
Sapphire: Generating Java Runtime Artefacts from

OWL Ontologies

Graeme Stevenson and Simon Dobson

School of Computer Science,
University of St Andrews, UK
gs@cs.st-andrews.ac.uk

Abstract. The OWL ontology language is proving increasingly popular as a
means of crafting formal, semantically-rich, models of information systems. One
application of such models is the direct translation of a conceptual model to a
set of executable artefacts. Current tool support for such translations lacks matu-
rity and exhibits several limitations including a lack of support for reification, the
open-world assumption, and dynamic classification of individuals as supported
by OWL semantics. Building upon the state-of-the-art we present a mapping from
OWL to Java that addresses these limitations, and its realisation in the form of a
tool, Sapphire. We describe Sapphire’s design and present a preliminary evalua-
tion that illustrates how Sapphire supports the developer in writing concise, type
safe code compared to standard approaches while maintaining competitive run-
time performance with standard APIs.

Key words: Information systems, OWL, Java, Ontology, Bytecode generation,
Data binding

1 Introduction

A goal of ontology-driven information systems engineering is the construction of real-
world domain models with sufficient formality, expressiveness, and semantic-richness
to allow information system software components to be automatically generated from
the underlying ontological description [1].

Several commentators advocate mapping from ontologies to strongly-typed pro-
gramming languages in order to eliminate a large class of typographic errors at compile
time that might only be discovered at runtime or go undetected if a dynamic approach
were taken [2, 3]. Taking OWL as a specific example of an ontology language, tools
that provide a mapping to strongly-typed languages exist [4, 5], but exhibit limitations
such as a lack of support for reification, the open-world assumption, and the dynamic
classification of individuals as supported by OWL semantics. In this paper we address
these limitations:

– We propose a novel mapping from OWL to Java that accounts for fundamental dif-
ferences between ontological and object-oriented modelling. The mapping is realised
by part of the Sapphire tool, which generates bytecode for a set of Java interfaces cor-
responding to a set of OWL ontologies (Section 2).



2 Graeme Stevenson and Simon Dobson

– We describe the design of runtime artefacts called Sapphires that conform to an OWL
individual’s type set and map method invocations to an underlying quad store. Type
manipulation operations approximate the dynamic classification of OWL individuals
within the statically-typed Java environment (Section 3).

– We present an initial evaluation that shows how Sapphire helps developers to write
concise, type safe code while maintaining runtime performance competitive with
standard APIs. We also show that our mapping approach improves upon state-of-
the-art tool support for OWL’s feature set (Section 4).

We conclude with an overview of related work (Section 5) and planned future work
(Section 6).

2 OWL to Java: A Mapping Approach

Although ontological and object oriented models exhibit similarities that lend them-
selves to a mapping, the fit is not exact [2]. Here we explore some of the fundamental
challenges that a mapping between OWL and Java presents before discussing our solu-
tion.

– Mapping OWL Classes to Java interfaces is an established technique for approxi-
mating OWL’s multiple inheritance [4, 5]. However, in generating implementation
classes, schemes described in the literature provide no support for dynamic classifi-
cation of OWL individuals.

– OWL properties are first class objects with rich descriptions. This includes domain
restrictions identifying which classes may legally use them, range restrictions on the
data types and data ranges they may take (e.g., the set of integers between 1 and
31), and relations with other properties (e.g., sub property, transitive, inverse). Java
models do not capture such semantics naturally.

– OWL models make the open-world assumption, which states that the truth-value of
a statement is independent of whether or not it is known by any single observer to be
true. This is at odds with Java’s boolean logic.

– In addition to direct naming, OWL classes may be defined as the union (member
of any), intersection (member of all), or complement (not member) of other classes.
They may also be defined as equivalent to (shared members) or disjoint with (no
shared members) other classes, or as an enumerated set of individuals.

2.1 Realising the Mapping

To begin the mapping process we use the OWL API [6] to load a set of ontologies and
create a representation of a Java package for each ontology namespace. Within each
package we follow the established strategy of mapping OWL classes to Java interfaces.
However, we take a novel approach of providing implementation logic via dynamic
proxies that conform to an individual’s class membership. This allows us to approxi-
mate the dynamic classification of objects (see Section 3.1). The root interface of the
hierarchy, Thing, is constructed and added to the package corresponding to the OWL



Sapphire: Generating Java Runtime Artefacts from OWL Ontologies 3

namespace, org.w3.www._2002._07.owl. Thereafter, each class in the ontology
is mapped into the hierarchy according to its sub- and super-class relations.

The final manipulation of the interface hierarchy accommodates OWL union and
intersection constructs, which map cleanly to Java subclass semantics [4]. The repre-
sentations for equivalent, complement, and enumerated OWL classes do not affect the
structure of the class hierarchy but are handled at runtime as we will later discuss.

In the next step, a representation for each property defined in the ontology set is
constructed and mapped to the interface that corresponds to its domain, or Thing if its
domain is undefined. Cardinality and range value restrictions are extracted from the on-
tology model. Object property ranges are mapped to the corresponding interface repre-
sentation in the constructed hierarchy, while for datatype properties a registry provides
mappings to Java classes for the range of OWL supported literal datatypes (Literal,
XMLLiteral, XML Schema etc.).

Each datatype has a corresponding DatatypeMapper that marshals data between
its OWL and Java forms, and by implementing and registering a DatatypeMapper,
the datatype registry is straightforwardly extended. Additionally, developers may also
define mappings between OWL classes (i.e., non-literals) and Java objects. This feature
is useful in cases where complex ontological descriptions (perhaps spanning multiple
individuals) are logically encapsulated by a single Java object. For example, a mapping
between concepts in the OWL-Time ontology [7] and the Java Date and Time API.
Where such a mapping is defined, the OWL class is omitted from the generated interface
hierarchy.

Sapphire adopts closed-world logic by default, but provides an option whereby
boolean return values are replaced by a three valued enumerated type to support
open-world logic (LogicValue {TRUE, FALSE, UNKNOWN}). An openEquals()
method that forms part of the Thing interface allows for the correct interpretation of
owl:sameAs, owl:differentFrom, and owl:AllDifferent statements.

Once complete, the internal representation of the annotated Java interface hierarchy
is realised using the ASM bytecode manipulation library [8]. Within each generated
interface, the parameters and return values of generated getter and setter methods are
typed according to property range and cardinality restrictions. Where appropriate, add,
remove, removeAll, contains, has, count, and reify methods provide convenient data ac-
cess. Generated interfaces are annotated with descriptions of their corresponding OWL
class; this includes their URI, type, equivalent-, disjoint- and complement-classes, and
instance URIs for enumerated types. Methods are similarly annotated with descriptions
of their corresponding OWL property; this includes their URI, type, and cardinality and
data rage information, which is used for runtime validation.

3 The Sapphire Runtime Library

Dynamically generated software artefacts called Sapphires provide the implementa-
tion logic for the generated interfaces. Factory methods: get(), create(), and
getMembers(), illustrated in Listing 1, provide access individuals in the model. On
creation, the Java Dynamic Proxy API is used to construct a Sapphire whose interfaces



4 Graeme Stevenson and Simon Dobson

Listing 1: Sapphire creation and access via factory methods.

// Fetching and Creating individuals
Person bob = Factory.get("urn:bob", Person.class);
Course course = Factory.create("urn:ont101", Course.class);
// To fetch all members of a class.
Collection<Book> books = Factory.getMembers(Book.class);

conform to the set of OWL classes to which an individual belongs. A cache maintains
a list of those recently accessed.

Figure 1 depicts the internal structure of a Sapphire, with the interfaces it exposes
shown on the left hand side of the diagram. Listing 2 illustrates Sapphire’s JavaBean
style interaction model. When a method is invoked, the SapphireProxy dispatches
the call to the appropriate handling method, such as those in the SapphireHandler
and TypeMechanics classes shown.

getProperty()
setProperty()
getMetaProperty()
hasMetaProperty()
openEquals()
...

SapphireImpl getQuad()
setQuad()
hasQuad()

SapphireProxy

METHOD
DISPATCH

addType()
removeType()

TypeMechanics

invokeGetter()
invokeSetter()
invokeCounter()
invokeHaser()
invokeRemover()
...

SapphireHandler

EXPO
SES INTERFACES

Q
UAD STO

RE

getCourse()
Undergraduate

getWorks()
Poet

getName()
Person

getUniversity()
Student

Thing

addType()
removeType()

TypedObject

Fig. 1: An illustration of the internal structure of a Sapphire.

The SapphireHandler class inspects interface annotations to check for poten-
tial cardinality or data range violations that operations may cause. If these checks pass,
corresponding calls to the SapphireImpl class are made, which in turn map calls
to primitive operations on the quad store1. As described in Section 2, data access and
modification operations use a DatatypeMapper to marshall data between its OWL
and Java forms.

Rather than translate OWL entailment rules to production code, we apply a reasoner
to the underlying quad store. While this impacts performance, a hybrid approach yields
several benefits: classifications that do not cleanly map to Java are handled by the rea-
soner, applications can be integrated seamlessly with legacy code operating over the

1 A standard triple store could be used in place of the quad store.



Sapphire: Generating Java Runtime Artefacts from OWL Ontologies 5

Listing 2: Sapphires support JavaBean style method invocation.

// Set Bob’s name.
bob.setName("Bob Jones");
// Get Bob’s date of birth
DateTime age = bob.getDateOfBirth();
// Get Bob’s publications.
Collection<Publication> publications = bob.getPublications();
// Use reification to mark assertion time.
bob.reifyTeachingAssistantOf(course, Temporal.class).

setAssertedAt(new DateTime());
// Clear Bob’s teaching responsibilities.
bob.removeAllTeachingAssistantOf();

same data, and certain types of schema evolution are supported without requiring that
interfaces be regenerated.

3.1 Type Mechanics

We approximate the OWL type system, supporting the addition and removal of types
to and from an object, through the addType() and removeType() methods of the
TypedObject interface, which map to the TypeManipulator component of the
SapphireProxy.

When adding a type, the new type set supported by the object is calculated and used
to generate a new proxy object that rewraps the internal components of the old proxy,
updating the quad store in the background. The type removal process does likewise.

Casting of an object to its equivalent classes is supported by inspecting annotations
describing class equivalence during the proxy construction process2. Similarly, the an-
notations describing disjoint classes are used to prevent violations in the type addition
and removal processes.

The processes of adding and removing types may result in the implicit addition or
removal of union, intersection, or complement class to an object’s type set. This is han-
dled automatically when the object’s updated type set is calculated. Listing 3 illustrates
this using an instance of the Cat class as defined by the Mindswap Pet Ontology [9]. To
this instance, the Pet type is added, after which the object may be cast to the PetCat
class — the intersection of the two. Removing the Pet type from the instance removes
the intersection class from its type set.

There are several advantages of our approach to approximating OWL type seman-
tics. In particular, we need not generate intersection classes to accommodate possible
class combinations (which in the worst case would require the powerset �(n) generated
classes for n classes in an ontology); Sapphires may assume multiple, unrelated types;
and we preserve the semantics of the Java equals, instanceof, and casting operators.

2 This results in a cleaner API than those produced by tools that create a composite interface for
all equivalent classes.



6 Graeme Stevenson and Simon Dobson

Listing 3: Adding types to and removing types from a Sapphire

// Create a Cat and make it a Pet.
Cat tom = Factory.create("urn:ex:tom", Cat.class);
Pet tomAsPet = tom.addType(Pet.class);
// We may now cast between Cat, Pet, and PetCat classes.
PetCat tomAsPetCat = (PetCat) tomAsPet;
// Remove the Pet type from Tom (identifying return type).
tom = tomAsPetCat.removeType(Pet.class, Cat.class)
// New proxy interface prohibits access to old types, e.g.,
tomAsPetCat = (PetCat) tom; // ClassCastException thrown.

One disadvantage of this approach is that old references to modified objects become
out of date. As a result, problems might arise if a method is invoked on a type that an
object no longer carries. To mitigate this, method calls are checked against a Sapphire’s
graveyard type set, to prevent such modifications.

4 Evaluation

We have undertaken a preliminary qualitative and quantitative evaluation of Sapphire.
First, we illustrate the core benefits of Sapphire — brevity and safety — through a
typical query example. We then compare Sapphire’s capabilities to similar tools, and
examine its impact on performance by comparing Sapphire with standard Java-based
querying mechanisms.

This evaluation uses the Leigh University Benchmark (LUBM) [10], an ontology
and data generator based on a university domain ontology.

4.1 Code Size and Error Prevention

Based on the example presented by Goldman [2], we construct a query using the LUBM
ontology to find and print the name of the person whose email address is FullProfes-
sor7@Department0.University0.edu. Listing 4 shows how this query is expressed using
Sapphire, while Listing 5 expresses the same query using the Jena ontology API [11].

Listing 4: Sapphire query for a person with a given email address’s name.

Collection<Person> people = a_factory.getMembers(Person.class
);

for (Person person : people) {
for (String emailAddress : person.getEmailAddress()) {

if ("FullProfessor7@Department0.University0.edu".equals
(emailAddress)) {
System.out.printf("Name: %s", person.getName());

} } }



Sapphire: Generating Java Runtime Artefacts from OWL Ontologies 7

Listing 5: Jena query for a person with a given email address’s name.

static final String U_URI = "http://www.lehigh.edu/˜zhp2
/2004/0401/univ-bench.owl#";

Literal emailAddress = ResourceFactory.createPlainLiteral("
FullProfessor7@Department0.University0.edu");

OntClass personClass = model.getOntClass(U_URI + "Person");
OntProperty nameProperty = model.getOntProperty(U_URI + "name

");
OntProperty emailProperty = model.getOntProperty(U_URI + "

emailAddress");
ExtendedIterator<Individual> instances = model.

listIndividuals(personClass);
while (instances.hasNext()) {

Individual resource = instances.next();
if (resource.hasProperty(emailProperty, emailAddress)) {

RDFNode nameValue = resource.getPropertyValue(
nameProperty);

Literal nameLiteral = (Literal) nameValue.as(Literal.
class);

String name = nameLiteral.getLexicalForm();
System.out.printf("Name: %s", name);

} }

It can be seen that the Sapphire representation of the query is as least half the size
of the Jena representation. Representations of the same query using NG4J [12] and the
Jena SPARQL API are similarly verbose. While the primary contributor to this brevity
is the use of domain-typed objects and properties, this example illustrates how Sapphire
prevents typographical errors affecting class and property names and does not require
developers to cast values obtained from the model to an appropriate Java type.

4.2 Feature Comparison Matrix

Figure 2 provides a feature by feature comparison of Sapphire against four similar tools:
RDFReactor [13], OntoJava [14], the work of Kalayanpur et al. [4], and Owl2Java [5],
against the core features of the OWL specification. Two of these tools target RDF
Schema and comparisons have therefore been drawn where appropriate.

Of the projects surveyed, Sapphire is the most feature complete. In particular, Sap-
phire is the only tool to support reification, open-world modelling, extension of OWL’s
supported datatypes, and dynamic re-classification of individuals. The hybrid schemes
employed by both Owl2Java and Sapphire take advantage of reasoners to handle tasks
that would otherwise be less straightforward for a complete Java conversion (e.g., com-
puting the membership of complement classes). OWL versioning properties have no
equivalent Java feature.



8 Graeme Stevenson and Simon Dobson

(Annotation) Deprecated 
Properties and Classes N/A NoN/AYes No

No No(Annotation) Versioning/
Compatibility N/A N/ANo

N/AYes N/A YesYes(Annotation) Imports
NoRDF Container/Collections Yes NoList only No

Yes NoEnumerated Data Ranges N/A YesN/A
NoNoYes NoNoExtensible Datatype Support

YesFull Datatype Support YesNoNoNo
No NoDynamic Individual Classification Yes NoNo

NoYes NoN/AN/AIndividual Identity Relationships
YesN/AYes N/AProperty Logic Characteristics

(functional, transitive, etc.) Yes

YesYesYes Yes YesIntra-Property Relations
(sub, super, inverse, equiv.)

Yes YesProperty Cardinality Yes (OWL) N/AYes
N/AYesDisjoint Classes Yes YesN/A

YesYes YesNoPreserves class hierarchy Yes

N/A YesYesYesEquivalent Classes N/A
N/A NoYesComplement Classes N/A Yes

YesUnion Classes N/AN/AYes Yes
Yes YesN/AIntersection Classes YesN/A

Property Restriction Classes Yes YesN/A N/A No
Enumerated Classes Yes Yes NoN/AN/A

Yes YesYesYesNamed Classes Yes
NoNoReification Yes NoNo

NoOpen-world assumption NoNoYes No

Interfaces + 
Implementation 

Classes

Interfaces + 
Implementation 

Classes

Interfaces + 
Implementation 

Classes
Interfaces + 

DynamicProxy
Implementation 

ClassesMapping Technique

Sapphire

Standalone

OntoJava
OWL

Standalone Hybrid
RDFOWL

OWL2Java
RDF/OWL

Hybrid

RDFReactor Kalyanpur et al.

Approach Hybrid
RDF OWL

Fig. 2: A comparison of support for features of the OWL specification within Sapphire and similar
tools.

4.3 Initial Performance Analysis

To evaluate Sapphire’s overhead, we compare its performance with three alternative
Java-based query models: the NG4J API, the Jena ontology model API, and the Jena
SPARQL API.

We generated two data sets using LUMB: a small data set consisting of 8832
statements, and a larger data set consisting of 103,048 statements. Next we for-
mulated queries to return the name of the professor identified by a specific URI
(Q1), and to search for the name of the professor with the email address FullProfes-
sor7@Department0.University0.edu (Q2) and ran them on each data set. The tests ran
on an Intel Core i7 (2.66GHz) Macbook Pro with 4GB RAM. Each query was repeated
200,000 times and the mean duration taken to reduce the effect of external factors on
the performance measurement. Figure 3 shows the results of this comparison. Note that
execution times are shown on a logarithmic scale.

Evaluation of Sapphire’s performance is best done in comparison to NG4J, upon
which it is built. The data show that Sapphire introduces a small overhead to the baseline
NG4J performance. For example, for Q2 on the large data set, we see that the primary
cost comes from operations delegated to the NG4J library, while the remaining cost is



Sapphire: Generating Java Runtime Artefacts from OWL Ontologies 9

Small / Q1 Small / Q2 Large / Q1 Large / Q2

Queries over LUMB Generated Data Sets

DataSet / Query

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

0.
00

2
0.

00
5

0.
01

0
0.

02
0

0.
05

0
0.

10
0

0.
20

0
0.

50
0 Sapphire

NG4J Graph Interface
Jena Ontology Interface
Jena SAPRQL Interface

Fig. 3: Initial performance evaluation of Sapphire against traditional methods of querying OWL
data using two queries over two data sets generated by LUMB.

due to the invocation of the getName() method on each FullProfessor instance
in the data set. Examining the relative performance for both queries on each data set, we
see that compared with NG4J, the Jena ontology API exhibits a superior performance
ratio between queries that select single and multiple values from the model.

While further optimisations may reduce the overhead of the Sapphire library, we
note that the execution time for Q2 on the larger data set remains under 1ms. This,
we posit, is an acceptable overhead for the code brevity and type safety Sapphire pro-
vides. A more detailed evaluation of all of Sapphire’s capabilities against data sets with
different characteristics is planned for the future.

5 Related Work

Several approaches for working with RDF-based data models, that sit in a spectrum
ranging from the ontology agnostic to the domain-specific, have been proposed. The



10 Graeme Stevenson and Simon Dobson

most generic APIs (e.g., the model APIs of Jena [11] and NG4J [12]), provide oper-
ations that support manipulation of the data-graph (e.g., the addition and removal of
triples or quads). Tramp [15] binds RDF nodes to Python dictionary structures, allow-
ing indexing by property names, while SETH [16], supports dynamic schema extension
through the writing of inline RDF/OWL snippets in Python code. Increasing the level of
abstraction, The OWL API [6], and O3L [17] are libraries based on OWL concepts and
semantics that provide reflection-like capabilities for indexing into a data model using
classes such as OWLClass and OWLProperty and OWLRestriction.

Towards the domain-specific end of the spectrum sit tools that map from object-
oriented representation to ontology-oriented representation and vice versa. The former
category of tools, to which Jenabean [18], Sommer [19], Spira [20], and Empire [21]
belong, operate through manual annotation of the fields of Java Bean style objects, from
which ontological descriptions are then extracted or persisted to a back-end. While this
approach removes the need for developers to construct ontologies natively, these tools
realise only a small subset of the RDFS and OWL specifications. Of the latter cate-
gory, Sparta [22] binds RDF nodes to domain-typed Python objects and RDF arcs to
attributes of those objects, while ActiveRDF [23] provides RDF data inspection capa-
bilities via a Ruby-based virtual API that intercepts method calls and dynamically maps
them onto SPARQL queries against a data model. ActiveRDF does not use schema in-
formation as part of its mapping process, and while this allows for great flexibility in
terms of the ability to easily manipulate schema and structure of individuals at runtime),
this comes as a necessary trade off against the ability to verify application code both in
terms of type correctness and typographical errors against an ontology.

The tools closest in spirit to Sapphire generate domain-specific APIs for strongly-
typed programming languages directly from an ontology. RDFReactor [13] generates
Java libraries for RDFS models that act as a proxy to a triple store back-end at runtime,
while Owl2Java [5] gives OWL ontologies a similar treatment. OntoJava [14] and the
work of Kalyanpur et al. [4] (on which Jastor [24] is based), perform the conversion of
both ontology axioms and rules into executable code. As we presented in Section 4.2,
Sapphire builds upon the strong foundational work of these tools to provide improved
support for OWL’s feature set. Sapphire also offers novel features in the form of an
extensible type mapping system, support for reification, support for the open-world
assumption, and support for the dynamics of multiply-classified individuals.

Puleston et al. [25] present a case study supporting an approach that conflates both
domain-specific and ontology-agnostic aspects within a single API. Applications con-
structed using this technique are assumed to be structured around a static core that is
accessed in a domain-specific manner, with highly dynamic concepts at its edges that
are accessed via a generic API. The authors advocate this approach for application do-
mains where parts of an ontology are frequently evolved, or a high number of concepts
(e.g., tens of thousands) makes code generation impractical. We note that one limitation
the authors found with existing domain-specific APIs was the inability to evolve the
type of existing instances, an issue that Sapphire addresses.

Finally, Parreiras et al. [26] introduce a Domain Specific Language, agogo, that al-
lows developers to describe a mapping between OWL and a conceptual API. Indepen-
dently specified transformations between the DSL and programming languages allow



Sapphire: Generating Java Runtime Artefacts from OWL Ontologies 11

the API to be realised in the developer’s programming language of choice. The core
novelty of this approach is support for patterns as first class objects in the DSL. This
feature allows single calls in the generated API to be mapped to multiple operations on
the underlying data store. Although Sapphire’s extensible type registry can be thought
of as providing similar functionality, the approach of Parreiras et al. lends itself to the
generation of highly-customised APIs, something that we seek to investigate further.

6 Conclusion and Future Work

One goal of ontology-driven information systems engineering is to automatically gen-
erate software components from ontological descriptions. To this end, we presented a
mapping from OWL to Java, and its realisation in the form of a tool, Sapphire. Building
upon the state-of-the-art, our approach overcomes several limitations of existing tools
by providing an extensible type mapping registry, supporting reification, accounting for
the open-world assumption, and supporting the dynamic classification of OWL indi-
viduals in the Java model through a novel, dynamic-proxy-based solution. We demon-
strated the primary benefits of Sapphire’s API — code brevity and type safety — and
quantified improvements to the state-of-the-art in the set of OWL’s features supported.
Through an initial performance evaluation, we showed that although Sapphire intro-
duces an overhead compared with standard APIs, its performance remains competitive.

By profiling the codebase, we have observed that the main performance bottleneck
comes from searches performed on the quad store. To mitigate this, we will devise
data caching strategies to reduce such calls. Additionally, we are working towards fully
supporting the feature set of OWL 2, and will investigate approaches to more closely
integrate application logic with the generated artefacts.

Acknowledgements

This work has been supported by the EU-FP7-FET Proactive project SAPERE – Self-
aware Pervasive Service Ecosystems, under contract no. 256873.

References

1. M. Uschold. Ontology-driven information systems: Past, present and future. In Proceed-
ings of Formal Ontology in Information Systems, pages 3–18, Amsterdam, The Netherlands,
2008. IOS Press.

2. N. M. Goldman. Ontology-oriented programming: Static typing for the inconsistent pro-
grammer. In Proceedings of the 2nd International Semantic Web Conference, Sanibel Island,
FL, USA, 2003.

3. M. Vanden Bossche, P. Ross, I. MacLarty, B. Van Nuffelen, and N. Pelov. Ontology driven
software engineering for real life applications. In Proceedings of the 3rd International Work-
shop on Semantic Web Enabled Software Engineering, 2007.

4. A. Kalyanpur and D. Jimenez. Automatic mapping of OWL ontologies into Java. In Pro-
ceedings of Software Engineering and Knowledge Engineering, 2004.



12 Graeme Stevenson and Simon Dobson

5. OWL2Java: A Java code generator for OWL. Website, 2011. http://www.
incunabulum.de/projects/it/owl2java.

6. The OWL API. Website, 2011. http://owlapi.sourceforge.net/.
7. J. R. Hobbs and F. Pan. An ontology of time for the semantic web. 3:66–85, March 2004.
8. E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to implement

adaptable systems. In Proceedings of Adaptable and Extensible Component Systems, 2002.
9. The Mindswap Pet Ontology. Website, 2011. http://www.mindswap.org/2003/

owl/pet.
10. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems.

Journal of Web Semantics, 3:158–182, October 2005.
11. Website of the Jena Semantic Web Framework. Website, 2011. http://jena.

sourceforge.net/.
12. C. Bizer, R. Cyganiak, and E. R. Watkins. NG4J Named Graphs API for Jena. In Proceed-

ings of the 2nd European Semantic Web Conference, Heraklion, Greece, 2005.
13. M. Vökel. RDFReactor – from ontologies to programmatic data access. In The Jena Devel-

oper Conference, Bristol, UK, 2006.
14. A. Eberhart. Automatic generation of Java/SQL based inference engines from RDF Schema

and RuleML. In Proceedings of the First International Semantic Web Conference, Chia,
Sardinia, Italy, pages 102–116. Springer, 2002.

15. TRAMP: Makes RDF look like Python data structures. Website, 2011. http://www.
aaronsw.com/2002/tramp/.

16. M. Babik and L. Hluchy. Deep integration of Python with web ontology language. In
Proceedings of the 2nd Workshop on Scripting for the Semantic Web, Budva, Montenegro,
2006.

17. A. Poggi. Developing ontology based applications with O3L. WSEAS Transactions on
Computers, 8:1286–1295, August 2009.

18. Jenabean: A library for persisting Java Beans to RDF. Website, 2011. http://code.
google.com/p/jenabean/.

19. Sommer: Semantic object (medata) mapper. Website, 2011. http://sommer.dev.
java.net/.

20. Spira: A linked data ORM for Ruby. Website, 2011. https://github.com/
datagraph/spira.

21. Empire: A JPA implementation for RDF. Website, 2011. https://github.com/
clarkparsia/Empire.

22. Sparta: a simple API for RDF. Website, 2011. https://github.com/mnot/
sparta/.

23. E. Oren, R. Delbru, S. Gerke, A. Haller, and S. Decker. ActiveRDF: object-oriented semantic
web programming. In Proceedings of the 16th international conference on World Wide Web,
pages 817–824, New York, NY, USA, 2007. ACM.

24. Jastor: Typesafe, ontology driven RDF access from Java. Website, 2011. http://
jastor.sourceforge.net/.

25. C. Puleston, B. Parsia, J. Cunningham, and A. Rector. Integrating object-oriented and on-
tological representations: A case study in Java and OWL. In Proceedings of the 7th Inter-
national Conference on The Semantic Web, ISWC ’08, pages 130–145, Berlin, Heidelberg,
2008. Springer-Verlag.

26. F. S. Parreiras, C. Saathoff, T. Walter, T. Franz, and S. Staab. APIs a gogo: Automatic
generation of ontology APIs. International Conference on Semantic Computing, 0:342–348,
2009.


