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ABSTRACT
The increasing prevalence of networked devices brings ever more
opportunities for delivering content and services to users that re-
sult from situated interactions between computational devices in
their surrounding environment. Resource discovery, a vital compo-
nent in this process, becomes challenging in such an open, dynamic
and distributed setting. Building on earlier work that outlined a
novel semantics-based approach to resource discovery in such en-
vironments, this paper provides a general solution to incorporating
application-specific contextual factors into the resource discovery
process, and proposes a mechanism to support the runtime evolu-
tion of resource discovery tasks in a mobile setting.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed Sys-
tems; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Self-organisation, Semantic Matching, Bio-inspired, Resource Dis-
covery, Context-awareness

1. INTRODUCTION
Embedded sensing and computational technologies in everyday

devices, such as smartphones and public information displays, are
becoming ever more advanced. The promise of opportunistically
networking such devices offers as yet untapped potential in sup-
porting the the dynamic provision of services based on ad-hoc,
spontaneous arrangements of devices, services, and content across
an infrastructure with few central points of control.

We have proposed SAPERE [1] as an architecture for orchestrat-
ing interactions across such service ecosystems, with data lifecycle
and communications regulated by bio-inspired mechanisms with
robustness, scalability and adaptability characteristics [2].
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Supporting expressive resource discovery atop this unstructured,
highly-dynamic substrate presents a challenge, with the combina-
tion of semantic reasoning, context-awareness and self-organisation
techniques offering intriguing possibilities: semantic matching pro-
vides a flexible framework for quantitatively assessing the suit-
ability of resources to a given request; context-awareness may ac-
count for application quality of service concerns that are impor-
tant, but orthogonal to the matching process, and self-organisation
techniques provide a means of adapting to changing environmental
conditions—the arrival and removal or resources, the mobility of
interacting agents, and the ever evolving network topology.

To illustrate the utility of this approach, we consider a smart-
phone application for an exhibition centre (for example, Tokyo’s
Makuhari Messe, which contains eleven exhibition halls and has
a footprint of 210, 000m2), which offers routing information and
exhibit suggestions based on a user’s profiled interests. These tech-
niques support the development of exploration strategies to: i) se-
lect the exhibit most suited to the user’s interests, ii) select prefer-
ential exhibits while accounting for factors such as their distance
from the user’s position or crowdedness along the route, iii) route
the user to an exhibition hall containing many exhibits of interest,
but not necessarily the most interesting if it is considered spatially
isolated, iv) use a combination of the above strategies, for example,
to guide the user to a particular exhibition hall and then route them
to the exhibits inside the hall in order of interest or least crowded.

In earlier work [3] we outlined a novel approach to resource dis-
covery using ontological resource descriptions and semantic match-
ing to i) provide distributed semantics-based resource discovery
that selectively routes responses to requests based on their match-
degrees, and ii) design a framework within which match-degrees
may be dynamically influenced contextual factors, such as distance.
Here, we extend this work in three directions:

• An improved algorithm provides a generalised solution to the
problem of application-driven contextualisation of seman-
tic match results. This encompasses not only distance (pre-
viously hardcoded) but other application-specific contextual
factors extrinsic to the resource matching process such as
crowdedness, communication latency, and node stability.

• An bio-inspired pattern additional to those previously iden-
tified, decay, provides a mechanism to support dynamic life-
cycle management. It underpins the self-organisation of re-
source discovery in the ecosystem over time in response to
the addition, removal, and mobility of resources.

• A quantitative evaluation through simulation characterises
the performance of our approach.
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Figure 1: An partial illustration of concepts in the Vehicle Sales
Ontology [7], an equivalence relation from one term to another
concept hierarchy, and a snippet from a fuel type ontology.

In Section 2 we discuss semantic matching and its realisation
within the SAPERE framework. In Section 3 we describe a self-
organising, semantic resource discovery process atop the SAPERE
model. In Section 4 we provide implementation details, followed
by an evaluation of the approach in Section 5. We briefly discuss
related work in Section 6 and present concluding remarks in Sec-
tion 7.

2. SEMANTIC MATCHING IN SAPERE
SAPERE [1] envisions a fully-decentralised pervasive comput-

ing ecosystem, where services are delivered based on opportunistic
interactions between resources spatially distributed in an environ-
ment. This section introduces semantic matching, and describes
how it is employed to aid resource discovery within SAPERE.

2.1 Semantic Matching
A matchmaking process takes a request and a set of resource de-

scriptions as input, and outputs the set of resources that satisfy the
request. Many matchmakers adopt simple syntactic schemes; for
example, named interfaces or predefined categories [5], or sets of
attribute-value pairs to which string and numeric comparisons can
be applied [6]. Such approaches are limited by an inability to com-
pare semantically equivalent but syntactically different concepts or
handle approximation. To illustrate, consider the concept hierar-
chy depicted in Figure 1, based on the Vehicle Sales Ontology [7].
Here, the concepts Automobile and Car may be considered as
equivalent terms, or TwoDoorCar as an approximate match to a
FourDoorCar. Semantic analysis supports the incorporation of
such matches where they would otherwise be discounted.

A semantic matching process has three parts: a model for de-
scribing requests and resources, a scheme for measuring the se-
mantic similarity of concepts, and an algorithm for evaluating the
match.

Modelling Resources and Requests.
A request expresses the intersection of a number of properties,

each named concept or existential restriction belonging to a re-
source. Using Description Logics (DL) notation [8], the follow-
ing describes a request for two door, electric cars manufactured
after 2009, and three advertisements for candidate vehicles to be
matched against this request.

R: TwoDoorCar u 9modelDate � 2009 u 9fuelType = Electric

A1: Automobile u modelDate = 2009 u fuelType = Hybrid

A2: TwoDoorCar u modelDate = 2011 u fuelType = Petrol

A3: V an u modelDate = 2011 u fuelType = Electric

A4: Bicycle u modelDate = 2007

None of the four advertisements fully satisfies the request: there
is insufficient information to determine if A1 is a TwoDoorCar;
A2 differs in the requested fuel type; although electric, A3 is a Van;
and A4 satisfies no request aspects. However, by inspection we
can see that some of the advertisements more closely relate to the
request than the others. We say that an advertisement is compatible
with a request if the intersection of their descriptions is satisfiable.

Quantifying Semantic Similarity.
Paolucci et al. [9] and Li et al. [10] introduce ordered degrees

of matching to categorise the semantic compatibility between a re-
quest (R) and an advertisement (A), of which there are five: ex-
act, plugin, subsume, intersection, and disjoint. Bandara et al. [11]
extend this model with scoring mechanisms to support differentia-
tion of matches falling within the same category. Descriptions of
the match-degrees and formulas for scoring taxonomically related
concepts are shown in Table 1.

Applying this mechanism to the concept hierarchy in Figure 1
allows us to quantify the similarity between terms in our earlier ex-
ample. For example, the degree of similarity between Automobile
and TwoDoorCar is 0.75 (plugin), the degree of similarity be-
tween TwoDoorCar and V an is 0.5 (intersection), and the degree
of similarity between Hybrid and Electric is 1 (subsumption).

Executing the Semantic Match.
A semantic matching algorithm conflates all the terms in a re-

quest and resource description and may be realised in many ways.
The pseudocode for one possible implementation is given below:

function MATCH(R, A)
if A v R then . R subsumes, or equivalent to A

return 1
end if
if R and A are atomic concepts or literals then

return SIMILARITY(R, A)
end if
score 0
for all Ri in R do . Composite concept/requirement

score score + MAX(MATCH(Ri,A1..m))
end for
return score/|R| . Return average score of composite

end function
The MATCH algorithm takes two variables R and A as input,

which correspond to the request and advertisement or some sub-
set of their terms respectively. The function first checks if R sub-
sumes A; if so, the algorithm terminates with a similarity score of
1. If R and A refer to atomic named concepts or literals, the sim-
ilarity score is calculated by a call to the SIMILARITY function,
which resolves the comparison to a score depending on how the
concepts are related. If not, R and A are composites consisting
of named concepts or existential restrictions. This case is handled
by recursively decomposing R into its constituent parts, R1..n, and
averaging the maximum score for each Ri, when compared with
corresponding parts of A, that is, A1..m. Applying this algorithm
to the above example yields the scores: A1=.92, A2=.83, A3=.83,
and A4=.08.

2.2 Realisation in SAPERE
The SAPERE architecture supports pervasive services bound to

the locality and context in which they execute by reifying data and
events in the regions of space where they pertain, and by promot-
ing interactions based on proximity [1]. Agents, acting on behalf of
user applications and available services, express their state as “Live



Match Degree Description DL Notation Similarity Score (R, A)
Exact The request and advertisement are equivalent concepts. R ⌘ A 1

Subsume The request expresses a more general concept than the advertisement. A v R 1
Plugin The request expresses a more specific concept than the advertisement. R v A |S(A)|

|S(R)|

Intersection The intersection of the request and advertisement is satisfiable. ¬(R uA v?) |S(A)uS(R)|
|S(R)|

Disjoint The request cannot be satisfied by the advertisement. R uA v? 0

Table 1: Match-degrees and their semantic scores, defined using the similarity metric proposed by Skoutas et al. [4]. S(X) denotes
the set of super-concepts of concept X in its defining ontology.

Semantic Annotations” (LSA) that continuously reflect the state of
their associated components (live), which is connected to the do-
main in which such information is produced, interpreted and ma-
nipulated (semantic). LSAs are reified in a networked, distributed
space (an “LSA-space”) acting as the fabric of the ecosystem.

LSAs have a unique identifier (ID), and a content that includes
the information the agent wants to manifest. They are realised as
an RDF-like [12] set of triples that consist of a subject (an ID), a
predicate (the property name, a URI) and an object (the assigned
value, a literal, URI, or locally scoped identifier). By adopting a
notation resembling N3 [13], an LSA is represented as “id p v;
id q w1 w2 w3;” where id is the ID, property p is assigned
to value v, and property q is assigned to values w1, w2, and w3.

Aspects of autonomous adaptation are achieved following the
natural inspiration [14] through designing self-organising system
rules called eco-laws that – by executing actions upon a small set
of co-located LSAs – make global properties emerge.

Eco-laws are structured as chemical-resembling rules [15] of the
kind “P+..+P --> Q+..+Q SideConditions”. Elements
P and Q are patterns of LSAs, expressed like N3’s LSAs with the
following changes: (i) values are either strings or URIs; (ii) in
place of each element of a triple one can use a variable ?V (match-
ing any value); (iii) variable constraints are lifted to an unordered
sequence of SPARQL [16] SideConditions, which are either
“FILTER (exp)” or “BIND (exp as ?V)”; (iv) each predicate can
be prepended by symbols +, - and =, the former assumed by default
— respectively meaning that the triples with this object should ex-
ist, should not exist, should be the only that exists for that subject
and predicate. Additionally, we sometimes use an expression of
the kind “?LSA: clones ?LSA2”, meaning that ?LSA should
have the same content as ?LSA2 plus any following constraints.

The semantics of an eco-law reaction is that of consuming reac-
tant LSAs based on left-hand side patterns and producing a set of
product LSAs based on right-hand side patterns. Eco-laws obey a
numeric transformation rate r—a Markovian rate in a continuous-
time Markov chain system. If omitted, the rate is assumed to be
infinite, that is, the eco-law is executed with “as soon as possible”
semantics. Through their agents, applications and services perceive
the world through transformations affecting their LSAs.

The complete framework is realised as a lightweight middleware
that reifies LSAs in the form of semantic tuples, to be dynamically
stored and updated in a system of spatially-situated tuple spaces
spread over the devices of the network. The eco-laws governing
the ecosystem apply locally in all network nodes [17, 18].

3. DISTRIBUTED RESOURCE DISCOVERY
We now clarify how standard self-organisation patterns can be

augmented with semantic reasoning so as to support a decentralised
approach to resource discovery in pervasive computing applica-
tions.

3.1 Self-organisation Patterns
Fernandez-Marquez et al. [2] provide a catalogue of mechanisms

for self-organisation in terms of modular and reusable design pat-
terns. This section briefly reviews those patters that form our inter-
action building blocks.

Spreading.
The Spreading pattern progressively sends information over the

system from one node to its neighbourhood, iteratively, so as to
make it available globally by using only local interactions. In our
framework it is supported by the following eco-law:

?A :val ?V; :diff ?F; :loc ?L
-->
?A + ?B :#clones ?A; :val =?W; :loc ="*"; :prev = ?L
?BIND (:exec2(?F,?V) AS ?W)

Aggregation.
The Aggregation pattern reduces the amount of information in

the system, typically by summarising data disseminated by agents
over time, e.g., by spreading. It is supported by:

?A :src ?S; :aggr ?F; :val ?V + ?B :src ?S; :val ?W
-->
?A :val =?Z :
?BIND (:exec3(?F,?V,?W) AS ?Z)

Decay.
The Decay pattern incrementally ages information in the system.

A monotonically decreasing function is applied to a numeric decay
value over time, with the information removed upon the counter
reaching zero. Decay-based Aggregation supports the overwriting
of old information from a data source with the more recent. Decay
is supported by the following eco-laws:

?A :decay ?D :dfunc ?F;
-->
?A :decay ?N;
?BIND (:exec4(?F,?D) AS ?N)

?A :decay 0;
-->

Gradient.
The Gradient pattern is a composition of the Spreading and Ag-

gregation patterns, where information about the sender distance and
direction is propagated across an extent of the network. An LSA
can become source of a gradient by specifying initial distance 0, a
diffusion function incrementing the distance value, and an aggre-
gation function retaining the less traveled LSA among competing
gradient LSAs from the same source [19]. The Decay pattern sup-
ports dynamic gradients by discarding old information as a gradient
source moves within the network.

Chemotaxis.
The Chemotaxis pattern provides a mechanism to route infor-

mation towards the source of a gradient via the shortest accessible
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Figure 2: Resource discovery interactions: (A) a request gradi-
ent is spread, and (B) replies ascend the gradient and aggregate.

path. In our framework, movement of LSAs towards a gradient
source is achieved by diffusing in the direction indicated by prop-
erty :prev as created by the Spreading eco-law.

3.2 Self-organising, Context- and Semantics-
aware Resource Discovery

Building upon the above concepts, we now introduce the key
steps in our approach to self-organising, context- and semantics-
aware resource discovery, which are illustrated in Figure 2.

Establish the resource request.
An application searching for a resource publishes a request

gradient LSA carrying information about the source R of the re-
quest: spreading and aggregation eco-laws will iteratively fire in
random establishing a gradient data structure, with horizon H (hop
distance counter), and in which each LSA has a pointer to the node
in which it was created, which is also the node indicating direction
to the source following shortest path.

Resolve matches and publish reply.
Where a gradient LSA containing a request is co-located with an

annotation describing a resource (or service) S, we apply semantic
matching, as described in Section 2 to resolve their compatibility to
a match-degree. This is realised by a matching eco-law that creates
a reply LSA pointing towards the request and the service, and
with the value MD representing the match-degree (greater than 0).

Route match information to the requestor.
The reply LSA is created such that it diffuses by copying towards

the request source; namely, the chemotaxis pattern is applied to de-
liver a remote representation of the resource annotation matched
to the request source. This is continually applied to maintain a
live link between the two points in the network: the request site
and service site. This ends after the request gradient expires, for
example, after the request is explicitly removed. This allows the
process to update and self-heal under conditions where (i) an in-
termediate node used for routing fails, (ii) a compatible resource
appears within the gradient, (iii) the requestor or resources are mo-
bile within the network.

Augmenting matches with application context.
As the reply LSA is routed, aggregation may be employed to

modify, either positively or negatively, the reported match-degree,
using information external to the reply. This is achieved by apply-
ing an aggregation function to any LSA directed towards a request
source that accounts for contextual factors (any information that
can be used to characterise the situation of entities that are con-
sidered relevant to the interaction [20]) specified by the applica-
tion; and with such information readily available for consumption
through its expression in an LSA. For example, hS0, 0.9, 0.75i (re-

source, original-match-degree, match-degree) might represent a re-
ply LSA that has been updated to account for the distance an LSA
has travelled, or the presence of physically crowded regions along
the response path.

Aggregate results en route by competition.
Where a request is matched to multiple, distributed resources, the

algorithm returns the most suitable to the requestor. For example, in
the case where there are two co-located response annotations of the
form hS0, 0.9, 0.75i and hS1, 0.8, 0.8i (resource, original-match-
degree, match-degree), the latter will be propagated while the for-
mer will be dropped. Combining this with the previous mechanism
provides a contextual-semantic approach whereby a resource may
be retained that, although it has worse match-degree when consid-
ered in isolation, better accounts for a requestor’s contextual re-
quirements.

Aggregate results en route by collaboration.
An alternative to the above approach is to augment the stan-

dard semantic-matching process by making a resource more, or
less, attractive depending on some contextual relation to similarly
matched resources. For instance, in applications where resources
represent physical points of interest (POIs), we may consider a
small region of the space that includes many POIs more favourable
than another region containing the POI with highest match-degree.
This is achieved by an aggregation function that “joins” two replies
instead of selecting one of them. For example, response annota-
tions of the form hS0, 1, 0.9i and hS1, 2, 0.75i (resource, distance,
match-degree), can be subject to joining as they represent spatially
close services. Hence, they are aggregated into a single annota-
tion hS0+S1, 1.5, 0.85i, in which distance and match-degree sum-
marise the original ones. As before, application specified contex-
tual factors may readily be accounted for.

Receipt of replies.
The requestor will eventually receive aggregated replies, pro-

viding information about (summary) distance, (summary) match-
degree, resource provider (or resources provider), and direction to
reach the service. Such information can then be used, for example,
to steer the requestor agent towards a selected resource or selected
resources, as developed in [19].

Dynamic self-healing.
The evolution of ecosystem states over time is supported by the

Decay pattern, which is employed to periodically remove older in-
formation while newer information is concurrently refreshed. The
periodic update of request gradients and reassertion of responses
accounts for the requestor moving closer to or further away from
resources, for resources disappearing or arriving, and for the corre-
sponding impact these changes have on the aggregation applied to
the match degree results in transit.

4. ECO-LAWS TO SUPPORT MATCHING
In this section we present eco-laws that support the contextual-

semantic management of resource discovery, describing their be-
haviour and the functions they encapsulate. For the sake of space
we will not provide the general-purpose eco-laws supporting the
spreading, aggregation, gradient, and chemotaxis self-organisation
patterns, for they are discussed elsewhere [19]. We instead fo-
cus on the four eco-laws that incorporate the key strategies de-
scribed in previous section, namely, the generation of replies along
with a match-degree, their contextualisation at each node they tran-



Resource discovery with match-degree and spatial information
%[MATCH] When a request and service match, a reply LSA is generated to be diffused towards requestor
?REQ :type :request; :content ?R; :source ?SRC + ?SER :type :service; :content ?S
--?Rate-->
?REQ + ?SER +
?REP :#clones ?REQ; :type = :reply; :service ?SER; :content ?S; :original_match_degree ?MD; :match_degree ?MD;

:ctxed "false"; sos:direction ?SRC; sos:switcher :ctxed; sos:type sos:ascend
BIND(:semanticMatchDegree(?R, ?S) AS ?MD)
FILTER(?MD > 0)
BIND(:replyRate() AS ?Rate)

%[CTX] A reply contextualises, and is accordingly propagated one-step
?REP :type : reply; :ctxed "false"; :ctxprop ?P; :ctxtype ?T; :ctxfun ?F; ?P ?V
?CTX :type ?T; ?P ?V2
--?Rate-->
?REP :ctxed = "true"; ?P = ?W +
?CTX
BIND (:exec(?F,?V,?V2) AS ?W)
BIND(:diffRate() AS ?Rate)

% [AGGREGATE-COOP] Joins information from two replies belonging to the same service cluser
?A1 :type :reply; :ctxed "true"; :request ?R; :service ?S1; :ctxprop ?P; ?P ?V1; :match_degree ?MD1;

:coop_pred ?CP; :coop_md ?CM; coop_ctx ?CC +
?A2 :type :reply; :ctxed "true"; :request ?R; :service ?S2; :ctxprop ?P; ?P ?V2; :match_degree ?MD2 +
--->
?A1 :service ?S; ?P = ?V; :match_degree = ?MD
FILTER(:exec(?CP,?V1,?V2)) . % The two services should "cooperate"
BIND (:exec(?CC,?V1,?V2) AS ?V) . % Let V be the aggregated contextualisation
BIND (:exec(?CM,?MD1,?MD2) AS ?MD) . % Let MD be the aggregated match-degree
BIND (:union(?S1,?S2) AS ?S) . % Let S the aggregated service description

% [AGGREGATE-CHOOSE] Selects between two replies originating within different service clusters
?A1 :type :reply; :ctxed "true"; :request ?R; :service ?S1; :ctxprop ?P; ?P ?V1; :match_degree ?MD1;

:comp_pred ?CP; :coop_sel ?CS +
?A2 :type :reply; :ctxed "true"; :request ?R; :service ?S2; :ctxprop ?P; ?P ?V2; :match_degree ?MD2 +
-->
?A :service ?S1; ?P ?V; :match_degree ?MD1
FILTER(:exec(?CP,?V1,?V2)) . % The two services should "compete"
FILTER(:exec(?CS,?V1,?MD1,?V2,?MD2)) . % Service A1 has a stronger match-context pair

Figure 3: Eco-laws for handling request-reply match, and for distributed aggregation.

sit across, and the competition-/collaboration-based aggregation as
they are routed towards the requestor. They are presented in Fig-
ure 3, and described in turn. These eco-laws make use of a default
(omitted) name-space corresponding to the ontology of resource
discovery, the sos namespace incorporating the concepts relating
to self-organisation patterns, and the sapere namespace incorpo-
rating all the general concepts of pervasive service ecosystems.

Eco-law [MATCH] creates the reply. It takes a request LSA REQ
and a service LSA SER located in the same node, and creates the
reply LSA REP such that: it clones REQ, has type :reply, points
(via so-called bonds) to the service LSAs (?SER) and stores its con-
tent (?S), it is also of type sos:ascend relative to the gradient
generated by SRC, and finally specifies properties :ctxed as flag
to state whether contextualisation already took place. It also de-
scribes the match-degree ?MD, computed by function :semantic
MatchDegree over service content ?S and request content ?R,
implemented by the algorithm shown in Section II—only match
degrees greater than 0 are realised as a reply. Note that this eco-law
is reapplied over time so as to continuously support the chemotaxis
pattern as already mentioned, as such, external function (constant)
:replyRate is used to extract the application rate ?R.

Eco-law [CTX] ensures a reply LSA ?REP is properly contextu-
alised before being diffused one step. It seeks another LSA of type
?T having property ?P assigned to a value ?V2, and accordingly
changes ?REP by switching the value of :ctxed flag and updating
?P to the result of applying function ?F to ?V2 and previous value
?V. Switching such a flag causes the diffusion eco-law to move this
LSA to a neighbour in the direction that ascends the request gradi-
ent, and to switch the flag back to false—so that eco-law [CTX]

can be applied again. Before diffusion takes place, however, aggre-
gations should occur according to the following eco-laws.

Eco-law [AGGREGATE-COOP] joins two reply LSAs perceived
as belonging to a unique cluster of services (e.g., related points
of interest). It takes two reply LSAs for the same requestor ?R,
whose contextualisation values make them be perceived as “near”
by requestor-specified predicate :cooperate, and creates a new
reply LSA (overwriting one of the two originals) in which the ser-
vice indication is obtained by joining ?S1 and ?S2 by external
function :join, contextualisation value ?V is computed by func-
tion ?CC, and match-degree is computed by function ?CM.

The implementation of such functions strictly depends on the
kind of contextualisation an application requires. In our simula-
tions in the next section we shall use an estimated physical dis-
tance as a contextual property, and as such we consider the fol-
lowing function (to be compared with other approaches in the next
activities of this research): :coop_pred simply checking that
“distances” from the two resource are below a given threshold;
:coop_ctx the weighted mean of the two distances based on
match-degree, namely, (?V1 ⇤ ?MD1 + ?V2 ⇤ ?MD2)/(?MD1 +
?MD2); and coop_md implements a t-conorm (a function to per-
form a “fuzzy union” [21]), and in particular the so-called product
logic t-conorm ?MD1 + ?MD2 � ?MD1 ⇤ ?MD2. Finally, :join
simply appends the two arguments yielding the list of all service
identifiers.

Eco-law [AGGREGATE-CHOOSE] selects one from two reply
LSAs whenever they are perceived as belonging to different clus-
ters of services. Similarly to the previous law, it takes two reply
LSAs for the same requestor ?R, whose contextualisation values



are such that they are not perceived as “near” by external function
?CP, and selects the one with the stronger semantic-spatial situ-
ation (discarding the other). This is computed by function ?CS.
In our reference case study: :comp_pred is exactly the opposite
of :coop_pred, while :comp_sel checks whether (?MD1 ⇤
k/(?V1 + k)) � (?MD2 ⇤ k/(?V2 + k)) for some fixed parame-
ter k. This compares the two match-degrees, but penalises the one
having greater distance (e.g., when V = k the actual match-degree
is halved).

5. EVALUATION OF APPROACH
As a proof of concept we use simulation conducted using AL-

CHEMIST [22], a prototype simulator extending the typical engine
of a stochastic simulator for chemical reactions with the ability to
express structured reactions (where chemicals can have a tuple-like
structure and reactions apply by matching) and structure the system
as a network of mobile nodes. Other simulators, such as the multi-
agent based Repast [23], could be used, however, ALCHEMIST has
been chosen due to its goal of bridging the gap between simulation
code and the actual system specification in terms of eco-laws.

The simulated scenario aims to provide early validation of the
model and functions (matching and aggregator operators) proposed
in Section 4 to select the best service among those matching a re-
quest, and investigate the performance gain due to the use of our
distributed aggregation techniques.

As a first step, we measured the overhead advantages due to the
use of a distributed form of aggregation, both in space and in band-
width, which we estimate by considering the number of reply LSAs
that stabilise in the distributed set of node as a request is issued. We
simulated a bi-dimensional environment populated with an infras-
tructural grid of 11x11 nodes in a rectangular structure. A request is
initially injected from a boundary position. In each simulation we
randomly placed N (ranging from 1 to 100) resources in the envi-
ronment, each with a match degree randomly chosen between 0 and
1. The request generates a gradient, and all resources eventually
send a trail of LSAs back towards the requestor. We compared the
case in which no aggregation of such replies is performed, with the
case in which as soon as two reply LSAs are co-located they com-
pete such that only one of them is retained: it can hence be easily
expected that a smaller number of LSAs will ultimately be diffused
around. Note that the results of this simulation are independent of
the aggregation behaviour. Results are reported in Figure 4, each
showing an average value out of 50 runs. They show that while
the overhead in a standard approach clearly grows linearly with the
number of matching resources, distributed aggregation makes the
number of involved LSAs grow much slowly, generally 2/3 less
for the particular case we considered—of course, different topolo-
gies can lead to different levels of improvement.

As a second example we show the advantage of using a coop-
erative approach during aggregation, which makes clusters of re-
sources be preferable with respect to isolated resources. The rea-
son why this is considered useful is that frequently (for example,
think of a general shopping scenario), the first matching resource
reached is not the right one to pick: a new resource might be discov-
ered from there—depending on the application scenario, this may
happen if the resource is no longer available, or the application user
is not satisfied despite the match and wants to quickly find a nearby
alternative. In that case a new request has to be issued: if the user
already reached a cluster of matching resources, then it will more
likely find another match nearby. To simulate the advantages of
this behaviour we define a fault probability p that, as one resource
is selected from the requestor in a node n, another one needs to be
searched because of dissatisfaction. Our reference environment is
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Figure 4: Number of reply LSAs depending on the number of
matching resources.

the same as previous case, but we added 100 resources on one side
of the rectangular area, to simulate a non-homogeneous displace-
ment of resources that can take advantage of our management of
clustering.

Figure 5 reports results, each considering a different value of p:
the former measures average distance travelled (considering that
many resources are generally to be reached), the latter measures
the overall result quality, which is computed by the same formula
k ⇤ M/(D + k) we used to compare competing replies, that is,
promoting resources which both are good matches and are near to
the requestor. Both charts show that, even if the environment has no
specific clusters, there is a significant gain in the quality of replies.

6. RELATED WORK
As described in [24], applications of coordination models and

languages – and especially space-based ones – are inevitably enter-
ing the realm of self-organisation, where complexity of interactions
becomes the key to make desired properties appear by emergence.
Given the intrinsic difficulty of designing emergence, many ap-
proaches mimic nature-inspired techniques to organise and evolve
data annotations spread in the system according to specified rules.
To this end, several natural metaphors can be exploited, borrowing
from physics, chemistry, biology, or social systems [14].

SwarmLinda [25] is a middleware that exploits the idea of the
collective intelligence, displayed by swarms of ants, for guiding
agents in charge of tuple storage and efficient tuple retrieval. Tu-
ples are handled as sort of pheromones or items that ants (agents)
relocate in order to improve overall efficiency. TOTA (Tuples On
The Air) [26] is a tuple-based middleware supporting field-based
coordination for pervasive-computing applications. In TOTA each
tuple, when inserted into a node of the network, is equipped with
a content (the tuple data), a diffusion rule (the policy by which the
tuple has to be cloned and diffused around) and a maintenance rule
(the policy whereby the tuple should evolve due to events or time
elapsing). The evolving tuples model, presented in [27], extends
traditional Linda tuple spaces with the goal of supporting resource
discovery in a pervasive system, relying on ideas inspired to TOTA.
The extension allows tuples to evolve so to be context-aware and
able to adapt to environmental changes. Evolution is embedded
in tuples by adding, to each field of the tuple, a name and a for-
mula that specifies the field behaviour over time. Formulas support
if-then-else constructs and arithmetic and boolean operators. Sec-
ondly a new operation evolve() is introduced in tuple space: it
is responsible for applying formulas to tuples using context infor-
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Figure 5: (top) Average distance travelled over fault probabil-
ity, and (bottom) Average match-distance value over fault prob-
ability.

mation.
Although several approaches study semantic technique for tuple

spaces [28, 29, 30, 31], the key idea of the work we present here
is its ability to properly combining the openness supported by the
use of semantic technologies with the emergence and adaptivity
provided by the use of self-organisation.

In pervasive environments the diversity of service offerings gives
rise to the need to balance the flexible expressivity of resource de-
scriptions with an ability to compensate for the consequential dif-
ficulty in correctly constructing requests beyond the syntactic con-
fines of approaches such as Jini [5] and SLP [6] that rely on inter-
faces and keyword matching.

Semantic Web technologies, founded on the use of shared, for-
mal, and extensible vocabularies, provide useful constructs and rea-
soning frameworks that can support the expression of requests and
resources involving syntactically different representations of se-
mantically equivalent concepts. Chakraborty et al. [32] propose
a peer-to-peer resource discovery protocol that employs the con-
cept and property hierarchies of OWL [33] descriptions. Paolucci
et al. [9] and Li et al. [10] introduce ordered degrees of match-
ing, while in addition to the scoring mechanism described above,
Bandara et al. [11] provide an OWL based matching algorithm
that extends the basic scheme we present with support for property
weights and required and optional features.

Beyond the semantic distance measurement we use here [4], ap-
proaches to quantifying the similarity between two concepts in-
clude: calculating the path length from their closest shared ancestor
to to the root node [34] and counting the number of links between
two concepts in a hierarchy [35]. For non ontologically related con-
cepts, scoring based on the similarity of textual descriptions [36]

and exploiting the frequency of concept occurrences in a given text
corpus [37] has been employed.

To the best of our knowledge our approach is the first to use
the semantic match-degree as a means of shaping the communica-
tions between network nodes, and to incorporate extrinsic contex-
tual features into the discovery process in such a way that resource
selection emerges as an active property of the bio-inspired commu-
nication process, as contrasted to post hoc analysis and filtering.

7. CONCLUSION
This paper presents extensions to a semantic-aware resource dis-

covery mechanism, built on top of an ecosystem of opportunisti-
cally networked devices, in which the match-degree between re-
quests and resources directly affects how the biologically inspired
patterns that control interactions between devices are applied. The
proposed extensions account for network evolution over time and
provide a general approach for incorporating application-specific
contextual factors that are extrinsic to the core matching problem.
The result is a context- and semantics-aware algorithm for resource
selection that self-organises in response to mobility and the arrival
and departure of resources. A proof-of-concept evaluation validates
our approach, and demonstrates the performance gain due to the use
of distributed aggregation techniques in our approach.

Future works will be devoted to a more systematic evaluation,
with more statistically significant results, along many different di-
mensions concerning also self-healing to topological changes, dy-
namism of the set of available resources, and focussing on real-life
scenarios.
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