
An Error-free Data Collection Method Exploiting
Hierarchical Physical Models of Wireless Sensor Networks

Lei Fang
School of Computer Science
University of St Andrews, UK
lf28@st-andrews.ac.uk

Simon Dobson
School of Computer Science
University of St Andrews, UK

simon.dobson@st-
andrews.ac.uk

Danny Hughes
Depart. of Computer Science

KU Leuven, Belgium
danny.hughes@cs.kuleuven.be

ABSTRACT
Various studies have shown that a substantial portion of the
data gathered in real-world sensing applications is faulty.
Most existing fault-detection approaches are off-line, cen-
tralised, and rely heavily on expert domain knowledge which
may not always be available. The stochastic nature of phys-
ical phenomenon means that expert knowledge or historical
models that reflect the physical world at some point may be-
come stale later and give rise to a large rate of false alarms.
We propose a data collection method with in-network, hier-
archical, Demand-based, Adaptive Fault Detectors (DAFD).
By applying a two-tiered error detection technique, the ap-
proach adapts itself to the changing physical environment.
Preliminary real world implementation was done to show its
feasibility for resource-restricted sensors. We demonstrate
good detection accuracy in simulation while keeping the false
alarm rate low.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Stationarity of sensor data, Physical model, Adaptive de-
sign, Robust learning

1. INTRODUCTION
Wireless Sensor Network (WSN) applications are attract-

ing growing interests from both academia and industry. One
issue preventing the commercialisation of WSN technology
is the frequently low reliability of data gathered by sensors.
It has been found that a substantial portion of sensor data
is actually faulty [17]: 51% of the data collected in [19] was
faulty; 3-60 % of data collected in the Great Duck Island ex-
periment was incorrect [6]; and many other data series [16,
5] have been found to be faulty. It is almost impossible to
filter out faulty readings manually for WSNs. Therefore,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PE-WASUN’13, November 3–8, 2013, Barcelona, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2361-1/13/11
http://dx.doi.org/10.1145/2507248.2507255 ...$15.00.

automatic data fault detection becomes an imperative for
further adoption.

Data faults occur when a node performs a sensing task
in an erroneous way, resulting in faulty data which deviates
from the true value [6]. Most existing work [17] adopts a cen-
tralised and off-line approach. However, obvious disadvan-
tages are associated with this sort of method. Firstly, a cen-
tralised solution requires the transmission of the whole data
set alongside extra control information, which consumes a
great deal of energy. Secondly, a centralised solution often
suffers from scalability problems. Thirdly, an off-line ap-
proach cannot check the errors in the data as they are being
collected, which could render a whole data set useless. An
on-line, in-network, but lightweight, solution is therefore de-
sirable for WSNs applications.

A problem facing most existing WSN fault detectors, how-
ever, is the high false-positive rates. Jayant [4] warns that
existing solutions are not resilient to changes in the physical
environment. They may mis-classify interesting events – for
example the changes in humidity and temperature resulting
from a volcanic eruption – as faults, thereby discarding the
most interesting measurements. The roots of this problem
lie in the validation of data by constructing a historic model
and assuming this model remains true for all the future read-
ings (also called the stationarity assumption).

In this paper, we propose a data collection method with
in-network, hierarchical, Demand-based, Adaptive Fault De-
tectors (DAFD) embedded to improve the reliability of WSNs.
The solution detect faults by exploiting two-tiered hierarchi-
cal physical models. A local tier detector preliminarily filters
out potential errors by making use of local physical model,
while the second tier validates the potential error by exploit-
ing the physical spatial correlations between nodes. At the
spatial level, two exchangeable data validation methods are
available for node to autonomously pick up based on their
running expenses.

The contribution of this work lies in the following aspects.
The work models and exploits physical models, like intra-
node multi-modal data correlation and spatial correlation,
for sensor applications. Secondly, to reduce false alarms, the
stationarity of sensor data series is studied and economical
remedies are given when the stationarity assumption breaks
down. Thirdly, the solution is robust to errors in the train-
ing data; therefore, the common but impractical error-free
learning data assumption made by most existing works [17,
6] is relaxed.

Section 2 briefly reviews recent work. Section 3 presents
our proposed solution, which we evaluate in section 4. We

conclude the paper in section 5 with some pointers to future
work.

2. RELATED WORK
To the best of the authors’ knowledge, DAFD is the first

system that features multi-modal data validation as well as
two-tiered fault detection exploiting both local and spatial
correlation of sensor readings. In terms of exploiting cor-
relation of multi-modal data at local level, Chu [1] creates
optimised sensing schedules by modelling intra-node corre-
lation between voltage and temperature. Instead of report-
ing temperature directly, each node reports a approximated
temperature value calculated through voltage. Energy is
saved because voltage is less expensive to retrieve compar-
ing to a temperature sensor.
Ni [12] presents a detailed taxonomy of sensor data faults,

and also presents a systematic approach to modelling these
faults. However, no detailed detection method is proposed.
Sharma [17] also studies data faults, as well as their pos-
sible causes. Four different data fault detection methods
are compared: heuristic methods, estimation methods, time
series analysis methods, and learning-based methods. The
authors found that these four classes sit at different points on
the detection accuracy spectrum: none are on-line detectors
and none is adaptive to a changing physical environment.
They depend heavily on domain/expert knowledge to set
learning parameters beforehand rather than adjusting the
learned model adaptively.
A packet-level attestation method to increase sensor data

reliability is proposed by Kamal [6]. This work attaches an
attestation bit to each observation to indicate its validity by
exploiting one-hop spatial correlation. However, without a
local filter, each observation – whether good or erroneous
– will be sent to a neighbour for validation. Moreover, it
ignores the possible breakdowns in the correlation between
neighbouring sensor readings, which may result in wrong
validations. Ni [11] proposes Hierarchical Bayesian Space-
Time (HBST) modelling to find faulty data. Compared with
linear autoregressive system, this work has a similar detec-
tion rate but lower false-positive rate. However, the sys-
tem’s computational complexity renders it inapplicable to
resource-restricted sensors.

3. PROPOSED SOLUTION
In overview, the operation of DAFD consists of two phases,

a learning phase and an operational phase. During the learn-
ing phase, statistical models of the data series are established
in each node (local model) as well as between local nodes
(spatial model). The local models make use of underlying
physical relationships, for instance the linear correlation be-
tween temperature and humidity, at local level. The second
tier model models the statistical distribution of spatial cor-
related data series. In the operational phase, each sampled
data needs to go through the detectors at the local and,
maybe further, the spatial level. Feedback from the second-
tier test result will either be used to finalise the identity of
faulty data or to update local model accordingly. Two vali-
dation methods at tier-two level are available to pick up by
each node autonomously according to its the changing con-
text so that extra communication is minimised. Appropriate
remedial action can be taken when faulty data is found; for

(a) Node 1 (b) Node 2

Figure 1: Humidity versus Temperature with Re-
gression Lines

example, faulty data can be simply discarded locally or sent
back with a flag.

3.1 Fault Detection: Tier-one (local) Model

3.1.1 Local Model
In reality, measurements of between different physical quan-

tities are closely correlated, for example, temperature and
humidity. In this paper, we harness this physical phenomenon
by constructing a simple linear model between temperature
and humidity, which is served as the local model:

Ti = β0 + β1Hi + ui (1)

where Ti is the temperature; Hi is the humidity; ui is the er-
ror term; and subscript i runs over all observations from 1 to
n. We denote vectorT

′
= (T1, T2, ...) andH

′
= (H1, H2, ...).

The model can be learnt by the ordinary least-squares
(OLS) estimation. The OLS estimators have closed-form

solutions, in matrix notation β∗ = (X
′
X)−1X

′
y, where

X = (1,H), y = T. Particularly, in this example, the
estimators can be calculated according to Eqn. (2).

β̂1 =
SHT

SH
=

∑n
i=1(Hi − H̄)(Ti − T̄)∑n

i=1(Hi − H̄)2

β̂0 = T̄ − β̂1H̄

(2)

The linear model is a data driven modelling approach;
no prior knowledge about the system or environment is re-
quired. Models for two data series from Intel [5] are shown
in Fig. 1. A clear negative linear correlation exist between
temperature and humidity. Similar results are found in other
data series.

According to the linear model, a prediction interval, which
sets the boundary values for the value of interest, can be
calculated formally at specific confidence interval:

Tnew ∈ β̂0 + β̂1Hnew ± ε,

ε = tn−2,ασ̂(1 +
1
n
+

(Hnew − H̄)2

SH
)1/2

(3)

where σ̂2 = 1
n−1

∑n
i=1(Ti−T̂i)

2 is the residual sum of squares;
and tn−2,α is the significance test coefficient obtained from a

t-table. When a new pair of observations, say (Hnew, Tnew),
is sampled locally, the local prediction interval can be calcu-
lated according to Eqn. 3. Any data entry which is outside
of the interval is marked as suspected data, and it will be
checked by the spatial model for further validation. To re-
duce the validation workload for the local tier, we use user
specified error band, ε̂, instead of the regressor-specific error
ε. Additionally, user-specified error band gives the flexibility
to suit to different application specific requirements.

3.1.2 Data Efficient Local Learning
We introduce time-varying weights to the local learning

method to make sure less data is required for local model
construction. Since we are interested in applying the model
to future data, the latter half of the learning data are more
similar to the future series and therefore should be given a
higher weight. A sigmoid function is used to give weights to
each data entry in learning data set:

wi(t) =
1

1 + e−ks∗(t−M)
(4)

In this equation M is the median epoch value of a learn-
ing data set, and ks determines the shape of the sigmoid
function. Data with epoch larger than M are given higher
weights, and vice versa. As for the model, the model pa-
rameters can be estimated as

β∗ = (X
′
W−1X)−1X

′
W−1y, (5)

where W
′
= (w1, w2, ...).

3.1.3 Learning in Noisy Environments
To create reliable local models in noisy environments, we

apply robust regression. The method assigns weights to each
data entry according to its likelihood of being an outlier. To
make the solution feasible for resource-constrained sensors,
we employ a modified robust regression. We modified Hu-
ber’s weight function, where k is the tuning constant whose
value is set 2.0×med|ei| (i = 1, ..., n), med returns median
value, and e is the residual [10].

w(e) =

1, for |e| ≤ k

k/|e|, for k < |e| ≤ 2k

0, for|e| > 2k

(6)

The algorithm for robust learning is shown in Algorithm 2.
Compared with traditional robust regression, we modified
both weight function and iteration stopping criteria to make
the learning process converge faster. The effect of robust
regression is shown in section 4.1.4 .

3.2 Fault Detection: Tier-two (Spatial) Model
Spatial correlation is used to further check a suspect data

entry reported by the tier-one model to make sure it is truly
erroneous data rather than being a honest observation of
a turbulent environment. Spatial correlation means data
sampled by co-located sensors, which tend to observe the
same phenomenon, is similar to each other. A initial learn-
ing phase is required to establish the spatial model. During
the learning period, each node broadcasts its readings to its
one-hop neighbours. We denote di as the local data source
of node i, while data matrix S = (s1, s2, ..., sn) is the learn-
ing data series from the source node’s neighbours. We as-
sume the data (di,S) is multivariate Gaussian distributed,

which is a common assumption made in sensor data analy-
sis [1], [3], [2]. The spatial modelling procedures are listed
in Algorithm 1.

3.2.1 Verification nodes selection
The learning phase starts with the selection of verification

node set for each source node. The reason for including this
process is geometrically co-located sensors may not neces-
sarily exhibit spatial correlation. For instance, when one
of co-located nodes is in a separate dark-box enclosure, the
readings reported may be quite different and independent
from others. Pearson correlation coefficients, whose equa-
tion is shown as Eqn. (7), are used as the metric to decide
verification nodes. The coefficient measures the strength of
linear relationship between two data series, which is an in-
dicator of data similarity [13].

We use a formal but lightweight statistical significance
test to filter out irrelevant nodes. It can be proved that
the sample correlation coefficient for N observations, when
N is large N > 25, on two uncorrelated variable x and y
is normally distributed with mean µ = 0 and standard de-
viation σ = 1/

√
N − 2 [13]. A simple one-tailed p-test at

α-level then can be used to test whether the sample corre-
lation is significantly larger than zero, indicating a strong
positive correlation (see Algorithm. 1 for details). A pri-
mary verifier node with the largest sample correlation is then
selected from the qualified node set. The primary verifier
node is later used in single verifier validation method, see
section 3.2.3.

r =
Σn

i=1(xi − x̄)(yi − ȳ)√
Σn

i=1(xi − x̄)2Σn
i=1(yi − ȳ)2

(7)

3.2.2 Group voting mechanism for spatial validation
During the learning phase, each node i also maintains a

2× |vrf(i)| spatial verification matrix, where vrf(i) denotes
the set of assigned verification nodes of i. The spatial matrix
stores the estimators of expected absolute difference, µ̂d

ij ,
between di and its verifiers sj as well as the corresponding
expected standard deviation, σ̂d

ij , for the absolute difference.

µ̂d
ij = |med(di)−med(sj)| (8)

σ̂d
ij = 1.4826×MAD(di − sj), (9)

where med is the sample median, and MAD is the medium
absolute deviation (MAD) of a data series, and 1.4826 is a
scaling constant to adjust the MAD under normal assump-
tion [8]. Note we use estimators, medium and MAD, instead
of sample mean and standard deviation to reduce the effects
of faulty learning data. The estimators are insensitive to
outliers [8], which give good estimation even in noisy envi-
ronments.

When node i receives a verification request from his neigh-
bour, it will return a boolean result by consulting the ma-
trix: if the on-request sample absolute difference is out of the
boundary [µ̂d

ij−kσσ̂d
ij , µ̂

d
ij+kσσ̂

d
ij], it is marked as faulty. We

use kσ = 10 in this work. Because according to Chebyshev’s
Inequality (Eqn. 10 [15]), when kσ is 10, the probability of
misclassification is only 1%. The proof of the theorem is
beyond the scope of this article.

P (|X − µ| ≥ kσ) ≤ 1
k2

(10)

In terms of the data validation, the group voting method
uses all the verification results from the source node’s ver-
ifiers: if at least one of the verification results support the
suspect data, the data is marked as non-faulty. The valida-
tion rule is stated as Eqn. (11), where xi,t denotes a data
entry from sensor i at epoch t, and boolj(xi,t) is the verifi-
cation result from node j.

faulty : if ∨vrf(i)
j=1 boolj(xi,t) == false (11)

The reason we model the synchronized absolute difference,
z = |di − sj |, to validate data is twofold. Firstly, z natu-
rally reflects the discrepancy between two random variables.
Secondly, and more importantly, after the difference, z usu-
ally becomes partially stationary or partially self-similar, i.e.
the model learnt by historic data remains true for most fu-
ture data series, which provides the legitimacy to use group
verification without model update.
We use real world sensor data [5] to demonstrate the

claims. Fig. 2 shows temperature data series from two corre-
lated sensors. It is obvious that, comparing with the original
data, the absolute difference is more self-similar. We use the
first 150 data series as training data to learn our model pa-
rameters µ̂d

ij , σ̂
d
ij . It is found, with kσ = 10, averagely 87% of

all the future data series agree with the historic model. How-
ever, the model still breaks occasionally, rendering about
10-20% of future data rejected based on the historic model.
To solve the problem, we use the group voting mechanism
to share the risk of a breakdown in correlation. The ratio-
nale is while correlation between two specific nodes is likely
to change, it is not likely that one node will be totally dif-
ferent from all its neighbours. By using group voting, the
agreement rises from 87% to 99.9%.

3.2.3 Single verifier scenario for spatial validation
A different validation mechanism is needed when there

exists only one neighbouring node qualified after the cor-
relation test. As mentioned above, the single correlation
model, which breaks from time to time, is not stable enough
to serve as a validator alone. Therefore, the pair-wise spa-
tial model needs to be updated periodically to adapt to the
stochastic changes. To avoid the overhead of repeating the
learning process, we only update the expected absolute dif-
ference, i.e. µ̂d

ij . Note that only one parameter, the sample
median med(di) of the local learning data, needs to be sent
for µ̂d

ij update. The variance, σ̂d
ij , is exempted from update

because of its stationarity. The stationarity is valid from
Fig. 2: the fluctuation pattern does not change over time.
Formal analysis of the stationarity of σ̂d

ij is presented in Ap-
pendix A.
The update frequency for µ̂d

ij is denoted as fupdate. By
updating µ̂d

ij with adequate frequency, say once every 50
epochs, the agreement arises from 87% to 98.2%.

3.2.4 Adaptive spatial validation method selection
The two different spatial validation methods incur differ-

ent verification messages exchanges; and we give each node
the freedom to choose one of the validation methods au-
tonomously and adaptively so that smaller amount of valida-
tion messages need to be exchanged. The whole data collec-
tion period is divided into smaller slices pt (t = 1, 2, ...) with
equal length of dp. Each node decides its validation method,
group or singular validation noted as G and S, at the begin-

Figure 2: Stationarity of Real World Sensor Data.
The top shows the temperature series from two co-
located and correlated sensors; The bottom shows
the absolute difference between the two series. The
red lines are the boundaries learnt by the first 150
data entries.

ning of every pt. The number of message exchanges, nmsg,
is based on the following parameters: the size of verifier set
|vrf |, data collection window dp, spatial verification demand
vd, and spatial model update frequency fupdate for the singu-
lar verifier scenario. Among them, vd, a stochastic variable
measuring the number of verification requests issued in an
epoch, needs to be monitored on-site. The variable depends
largely on the condition of the hardware, the quality of local
model and also the changing environment. The decision is
made according to the rule stated in Eqn. (12). The deriva-
tion of the rule is listed in Appendix B. Note that the two
methods can be exchanged easily by adding or removing
corresponding verifiers as verification requests’ recipients.

validation method =

{
G 2× (|vrf |− 1)vd ≤ fupdate
S 2× (|vrf |− 1)vd > fupdate

(12)

3.3 Adaptive Local Model
The linear relationship between temperature and humid-

ity usually changes as the physical world is changing. There-
fore, updating the local model is essential. Instead of updat-
ing the local model at some pre-specified frequency – which
could results in either infrequent or unnecessary update – we
update the local model in an on-demand way by leveraging
the feedbacks from the tier-two model.

When the feedback from spatial model is not faulty, it
means the reported data, which is believed to be correct by
its verifiers, does not agree with the current local model. In

Figure 3: The detection procedure

this work we set an update threshold: when n > thredu
consecutive false alarms from local model are witnessed, we
force the node to learn a new local model. Fig. 3 show the
detection procedure of the proposed solution.

4. EVALUATION
This section reports the results of an assessment of the

performance of the proposed solution mainly in a numeric
simulation. The solution is examined in various aspects by
using a real world sensor data set. The solution has also been
implemented. The footprint of the solution is reported.

4.1 Numerical simulation
To better understand the effectiveness of the solution, we

use a real-world data set: the Intel Lab Data [5] to run
numerical simulation. All the experimental results are ob-
tained from simulations written in R [14] . The parameters
used for the evaluation are listed in Table 1.

4.1.1 Fault Model
Injecting artificial faults into a real data set is a common

approach to measuring the accuracy of a detector [6, 17, 4].
For our evaluation, four particular kinds of faults are consid-
ered: short, constant, noise and drift. Table 2 summarises
the definitions, models and the parameters used for the dif-
ferent faults. The parameters are selected based on existing
works [6, 17].

4.1.2 Detection Accuracy

Algorithm 1 Learning Spatial Model

Input: Neighbours Data Matrix: S, LocalDataSeires: di

Output: vrf list, spatial[][], vrf∗

1: initialise spatial as a |nbr()|× 2 matrix
2: i = 0
3: rmax = 0
4: sigLevel = 1.96/

√
length(di)− 2

% one-tailed significance level at 2.5 level
5: for each sj in S do
6: calculate rd,sj
7: if rd,sj > sigLevel then
8: vrf list.add(NodeId(sj))
9: if rd,sj > rmax then
10: rmax = rd,sj
11: vrf∗ = NodeId(sj)
12: end if

% calculate robust estimators according to Eqn. 8
and 9

13: spatial[i++][0] ← µ̂d
ij

14: spatial[i++][1] ← σ̂d
ij

15: end if
16: end for
17: truncate spatial if needed

Algorithm 2 Robust Local Model Learning

1: Initialise estimates b(0) as ordinary least square esti-
mates

2: while t < thredr & no convergence do
3: calculate residuals e(t−1)

i and associated weights

w(t−1)
i = w(e(t−1)

i)

4: Solve b(t) = [X
′
W(t−1)X]−1X

′
Wt−1y

5: end while

Table 1: A Summary of Key Parameters

Name Value Used Description (Unit)

β∗ NA Local model parameters

ε 1 Error band for local validation;(℃)

ks 0.133 Parameter for sigmoid function, see
Eq. 4

kσ 10 Number of deviation from mean,
used for spatial validation

Lsize 150 Learning data size

thredu 20 Update threshold for local model
update

thredr 4 Stopping criteria for robust model
learning, see Algorithm. 2

dp 100 Spatial method selection monitor-
ing window;(epoch)

vd NA Spatial verification request demand
monitored; (pieces/epoch)

fupdate 1
50 Update frequency for singular veri-

fier; (times/epoch)

Table 2: Different Fault Models
Class Definition Model Parameters

SHORT Momentary deviation from the true
reading

Ss(x, t) = g(x, t) + f ∗ g(x, t) random f , i.e. fault in-
tensity, from [0.1, 10] is
assigned

CONSTANT Sensor readings remain constant for
an unexpected period

Sc(x, t) = c , where t ∈ T random c from [33, 999]
is chosen

NOISE Sensor readings exhibit large unex-
pected variation

Sn(x, t) = g(x, t)+N(0,σ2) , where
t ∈ T

random σ from [3, 10] is
assigned

DRIFT Sensor readings deviate from true
values by a time-varying offset

Sd(x, t) = g(x, t) + f(t) , where t ∈
T and f(t) = at

random a from [2, e] is
assigned

Table 4: Comparing DAFD with Heuristic Methods

True P. False P.

DAFD 1.0 0.012

Heuristic (clean learning set) 0.99 0.74

Heuristic 0.16 0.427

The faults detected mainly can be categorised into the fol-
lowing four classes: data points correctly detected as faulty
(true positive); data points correctly detected as non-faulty
(true negatives); data points incorrectly detected as faulty
(false positives); and data points incorrectly detected as non-
faulty (false negatives). We compare both true positive rate
and false positive rate, which provides a complete picture of
the solution.
Three simulation scenarios are considered:

1. For each node, only inject errors in one category of
sensor readings (for example, in temperature only)

2. For each node, inject errors in both categories of read-
ings (temperature and humidity)

3. Inject errors in both a node and its neighbours.

Table 3 shows both true positive and false positive rates
(listed in brackets). It is clear that DAFD achieves almost
100% accuracy under scenario one for all the faults except
NOISE. DAFD achieves high accuracy even when errors may
be present in learning data, which means the proposed so-
lution is resilient to errors and can perform well in an noisy
environment.
To better see the results of DAFD, we compare DAFD

with a heuristic (rule-based) method presented in [4] when
random SHORT faults are injected. The threshold for the
heuristic rule is selected by a learning process involving the
first 200 data entries. The results are shown in Table 4. Note
that we assume the learning data for the heuristic method
is error-free for the second result. It is clear that DAFD
outperforms both the heuristic methods, especially in terms
of false positives. It is also worth noting that the heuristic
method is not reliable when errors are present in the learning
data, which is a possibility that cannot typically be ruled out
in real-world scenarios.

4.1.3 Data Usage Efficiency of DAFD
For methods involving a learning phase, one may also con-

cern the efficiency of data utilisation. In other words, the

Table 5: Data Usage Efficiency of DAFD

DAFD DAFD-NoWeighted

Total Learning Data Size 930 1552

learning set should be small so that more data can be val-
idated. By applying time-varying weighted regression (see
3.1.2), it can be shown that the solution can achieve the same
result while using a smaller total training data set, which is
more efficient. Table 5 shows that DAFD for different nodes
on average uses 930 data entries in total as learning data
during the whole process. This saves about 60% of learning
data compared to the method without time-varying weights.

One should also note that model adaptation is necessary
and should not be omitted, which means that using learn-
ing data is justifiable. Without the local model update, a
stale local model will produce an excessive amount of suspect
faults and result in a large volume of validation requests. Re-
sults show that over three times (3.24) the number of suspect
faults are generated in the local tier when a static model is
employed, which means that energy efficiency is similarly
reduced.

4.1.4 Learning in Noisy Environments
DAFD uses robust learning methods to downplay the ef-

fects of faults in learning data. Fig. 4 compares the accuracy
of DAFD with and without robust learning. It can be seen
from the figure that robust regression is resilient to errors. It
automatically ignores those faulty data entries when learn-
ing a local model as well as the spatial model. Even for
faults of high intensity it can still produce accurate mod-
els. It is interesting to note that when fault intensity gets
smaller the two methods converge, as faulty data converge
to the real data set.

4.1.5 Adaptive spatial validation method selection
We present the result that a local node autonomously se-

lect its validation method adaptively along the process in
Fig. 5. As evident from the figure, the node chooses the
two methods alternatively and the selection usually starts
with a cluster of singular methods and followed by a longer
series of group methods. The clustering feature means the
hardware condition or local model is stable locally; therefore,
the most recent monitored variable vd can be used to predict
one-step further situation. Similar results were found among
other nodes. In terms of messages exchanges, the adaptive
solution reduces 49% and 5% of the verification messages

Table 3: Simulation Results of True Positive and False Positive
SHORT CONSTANT NOISE DRIFT

CASE 1 1.0 (0.012) 1.0 (0.013) 0.96 (0.012) 1.0 (0.012)

CASE 2 1.0 (0.012) 1.0 (0.013) 0.928 (0.01) 0.997 (0.012)

CASE 3 0.99 (0.014) 1.0 (0.014) 0.926 (0.012) 0.989 (0.014)

Figure 4: The effects of robust model learning

Figure 5: Adaptive validation method selection

comparing to pure group method and singular method re-
spectively.

4.2 Implementation
We have evaluated DAFD using IEEE 802.15.4 complaint

T-mote Sky mote. It consists of an processor running at
maximum 8MHz and RAM of 10 KB [9]. The relative small
RAM size becomes a major hindrance for the system and
application program. We implemented the solution in nesC
that runs on TinyOS 2.1.0 [7]. For the entire learning and
operating process, the solution uses a number of local array
of floating point numbers to temporarily hold the learning
data and learnt model parameters. The array size mainly
depends on Lsize. We observe that, with Lsize = 150, the
footprint of RAM in average is only 5100 bytes, which is
only 51% of the total available memory for a typical T-mote
Sky node.

5. CONCLUSION AND FUTURE WORK
In this paper we have proposed a two-tiered data valida-

tion framework for WSN data collection application. The
proposed solution maintains high rates of faulty-data detec-
tion and accuracy. By exploiting spatial correlation, we also
manage to reduce the false alarm rate. To make the solution
adaptive to the changing physical phenomenon, we form a
feedback loop to make the local models update in response
to changing environments. Early experimental results seem
promising, and we believe that the use of structured statis-
tical methods has the potential to dramatically improve the
quality of data collected.

Some parts of the solution still need further investigation.
For instance, due to time limits, we only implemented the
core part of the solution and no comprehensive evaluation
on the real world deployment has been carried out. We plan
to finish the evaluation by checking the overheads of the pro-
posed solution as well as its scalability. Moreover, currently
we use fixed periodical update to adjust spatial model for
the singular verifier scenario. However, we believe a better
solution would be on-demand update. Additionally, some of
the parameters, like kσ, are quite sensitive. We currently
use a global fixed value for the whole deployment. An open
research question is how to select the parameters according
to the specific context. Other statistical methods may also
be investigated and compared. Another interesting exten-
sion would be the integration of efficient data collection with
data validation. We intend to investigate how to integrate
the validation framework into an efficient data acquisition
method so that overall overheads are minimised by using
statistical methods.

Acknowledgements
Lei Fang is supported by a studentship from the Scottish
Informatics and Computer Science Alliance (SICSA).

APPENDIX
A. THE STATIONARITY OF σ̂

We analyse the stationarity of σ̂d
ij by firstly carrying out

a formal statistical test and then a error tolerance analysis.
We apply Augmented Dickey-Fuller (ADF) test, a widely

used test for examining the stationarity of a time series [18],
to different variance series with a sliding window size of 150.
The variance series is a time series with each entry being
the variance of a moving window of data. The test results
show that the σ̂d

ij series is strongly stationary (the hypothe-
sis cannot be rejected at 99.99% with average Dickey-Fuller
coefficient: -8.24).

Secondly, if an error tolerance band, ε, is known, i.e. any
measurement within this error band is acceptable for this
application, we find that most of the future σ̂d

ij reside within
a ε

kσ
band of the first sample variance. For example, 100%

of the test variances is within 0.25 band of the first variance
learnt from the first 150 data when ε = 1 and kσ = 10.
The result implies that, even without variance update, 100%
of the measurements still can meet the measurement error
requirement; i.e. the temperature only deviates 1 Celsius
degree.

B. DERIVATION OF THE RULE

Group Verifiers
For method G, each spatial verification requires |vrf |+ |vrf |
of message exchanges. Therefore, the number of message
exchanges expected for the next monitoring period pt (of
duration dp) based on the most recent observed verification
demand vd is

nG
msg = (|vrf |+ |vrf |)× dp × vd;

Singular Verifier
While for method S, the counterpart is

nS
msg = (1 + 1)× dp × vd + dp × fupdate.

Note method S requires periodical update which incurs extra
dp × fupdate message exchanges.
By differencing, nG

msg − nS
msg, the rule (Eqn. 12) can be

obtained. The method with lower message exchanges is pre-
ferred.

C. REFERENCES
[1] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong.

Approximate data collection in sensor networks using
probabilistic models. In Proceedings of the 22nd
International Conference on Data Engineering
(ICDE’06), pages 48–48, 2006.

[2] A. Deshpande, C. Guestrin, S. R. Madden, J. M.
Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. In Proceedings of the
Thirtieth international conference on Very large data
bases - Volume 30, VLDB ’04, pages 588–599. VLDB
Endowment, 2004.

[3] B. Gedik, L. Liu, and P. Yu. Asap: An adaptive
sampling approach to data collection in sensor
networks. Parallel and Distributed Systems, IEEE
Transactions on, 18(12):1766–1783, 2007.

[4] J. Gupchup, A. Sharma, A. Terzis, A. Burns, and
A. Szalay. The perils of detecting measurement faults
in environmental monitoring networks. In Proceedings
of DCOSS, 2008.

[5] INTEL. Intel lab sensor dataset 2004.
http://db.csail.mit.edu/labdata/labdata.html, 2004.

[6] A. R. M. Kamal, C. Bleakley, and S. Dobson.
Packet-level attestation (pla): A framework for
in-network sensor data reliability. ACM Trans. Sen.
Netw., 9(2):19:1–19:28, Apr. 2013.

[7] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. TinyOS: An Operating
System for Sensor Networks. In W. Weber, J. Rabaey,
and E. Aarts, editors, Ambient Intelligence, chapter 7,
pages 115–148. Springer Berlin Heidelberg,
Berlin/Heidelberg, 2005.

[8] R. A. Maronna, R. D. Martin, and V. J. Yohai. Robust
statistics. J. Wiley, 2006.

[9] Moteiv. Tmote Sky Datasheet
http://www.sentilla.com/pdf/eol/tmote-sky-
datasheet.pdf,
2006.

[10] R. Myers. Classical and modern regression with
applications, volume 2. Duxbury Press Belmont, CA,
1990.

[11] K. Ni and G. J. Pottie. Sensor network data fault
detection with maximum a posteriori selection and
bayesian modeling. ACM Transations on Sensor
Networks, 8(3), 2012.

[12] K. Ni, N. Ramanathan, M. N. H. Chehade,
L. Balzano, S. Nair, S. Zahedi, E. Kohler, G. Pottie,
M. Hansen, and M. Srivastava. Sensor network data
fault types. ACM Transactions on Sensor Networks,
5(3):25:1–25:29, 2009.

[13] H. A. Panofsky and G. W. Brier. Some applications of
statistics to meteorology. Mineral Industries Extension
Services, College of Mineral Industries, Pennsylvania
State University, 1958.

[14] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2012. ISBN
3-900051-07-0.

[15] S. M. Ross. Introduction to probability models.
Academic Press, 2006.

[16] SensorScope. EPFL SensorScope Project.
http://sensorscope.epfl.ch, 2008.

[17] A. Sharma, L. Golubchik, and R. Govindan. Sensor
faults: Detection methods and prevalence in
real-world datasets. ACM Transactions on Sensor
Networks, 6(3):23, 2010.

[18] R. H. Shumway and D. S. Stoffer. Time series analysis
and its applications. Springer Science+ Business
Media, 2010.

[19] G. Tolle, J. Polastre, R. Szewczyk, D. Culler,
N. Turner, K. Tu, S. Burgess, T. Dawson,
P. Buonadonna, D. Gay, et al. A macroscope in the
redwoods. In Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems,
pages 51–63, 2005.

