours

satisfying such a property. Consequently, more cycles
would be required to disseminate all α. Looking at
Figure 5a, one can see that such a claim holds. Each
group of bars displays the number of cycles for dis-

seminating all α, using our checksum approach and a
purely random one. Clearly, our approach needs always
fewer cycles, thus making it more effective.

To demonstrate further effectiveness of our Epi-
demic Model, we have analyzed how the number of
cycles to deliver all α vary as system scale. As one can
see on Figure 5b, the number of cycles grows logarith-
mically, even when system scale by the hundreds. That
then shows how well Darma can perform in large-scale
systems. Time values for each cycle, however, could
not be measured appropriately, since the simulation ran
on a single machine, thus with no true parallelism.

(a) Checksum Vs. purely random (b) Cycles to deliver all α

Figure 5: Results of the dissemination

4.3. Convergence

Our last experiments analyze the convergence prop-
erties of the Consensus Model. In these experiments,
we simulated systems of smaller scale so as to ease
the understanding of the plots. As we presented, it is
expected that all x

i(t) converge to a specific value
when the dissemination is finished. We demonstrate
in Figure 6a that such a property holds, where each
x

i(t) of a system with 100 agents is plotted. Note
that, as the dissemination approaches the end, at the
10th cycle, x

i(t) starts to converge exponentially. At
some point, that gives way to a slower rate, giving
x

i(t) a “s-shaped” form, characteristic of epidemic-
based approaches. Consequently, d

i(t) also converges
as expected, i.e. to 0, which is illustrated in Figure 6b.

Finally, we demonstrate the convergence of x
i(t)

and d
i(t) in face of node crashes and topology changes.

For the former, we simulated a system with 150 agents,
where one third of them crash at the 10th cycle. As one
can see in Figure 7, the convergence of x

i(t) and d
i(t)

is not compromised. Then, we have simulated a system
with 100 agents where the topology changes at cycles
3, 10, 15, and 20. In each case, the topology changes
in such a way that it is completely different from the
cycle before. The results are presented in Figure 8,
and again, the convergence of x

i(t) and d
i(t) is not



(a) (b)

Figure 6: Convergence of x
i(t) and d

i(t) for 100
agents

compromised. In particular, notice that x
i(t) converges

as in Figure 6a, where no topology change happened,
thus clearly demonstrating the ability of Darma to
handle situations where topology changes.

(a) (b)

Figure 7: Convergence of x
i(t) and d

i(t) for 150
agents. One third of the agents crash at cycle 10

(a) (b)

Figure 8: Convergence of x
i(t) and d

i(t) for 100
agents, under changing topologies

5. Related Work

Many solutions for performing resource manage-
ment have been proposed. Many of them, however,
employ central servers [2][7][4]. They can perform
well, but suffer from scalability and fault-tolerance.
Distributed solutions have also been proposed. An

example are market-based approaches. However, they
either do not focus on optimization [10][11] or employ
central entities called brokers [8]. The decomposition
methods presented in [12] are another distributed so-
lution. They employ a messaging scheme relying on a
central entity, and therefore are not suitable in our case.
A truly decentralized solution is presented in [13]. This
solution is modelled differently though, in that resource
providers, and not consumers, solve the optimization
problem. Also, it is focused on server allocation,
whereas we aimed at a more general approach.

Other works in related areas include [14], where
gossiping is used to allow a set of P2P-connected
traffic limiters to control the bandwidth they use. It
does not focus on optimal allocations though. In [15],
subgradient methods are used to optimize the aggregate
of a set of agents’ cost function. The solution does not
incorporate resource constraints and network delays,
limiting its applicability in practical scenarios. In [16],
a decentralized utility maximization model is proposed,
but it focus on controlling multicasts in P2P systems.

The problem of computing lnλ can, indeed, be seen
as a Node Aggregation problem. From the perspective
of Darma, some solutions in this context are limited to
aggregates that do not fully fulfill our needs, e.g., AV-
ERAGE [17]. Others compute the aggregates in a very
general way [18], thus not being directly applicable
to our lnλ, requiring different runs of the aggregate
algorithm, in our particular case, thus affecting scal-
ability. In [19] the scalability problem seems solved;
however, the mechanisms employed for deciding when
an aggregate computation is finished do not guarantee
that the exact value will be reached. A more general-
purpose solution is presented in [20]. It is focused
on providing less precision so as to lessen messaging.
That does not suit us, since imprecise aggregates will
generate sub-optimal allocations.

6. Conclusions

In this paper we presented Darma, an approach
for managing shared resource pools in a truly decen-
tralized, adaptive, and optimal way. As we showed,
Darma is based on a set of mathematical models,
which together formalize the resource management
task. Lagrange multipliers have been used for provid-
ing decentralized optimization, whereas epidemic and
consensus models were employed for disseminating
information used when calculating the optimal shares.
All that makes Darma truly decentralized, delay and
fault tolerant, also supporting topology changes. The
addition of applications is supported, in between two



resource management processes, which, as we dis-
cussed, is sufficient for real-world scenarios.

An evaluation has been presented, demonstrating
how to use Darma to build an adaptive data center.
As we showed, only a few functions had to be pro-
vided. Extending Darma for a specific scenario is thus
straightforward. In terms of allocations, we showed
that Darma was able to deliver shares that always met
the policies of all AEs. Also, we demonstrated that the
properties for workloads, demand, and the α

i(t) of the
agents hold in practice. Aspects of dissemination have
also been analyzed. With that, we were able to show
not only that our checksum approach does improve the
number of cycles to deliver all α, but also that such
a number grows slowly as system size increases. The
convergence of the agents has been analyzed, demon-
strating that they do reach equilibrium, even when
facing topology changes and agents leaving the system.
Finally, as future work, we will be looking at applying
Darma to other shared resource pool scenarios, to have
an insight of how general it really is.
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