
Towards a Science of Sensor
Systems Software
Simon Dobson
School of Computer Science, University of St Andrews UK

simon.dobson@st-andrews.ac.uk
http://www.simondobson.org 
@simoninireland

EPSRC S4 Programme Grant (2016—2020)
http://www.dcs.gla.ac.uk/research/S4/ 

mailto:simon.dobson@st-andrews.ac.uk
http://www.simondobson.org/
http://www.dcs.gla.ac.uk/research/S4/


What makes sensing different

● Observing and responding to physical-world
changes
● Wireless sensor networks: temperature, pressure,

humidity, proximity, target-counting, …
● Internet of Things: the same, but with phones!! :-)

● Often building open systems
● No traditional closed-loop control
● Mission creep sprint

● Limited-capability nodes and networks
● Lots of machine learning



The endless stream of hardware malfunctions, programming bugs, software
incompatibilities, and plain misunderstandings, combined with the time pressure of
Mother Nature, has left us one year later with a meager harvest of quantitative results. 

One could declare the project a failure, but on the other hand, we have learned a lot –
the hard way . . . Although experiences about previous pilots have been reported, these
publications in general stress technical issues like low-level network performance
instead of the (basic) software-engineering problems that made running our project so
diffcult. 

Langendoen, Baggio, and Visser. Murphy loves potatoes: Experiences from a
pilot sensor deployment in precision agriculture. IEEE PDPS. 2006.

From the real world



Req and spec

● Almost always phrased in terms of the physical
environment
● Determine temperature cline across an area
● Observe intruders in a space

● Often not specifed well/at all
● May not even be known a priori

● Often encounter “best effort” deployments
● Deploy a load of sensors with a network, see what

we can fnd/hope we fnd the things we want



WSN design on one slide

Making observations
at discrete points

...which are then averaged
or otherwise aggregated

...to form an approximation of the state
of the real world being observed

How well does the
approximation match reality?



...and we often don't know

● No ground truth
● Can't compare the in situ

behaviour
● Inherent noise

● Progressive degradation
● Mechanical wear and tear
● Partial failure
● Malice



Basic questions – 1

See Pianini et alia. Self-stabilising target counting in wireless
sensor networks using Euler integration. Proc SASO 2017.

● Given two sensor layouts, which will allow
more accurate conclusions?
● Noise and overlap make this hard to answer: more

is not always better



Basic questions – 2

● What happens as the network degrades?
● Long lifetimes, partial failure
● How should confdence change?
● How do the detectable features change?



A more engineering approach

● For a given set of interesting phenomena:
● What is the best confguration to sense them?
● How will some specifc confguration sense them?
● How will what we observe change as the network

degrades or is interfered with?
● How will our conclusions change?



Making a start – 1

● Defned a set of abstracted
“challenge” problems
● Realistic enough to be

meaningful to solve
● Abstract enough to be

analysed/simulated

● How do different
arrangements of sensors
work against (known)
ground truth?



Making a start – 2

● A lot of the programming approaches in WSNs
● Extremely stylised approaches, mainly in C
● Very poor software structuring, lots of cross-layer

optimisation

● Pattern-based adaptation
● Change structure, parameters, around the core

functions of sensing and actuation
● Couple this with understanding how the low-level

parameter choices affect high-level conclusions

And this isn't going to change soon

Dearle and Dobson. Mission-oriented middleware for sensor-
driven scientific systems. J. Int.Serv.App. 3(1). 2012



Questions and abuse may now
begin...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

