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Abstract—Pervasive healthcare systems facilitate various as-

pects of research including sensor technology, software tech-

nology, artificial intelligence and human-computer interaction.

Researchers can often benefit from access to real-world data sets

against which to evaluate new approaches and algorithms. Whilst

more than a dozen data sets are currently publicly available, their

use of heterogeneous mark-up impedes easy and widespread use.

We describe PI – the Perceiver and semantic Interpreter – which

offers a workbench API for the querying, re-structuring and re-

purposing of a range of diverse data formats currently in use.

The use of a single API reduces cognitive overload, improves

access, and supports integration of generic and domain-specific

information within a common framework.

Index Terms—Smart home, pervasive healthcare, context mod-

eling, activity recognition

I. INTRODUCTION

With the rising ageing population, there is a pressing need
to design and develop technologies that can assit independent
living of elderly people. The introduction of sensing technol-
ogy into everyday environments and appliances has given rise
to so-called ‘smart spaces’, where sensor data is interpolated
to infer user behaviours and activities, allowing services to
provide pro-active ambient assistance based on user context.

Data sets are essential to various avenues of research within
pervasive healthcare environments. They provide, for example,
a basis for assessing activity recognition algorithms. However,
collecting a high-quality data set is a difficult task. Although
the monetary cost of sensors is decreasing, such technology
is not yet available to all. A substantial amount of effort
and expertise is required to plan the instrumentation of a
space, carry out the installation, and set up the hardware and
software infrastructure responsible for storing, processing, and
providing access to the collected data.

Not every research group has access to the resources (either
for time, money, space, or person constraints) to carry out
these tasks. However, a number of projects have made their
data sets publicly available. Many of these data sets exhibit
commonalities in the types of sensor data collected, and in
the nature of user activities they capture. Yet, as these data
sets were developed in isolation, and stored using ad-hoc data
structures, these similarities cannot be exploited without the
researcher first adapting their tools and techniques to each.
As users of these data sets, we have been frustrated by this
problem when evaluating our activity recognition techniques.
These issues motivate the work described in this paper, which
develops a Perceiver and Interpreter, called PI, that allows
developers to work uniformly with different smart home data
sets. Our contribution includes:

• a standard taxonomy and structural representation that
captures sensor data along with metadata associated with
sensors and sensor types;

• a uniform programming interface to access, interact with,
and study currently available data sets;

• a middleware service to interpret and fuse sensor data
into high-level domain specific data, which hides low-
level details (such as sensors or network) from application
developers.

The rest of this paper is organised as follows. Section II
motivates our work by describing research in smart home
environments and existing data sets. Section III describes the
conceptual model of PI, including the model of data produced
from sensors, diary data (annotation of users’ activities during
the collection), and metadata of sensors and user activities.
Section IV describes the implementation of PI in terms of
its core functions: interpreter, query, synchroniser, context
converter, and output components. Section V demonstrates the
use of PI and discusses our experience of using it. Section VI
compares our work with related sensor specifications and
middleware from the literature. Finally, we conclude our work
and summarise our future directions in Section VII.

II. STUDYING SMART HOME

Smart homes facilitate various aspects of research for a
large number of research communities [4]. By analysing
sensor readings, sensor developers may improve their designs;
robotics researchers may construct algorithms to take actions
in the face of an imperfect world view; and HCI designers
may improve user experiences by making interactions less
intrusive. Researchers working in artificial intelligence and
context-aware systems study sensor data to design algorithms
for activity recognition, allowing services and applications to
work at a higher level of abstraction that is impractical with
raw sensor data. Psychologists, sociologists, ethnographers,
anthropologists, and health-care professionals use annotated
diary data to study temporal patterns, behavioural routines,
and interaction models of human activities. Engineers too,
need to accumulate knowledge on the technical specifications
of different sensors and environments to which they are best
suited. The study of existing data sets supports all these groups
in their analysis.

Whilst it is desirable to make data sets available to re-
searchers working in these and related domains, their construc-
tion is not a straightforward process. A suitable environment
must first be found (which may require the use of a normal
residence), sensors to instrument the environment must be
carefully selected and purchased, and resources need to be
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Fig. 1. The sensor and domain context models

allocated to recruiting external participants with varied age and
background conditions for the collection. To make a data set
more useful, a ground truth – the true state of participants and
environments – needs to be recorded and added as annotation.
All these processes require significant effort and investment,
both in terms of time and money, in order to collect data
for a meaningful set of activities or events [6]. The ability
of researchers to share and reuse data sets is therefore of
paramount importance.

The CHI’09-hosted workshop1 on developing shared home
data sets to advance HCI and ubiquitous computing research
compiled a list of twenty data sets collected by research
institutes across the world, half of which are publicly available
to date. These data sets are heterogeneous in that they have
been collected with different goals in mind. Each goal type
plays a role in determining the collection methodology and
focus of a data set. Heterogeneity also exists across the types
of sensors used in the collection process; some of which are
manufactured by the hosting research institute. This can result
in encoding bias where data representation choices are made
for their own convenience of notation or implementation.

To mask the heterogeneity of data sets and to make the
data easily available to those performing different forms of
research, we present an unifying model and an API to interpret
various data sets and provide a uniform interface for working
with them.

III. CONCEPTUAL MODEL OF PI
Underlying PI is a conceptual model that defines a standard

taxonomy to represent sensor data, diary data, and metadata
covering the profile of sensors and sensor types, and activities.
This taxonomy is rich enough to describe all the data sets we
have encountered.

A. Sensor Model
A sensor model consists of representations of sensor types,

sensors, and sensor readings (see Figure 1). Each sensor type
has a set of properties including its name, id, domain – a
parameter that describes what the sensor type measures (e.g.,
acceleration or usage of gas), and a unitOfMeasurement – the
unit used to report observed values.

1http://boxlab.wikispaces.com/List+of+Home+Datasets

Each sensor type can be associated with a technical specifi-
cation that includes its manufacturer, model, size, deviation of
readings produced by its sensors (e.g., ‘a maximum precision
of ± 1.5% full scale’ for a gas flow sensor in the PlaceLab
data set), its sampling frequency, and a number of valueRange
parameters – boundary values that characterise different states;
e.g., a gas flow is present when the sensor reports a value
greater than 1. These values may come from the manufacturer
or through the application of learning techniques.

Properties associated with a sensor type provide general
information about all sensors that share this type, whilst
properties associated with an individual sensor provide details
specific to it [12]. The sensor specific properties consist of a
name, id, typeId, installation location, and object to which it
is attached (e.g., a cup, or a seat). Each sensor can also be
associated with a quality matrix that describes its operating
parameters like the deviation parameter mentioned above.
These qualities can be derived from the technical specification
of its sensor type, or can be refined in the presence of inter-
ference from an installation environment (such as temperature,
humidity, or electromagnetic interference).

Sensor data is a collection of sensor readings and each
reading can be represented as a combination of a literal value,
a sensorId identifying the provider of the data, and a startTime
and an endTime, during which the reported value is valid.

B. Domain Context Model
A domain context model describes the common concepts

in a domain, such as environmental information (temperature,
humidity, or noise level), location, acceleration of a body,
biomedical information (heart rate or blood pressure), and so
on. Figure 1 shows how we represent a domain context as a
combination of six properties: a startTime, endTime, location,
object, and domain where the DomainValue applies. Each
domain value is represented as the combination of a literal
value and a unit of measurement; for example, a flow of gas
to a stove can be described as a numerical value 1.5 with a
unit ‘gallons per minute’. The domain context is considered
to be the value of an attribute of the specified object in the
given location during the reported time period.

Using domain context, developers can access the data in
a smart space by referring to an object and its attributes as
opposed to readings from specific sensors. For example, a
sensor ‘5B00000053C01E26’ monitors gas flow to the stove.
Instead of referring to the output from that specific sensor,
developers can refer to an abstract view of its readings by
querying for the ‘GAS’ domain of the Stove object.

Another advantage of this approach is that rules defined
on domain concepts can be uniformly applied to context
data translated from different data sets. To serve application
developers, we provide this higher-level abstraction by auto-
matically translating sensor data into its corresponding domain
context (see Section V-B).

C. Diary Model
The diary model captures the general structure of diary

entries along with meta-information describing the method



used for diary construction. This includes recordMethod – the
capture process, such as a video recording or self-reporting;
translatedBy – the researcher, third party, or software that
translated the diary to this format; and typeOfActivities – the
categories of activities captured, e.g., ranges of human motion,
domestic activities, or complex interleaved activities involving
multiple tasks or participants.

Each diary entry details the participant involved, a startTime
and endTime describing the period covered, an activityId, and
a note parameter, which is used to capture any additional
information (e.g., interaction between the participant with
another subject; or, during a ‘using computer’ activity, to
indicate whether a laptop or desktop computer is being used).

Each activity is modelled as an id, name – a descriptive
name for the activity, superActivityId – a higher-level activity
category that the current activity belongs to, and description –
an extended description on how the activity is characterised,
for example a description of ‘watching TV’ can be ‘sitting in
the couch and actively watching TV while not participating
any other activities’. The parameter superActivityId is used
when activities are modelled using a structured hierarchy
of symbolic names. For example, the PlaceLab data set [7]
classifies activities into several categories such as ‘meal prepa-
ration’, under which there are more specific activities like ‘re-
trieving ingredients’ or ‘mixing/stirring food’. The hierarchical
approach can support analysis of activity recognition across
multiple levels of granularity. Under this circumstance, the
parameter activityId in a diary reading should be the identity of
the activity that is the finest-grained to characterise the current
scenario.

At the current stage, the diary model supports representing
diary readings and activities, while it has not provided a
generic taxonomy for activities. Activities to be captured and
the way to annotate them can be determined by various factors
including different goals of research (e.g., evaluating particular
sensors or a generic sensor system), different types of environ-
ments where data sets are collected (e.g., home or office), and
sensors to set up an environment (e.g., sophisticated sensors to
detect fine-grained activities, or simple binary-state sensors). It
is challenging to define such a uniform taxonomy that covers
all the interesting activities.

IV. IMPLEMENTATION OF PI
PI is implemented using a combination of Java and JDBC.

This section introduces its main functions and demonstrates
their use: (1) an interpreter that converts data sets to the
uniform model and persists them to a database; (2) a synchro-
nisation component that integrates data from multiple sources;
(3) a domain context converter that translates sensor-specific
data into a domain-specific data; (4) a query component that
support traditional queries by time, sensor types, and sensor
ids, in addition to advanced queries by location, object, and
repeated temporal period; and (5) an output component that
supports the export of data to standard formats such as RDF
(Resource Description Format) and CSV (Comma Separated
Values).

A. Interpreting Data Sets
To date, each data set we have encountered has had a unique

encoding, and, in some cases, multiple formats are used within
a single data set. A common problem is the lack of standard-
isation in selected data formats. Using time as an example, a
portion of an entry from the PlaceLab data set contains ‘Time:
1156370400271 08/23/2006 18:00:0’, while an entry from the
TK26M data set contains ‘25-Feb-2008 00:20:14’. Instead of
writing a translator for each data set or for each sensor, we
provide a generic translator class Interpreter (as shown
in Figure 2) that is used to translate all types of data across
different data sets into our representation format. The read()
method of the Interpreter class accepts the following
parameters: the property file containing information about a
target database in Figure 2(b), the type of the target file to be
interpreted, the target file, a set of properties describing the
structure of the target files in Figure 2(c), and a name, which
is used to set up a new table in the database in Figure 2(d).
We will explain these parameters one by one.
read(databaseProperty, typeOfFile,

fileToInterpret, propertyFile,
newTableName);

A database property file consists of access information (i.e.,
username, password, database url, and driver), and a list of
tables’ names (managed automatically by the software) where
the sensor diary, activity data and metadata are stored. All the
property files mentioned in this paper use JSON2. As we shall
see later, these lists of the tables play a role in querying and
generating domain context.

The target file type indicates whether it stores sensor or
diary data, which determines the interpretation method and
the table schema to be applied.

A sensor or diary property file consists of regex – the
regular expression used to parse a sensor reading into groups,
mapper – the attribute names for each of the parsed groups
in a reading, dateFormatter and timeFormatter – the formats
used to represent date and time information in the readings,
and valueType – the type of values generated. Most sensors
produce numerical values, while some produce a numerical
array (such as acceleration data or coordinate points) and
others produce no value; e.g., once a RFID (Radio-frequency
identification) tag is read by a reader then it means the tag-
attached object has been accessed by the participant wearing
the reader. To keep the representation uniform, we use a single
attribute value to host all the types of values. If a sensor value
is in a numerical array, we represent it as a string (e.g., ‘269,
261, 279’) and use post-processing to analyse the data. For
sensors that do not produce values, we set their value to be 1
at the time point where the sensor id is read from the sensor
data file. The reason that we do not provide more customised
representations for different types of values is to simplify the
interpretation interface.

The file to be interpreted must be readable. If it is a binary
file (.b) or a matlab (.m) file, it needs to be decoded to a

2JSON - JavaScript Object Notation: http://www.json.org/



(a) Method to interpret a sensor data file

(c) Property file for the sensor file

(d) Snapshot of a generated sensor data table in a 

MySQL database
(b) Property file for the Placelab data set

{!
  regex: "Time:\\s+.+\\s([\\d|/]+)\\s+([\!
          \d|:]+).+\\s+.*?Sensor ID:\\s+(.+) !
          Sensor Val:\\s*(.+)", !
  mapper: ["date", "startTime", "sensorId”,   !
           "sensorVal"],!
  dateFormatter: "mm/dd/yyyy",!
  timeFormatter: "hh:mm:ss",!
  valueType: "DOUBLE PRECISION",!
}!

{!

  database:!

  {!

    driver = "com.mysql.jdbc.Driver",!

    url = "jdbc:mysql://localhost/Placelab",!

    username = "root",!

    password = "root",!

  },  !

  sensorTables: ["PlaceLab2006082319OWRAW"],!

  dairyTables:  ["PlaceLab20060823Dairy"],!

  metaTables:   ["PlaceLabSensorMeta", !

  "PlaceLabSensorTypeMeta", "PlaceLabActivity"],!

}!

read(“placelab_database.properties",   

TypeOfFile.SENSORDATA,!

“OWRawBytes.2006-8-23-20-0-0-0.decoded”,!
“placelab_owrawSensors.properties", !

"Placelab2006082320OWRAW");!

Fig. 2. An example of interpreting an OW RAW sensor file in PlaceLab data set

readable file first. We have collected the methods for some
data sets and developers can use them to decode the binary
or matlab files; e.g., the Java file ‘MITesDataAnal.java’ is
provided to interpret the binary files in the PlaceLab data set.

Beyond sensor and diary data, the Interpreter class
also supports interpretation of the metadata file describing sen-
sor types, sensors, and activities. For example, readMeta()
reads the property file that describes the metadata about
individual sensors and generates a table named ‘SensorMeta’.
This property file can be written by developers to describe the
features of a sensor, as shown in Listing 1. Where data sets
have provided this information for a large amount of sensors
using a different format (e.g., the XML encoded files in the
PlaceLab data set), we have provided a method to translate
between the two.

Listing 1 A sample sensor metadata property file
type: sensorMeta,
mapper: ["sensorId","location","object"],
number: 14,
number_0: ["1","kitchen","microwave"],
number_1: ["5","toilet", Hall-Toilet door"],
...

B. Synchronisation
The process of synchronisation allows us to integrate data

from multiple sources according to some criteria. PI supports
synchronisation of sensor data across multiple time intervals
(e.g., to obtain a snapshot of the environment every 10
seconds), and synchronisation with diary data records, which
aids the evaluation of activity recognition algorithms.

The synchronise() method takes as parameters a
database property file, a start and end time to select data, a
temporal gap to slice the data sequences, a list of tables to
synchronise, a function to aggregate sensor values collected
during a given time slice, and a name for a new table to be
created. Currently, we support simple aggregation functions
including AVG, MAX, MIN, and LATEST.

synchronise(databaseProperty,

startTime, endTime, gap,
tablesToSynchronise,
aggregateFunction,
newTableName);

Figure 3 shows part of the synchronisation of the sensor
and diary table in the TK26M data set on 25th February 2008
using a time slice of 60-seconds and a LATEST function that
selects the latest reading for each set of sensor values during
this slice. The ‘activityName’ column represents the activity
occurring in the given period and all the following columns
represent values produced by the sensors that are attached to
the given objects. The synchronised diary and sensor data are
useful in observing the correlation between the sensor data
and the activities. For example in Figure 3, the sensor pattern
for the activity ’go to bed’ (in the blue box) is that there exists
no sensor activities, while the sensor pattern for the activity
’use toilet’ (in the orange box) is that the firings of the sensor
on the toilet flush, the bathroom door, and the toilet door. The
preliminary view presented in an activity-sensor synchronised
table can help developers in observing such simple correlations
and diagnosing sensors.

C. Converting to Domain Context
To hide the details of individual sensors from application

developers, we map all sensor data to its associated domain
context (see Figure 1), by taking a database property file, a
target sensor data table to convert, and a name for a new table
to create.
convertToContext(databaseProperty,

tableToConvert, newTableName);

convertToContext("tk26m_database.properties",
"TK26MSenseData", "TK26MContext");

The above example shows how to convert the sensor data
into the ObjectAccess context, for the sensors in the
TK26M data set are state-change sensors; that is, they are fired
once their attached objects are accessed by the participant.
Given the table ‘TK26MSenseData’, this method reads the
sensor type and sensor metadata tables from the database,
executes the join query on these tables, and stores the result



Fig. 3. A snapshot of a table that synchronises diary and sensor data in the TK26M data set.

in a new table called ‘TK26MContext’. The underlying join
query is generated as follows.
CREATE TABLE TK26MContext AS
SELECT TK26MSenseData.date,

TK26MSenseData.startTime,
TK26MSenseData.endTime,
TK26MSenseMeta.location,
TK26MSenseMeta.object,
TK26MSenseTypeMeta.domain,
TK26MSenseData.value,
TK26MSenseTypeMeta.unitOfMeasurement

FROM TK26MSenseData, TK26MSensorTypeMeta,
TK26mSensorMeta

WHERE TK26MSenseData.sensorId
= TK26mSensorMeta.id
AND TK26MSenseMeta.typeId
= TK26MSensorTypeMeta.id;

D. Querying
The query component supports both basic and semantic

queries. In the basic querying mode, developers can filter
sensor data by specifying the database property file for the
required data set, the corresponding sensor ids or sensor type
ids, an absolute or repeated time period, and a name for a new
table to store the query result if necessary.
querySensorBasic(databaseProperty, typeIds,

sensorIds, startTime, endTime, newTableName);

This type of query is useful for system engineers to observe
the performance of certain sensors and debug sensors. The
following example queries for sensor data, whose sensor id is
either 24 or 10, and whose valid time is between 6 o’clock
and midnight on 25th February 2008.
querySensorBasic("tk26m_database.properties",

"24, 10", "2008-02-25 18:00:00",
"2008-02-25 23:59:59");

For developers who do not have (and do not need) knowl-
edge about the sensors in a data set, we support semantic
queries that allow them to search sensor data within a certain
domain or location, or associated with particular objects.
querySensorSemantic(databaseProperty, locations,

objects, domainTypes, startTime,
endTime, newTableName);

The following example queries for the gas usage in the
kitchen from six to eight o’clock every day. The query result
is materialised in a new table called ‘gasUsage’. Using the
metadata about sensor types and sensors, semantic queries are

Fig. 4. An example using PI to produce a Gnuplot format of the occurrence
ratio of different activities at different times of a day in the PlaceLab dataset.

translated into basic queries by mapping the domain type to
sensor types and locations to particular sensors. The repeated
temporal period allows developers to compare sensor data for
a fixed duration over a number of days.
querySensorSemantic(

"placelab_database.properties","kitchen",
"gas", "18:00:00", "20:00:00","gasUsage");

Each query method compiles the user supplied require-
ments into an SQL statement that is used to examine the
corresponding database. The queries provided by this API do
not support complex logic; for example, a query for sensor
readings whose sensor type id is ‘17’ and whose sensor id
is not ‘1500000022CFF412’. As we have not yet included
primitives for such expressions, we provide a method that
allows developers to write their own custom SQL statements.

E. Output

The output() method supports the export of data from
the database into several standard formats: RDF or XML,
which can facilitate sharing and reuse of sensor data across
data sets and systems as well as abstracting to higher-level
domain context as seen in Section V-B; formats for standard
systems or tools, such as CSV that is supported by spread-
sheets and other database management systems, and WEKA
machine learning software, commonly used for activity recog-
nition [10]; and Gnuplot-format for the Gnuplot statistical tool
to analyse and visualise sensor data (See in Figure 4 (a)).

The method takes as input a database property file, a table to



export, an output format, a property file to configure the output,
and a destination file. A property file to configure an output
vary with its output format, which can the head setup of these
files (as for CSV and WEKA-format), a script configuring a
plot (as for R- or Gnuplot-format), or a mapping between a
schema of the current table to export and a schema of the
target ontology or XML (as for XML or ontology).
output(databaseProperties, tableToExport,

outputFormatType, outputProperty,
destinationFile);

output("tk26m_database.properties",
"TK26MSensorData", OutputFormats.RDF,
"kasterenSensorData.n3");

The above example shows how sensor data from the table
‘TK26MSensorData’ is exported as an RDF file. This method
automatically reads the sensor metadata from the database,
and converts each result to the following format (The file is
represented in Notation 33):
:sensordata1 a pi:SensorData;
pi:startTime

"2008-02-25T00:20:14"ˆˆxsd:dateTime ;
pi:endTime

"2008-02-25T00:22:57"ˆˆxsd:dateTime ;
pi:sensorId "24"ˆˆxsd:String ;
pi:value "1"ˆˆxsd:int .

V. DEMONSTRATION AND EVALUATION

This section presents two case studies that utilise PI and
discusses its strengths and limitations.

A. Activity Recognition Research
Activity recognition researchers need to synchronise sensor

data with diary data to explore the relationship between sensor
values and the occurrence of activities. For example, consider
the process of learning the relationship between the usage of
gas and the cooking activities in the PlaceLab data set, where
we wish to synchronise the relevant data and output it to a
standard format, e.g., CSV. The process is carried out in code
as follows.

Listing 2 Showing how CSV-formatted synchronised sensor
and diary data for activity recognition research is output.
1. querySensorSemantic(
2. "placelab_database.properties","kitchen",
3. "gas", "18:00:00", "20:00:00", "gasUsage");
4. queryDiary("placelab_database.properties",
5. "meal preparation", "cooking");
6. synchronise("placelab_database.properties",
7. "cooking, gasUsage", 60000,
8. Aggregator.AVG,
9. "CookingGasSynchronised");
10. output("placelab_database.properties",
11. "CookingGasSynchronised",
12. OutputFormats.CSV,
13. "CookingGasSynchronised.csv");

Lines 1-3 query the gas readings from the sensor tables,
while lines 4-5 query the meal preparation activities from the

3Notation 3 is a compact RDF syntax: http://www.w3.org/DesignIssues/
Notation3.

diary tables. Lines 6-9 synchronise these two results, where
the aggregated gas reading per minute is the average of the
collected readings in that period; and Lines 10-13 output the
synchronised table in CSV format. In all, this process requires
4 method calls.

B. Working with Higher-level Contexts
Context-aware researchers may need to generate higher-

level context from low-level sensor data. As we model domain
context independently of sensors, high-level context may be
generated by writing rules against domains rather than specific
sensors or data sets. In this section, we demonstrate how
context information from a gas flow sensor is added to an
existing domain ontology – Ontonym [9]. We then show how
an application rule base is used to derive high-level situations
from these readings. The process is similar for other types of
sensors.

The first step is to convert the gas readings into domain
context and then add them to the ontology. In this example,
PI generates the gas usage context from the relevant sensor
data tables, following the target ontology schema.

Listing 3 Generating context to a target ontology
1. convertToContext(placelab_database.properties,
2 "gasUsage", "gasContext");
3. output(placelab_database.properties,
4. "gasContext", OutputFormat.RDF,
5. "ontonymMapping.properties",
6. "gasContext.trig");

Lines 1-2 convert the sensor data from the gas flow sensors
(the result of the example in Listing 2), while lines 3-6
export the converted context using the Ontonym ontology,
where the property file ‘ontonymMapping.properties’ records
the mappings of attributes, their data types and the units of
measurement between the context table and the ontology.

The output of this conversion is an Ontonym ontology
individual as shown in Listing 4.

Listing 4 Context converted from a gas flow sensor reading
#http://example.com/gasEvent121
:gasEvent121 a sensor:Observation ,

sensor:startTime
"2006-09-14T18:48:39"ˆˆxsd:dateTime ;

sensor:value "2.16"ˆˆxsd:double ;
sensor:domain "GAS"ˆˆxsd:string ;
sensor:object :Stove ;
sensor:location "kitchen"ˆˆxsd:string ;
muo:measuredIn ucum:gallons-per-minute .

The majority of sensor readings in existing datasets are
simple numerical values like the gas readings above. The
exception to this is the use of coordinates by positioning
sensors or three-axis accelerometer readings. PI distinguishes
different categories of value according using the property ’sen-
sor:domain’. As seen in Figure 1, the domain value in a context
is determined by its sensor type. When the domain is set as
’acceleration’, a particular method is called to analyse sensor



values for the given type. For example, the PlaceLab dataset
contains acceleration values taken from an accelerometer worn
on the right wrist of the participant; this is converted to the
output in Listing 5.

Listing 5 Context converted from an accelerometer sensor
reading
#http://example.com/accEvent587
:accEvent587 a sensor:Observation ;
sensor:startTime "2006-08-23T23:00:00"ˆˆxsd:dateTime;
sensor:value [ a acceleration:Acceleration;

acceleration:x "97"ˆˆxsd:double;
acceleration:y "99"ˆˆxsd:double;
acceleration:z "101"ˆˆxsd:double ];

sensor:domain "Acceleration"ˆˆxsd:string;
sensor:location "Dominant wrist"ˆˆxsd:string.

After translating sensor data into the context ontology, we
can use a rule base to reason over the ontology. The following
rule in Listing 6 states that if a reading with the ‘GAS’ domain
and the Stove object has a value that exceeds 1 gallon per
minute, then create a ‘stoveOn’ classification.

Listing 6 A rule to abstrac gas sensor data into higher-level
context
[stoveONRule:

(?A sensor:domain "GAS"),(?A sensor:value ?B),
(?A sensor:object ?C),(?C rdf:type :Stove),
ge(?B "1"ˆˆxsd:double),
-> createClassification(?A, "stoveOn")]

This rule is triggered by a gas event described above and as
a result a new classification is generated, as shown in Listing 7.

Listing 7 Higher-level context converted from the gas event
in Listing 4
#http://example.com/gasClassification
:gasClassification a :Classification ;

:classifiedValue "stoveOn" ;
:createdAt "2006-09-14T18:48:39"ˆˆxsd:dateTime ;
provenance:derivedFrom :gasEvent121 .

By following this process, rules can be codified for any
domain, sensor type or specific sensor, and can be as simple
or complex as required. Little effort is required to create a
new classification rule and by providing rules for generating
high level context in a domain, the complexity of applica-
tion code can be greatly reduced. In addition, the property
provenance can help to trace the derived context back
to individual sensors. On the one hand, this property can
indicate the quality (or reliability) of derived context when
context from different sources need to be merged. On the other
hand, this property can also be helpful in locating faulty or
malfunctioning sensors when conflicting or incorrect contexts
are detected. Although this is a simple example, a more
expressive provenance model4 may be applied if desired.

4PML2 provenance ontology: http://iw.stanford.edu/2006/06/
pml-provenance.owl.

C. Discussion
In developing PI, we aim to meet three objectives: to

provide a suite of tools that support analysis of sensor data, to
remove obstacles from the process of working with published
data sets, and to encourage future data set developers to
publish their data in a PI friendly format. We aim for PI
to become a useful tool to researchers working in a wide rage
of areas related to smart homes.

1) Expressiveness of the Model: We believe the data model
that underlies PI to be comprehensive in capturing the core
aspects crucial to sensor data analysis. As well as capturing the
values observed by sensors, we support the modelling of meta-
information about environments, sensors and types of sensors,
diary data, activities, and profile information describing the
methodology used to capture the data. All of these may
play a role in the analysis process. We also provide support
for domain contexts, allowing us to abstract away from the
raw sensor values and capture the semantics of the data
sensed. Mappings to higher-level context allow us to represent
information in both human friendly and application specific
terms rather than using the raw observation values.

Our conceptual model forms a superset of entities and
properties over all published data sets we have studied, and
may be simply extended (e.g., to add new forms of meta-
information about a sensor), without requiring any modifica-
tions to application code.

2) Analysis Support: PI provides powerful support for
analysing sensor data in the form of its synchronisation and
query APIs. The synchronisation API has two core features.
Firstly, it allows data to be segmented into chunks of a
specified duration, making it easy, for example, to sample
the state of an environment every 5 seconds over a time
period. Secondly, it allows data to be synchronised around
the occurrences of activities if diary data is available. Both
these operations make it easy for researchers to filter out or
summarise data as part of their analysis process.

After synchronisation, the API supports querying the resul-
tant data. In addition to low level queries that work with sensor
and sensor type ids, the more advanced features of the query
API allow the user to query data at a higher level of abstraction
(i.e., by filtering on location, entity, or type of domain context).
Beyond this, we allow developers to incorporate SQL into
the querying process (where complex queries are required)
and allow the API to be extended where developers wish to
execute more significant jobs (such as the customised queries
mentioned in Section IV-D).

After the querying process is complete, the results can be
easily exported to a variety of standard data formats, making
it easy to slot PI into a workflow that incorporates other
analysis techniques or visualisations.

3) Developer Effort: Using PI to work with data sets is
a straightforward process. The main functions to load and
analyse data sets are provided in interfaces in each function
package, and as shown in the above examples, few method
calls are required to perform reasonably complex tasks, such
as synchronising data against the occurrence of activities,



and translating the raw values in a data set into higher-level
context, ready for further processing.

A certain amount of engineering effort is required of devel-
opers who wish to introduce new data sets. This includes set-
ting up a database, and configuring property files that instruct
PI how to process the data. With the possible exception of
writing the regular expression to parse the sensor readings, this
process is straightforward (if slightly time consuming). As we
have written property files for most of the data sets currently
available (such as the PlaceLab, TK26M and CASAS [3]),
there are plenty of examples to work from. Developers who
know of the tool and wish to construct new data sets can bear
these issues in mind as they do so.

VI. RELATED WORK

We compare our work with the literature from two perspec-
tives: sensor specifications and middleware. Researchers at the
University of Florida propose a Sensory Data Set Description
Language (SDDL), which is an XML-encoded description
language for sensor data originating from pervasive spaces [6].

The scope of SDDL is to specify information about the
pervasive space, including available sensors/actuators, data set
parameters and sensor events. The profile of a data set in our
conceptual model is built on SDDL, where we have selected
the properties that are significant to characterise data rather
than a comprehensive set of properties. The other difference
between their work and our work is that we not only provide
the specification to describe different parts of a data set, but
we also provide a framework to operate over the data model.

Another sensor specification language is SensorML, the
Sensor Model Language, which is an XML encoding schema
that aims to enable remote discovery, access, and usage of real-
time data directly from web-hosted sensors [2]. The strength
of SensorML is in describing processes, including their inputs,
outputs, parameters, methods, and relevant metadata. In con-
trast, our conceptual model focuses on describing features of
data rather than processes and is more lightweight.

The examples of middleware in pervasive computing litera-
ture are CoBrA [1], SOCAM [5], and Gaia [8]. The common
features of these middleware are acquiring, maintaining, and
reasoning about domain context. CoBrA (a Context Broker
Architecture) aims to share knowledge, detect and resolve
inconsistent knowledge, and protect user privacy by support-
ing common policy language. SOCAM (a Service-Oriented
Context-Aware Middleware) enables the building and rapid
prototyping of context-aware services. It abstracts various
physical spaces from which contexts are acquired into a
semantic space, where contexts can be easily shared and
accessed by applications [11]. Gaia brings the functionality of
an operating system to physical spaces. It employs common
operating system functions (including events, signals, file sys-
tems, security, and processes), and extends them with location
context, mobile computing devices, and actuators. Using this
functionality, Gaia integrates devices and physical spaces, and
allows the physical and virtual entities to seamlessly interact.

As it is not concerned with sensor network and application
design, PI is not a middleware. However, it is a tool to
translate heterogeneous sensor data into a universal repre-
sentation and provide functions (such as query, output, and
synchronisation) to access and analyse sensor data. Therefore
it shares some of its goals with the above projects. In practice,
PI can be employed as a layer between the sensor network
and context-aware middleware; feeding sensor data to the
middleware’s context models.

VII. CONCLUSION AND FUTURE WORK

This paper introduces PI, an API to perceive and interpret
data sets in smart home environments. This work not only
facilitates the sharing and reuse of existing data sets but also
provides standard representations for sensor and diary data for
future data set publishers.

An OWL implementation of the conceptual models is avail-
able from http://ontonym.org. We are currently completing the
documentation and tutorials for PI, before making it publicly
available. To use PI, developers need to download the library
and incorporate API calls in their own code. We try to simplify
the process of adding new datasets, and investigating more
expressive queries that will enhance our API. In the long term,
we seek to pursue the integration of PI with live sensor data,
providing a set of tools that can be used to support real-time
analysis of the characteristics of a smart environment.
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