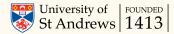
Sensor interpolation data wrangling

Simon Dobson

School of Computer Science University of St Andrews Scotland UK

simon.dobson@st-andrews.ac.uk
 https://simondobson.org
https://github.com/simoninireland



INTRODUCTION

We're interested in complex systems and sensors

- How do we deal with errors and failures?
- Can we develop better strategies for collection and analysis?

We're currently doing experiments into the issues

This talk explores the process we're going through

- ► How to study sensor error
- A huge volume of preparatory work
- An unsatisfyingly small number of results
- Hopes as to what will pay off in the future

Acknowledgements

Collaborators

- Muffy Calder, Julie McCann, Michael Fisher
- Peter Mann, Yasmeen Rafiq, Lei Fang, Michele Sevegnani, Sven Linker
- ▶ Juan Ye, Danilo Pianini, Mirko Viroli

Partially funded by the UK EPSRC under grant number EP/N007565/1 (Science of Sensor Systems Software, S4)

Engineering and Physical Sciences Research Council

BACKGROUND	Studying placement and error	Data wrangling	Results	Conclusions
•000	0000000000	00000000000	00000000	0000

Structure of this talk

Background

Studying placement and error

Data wrangling

Results

Conclusions

Sensor systems

Increasing numbers of sensors

Dedicated sensors

- "Casual" sensors attached to other things, like cellphones
- Often aggregated into sensor networks

A torrent of data being returned all the time

How to we interpret it? How do we justify the costs of its collection and storage?

CHARACTERISTICS

Things you may know about sensors

- Varying accuracy and precision
- Wildly varying costs and power requirements

CHARACTERISTICS

Things you may know about sensors

- Varying accuracy and precision
- Wildly varying costs and power requirements

Things you may not know about sensors

- ► They fail. A lot
- Limited physical lifetime
- Mechanical degradation from weathering, plants, animal activity, ...
- Cost and power can affect placement decisions

Background	Studying placement and error	Data wrangling 00000000000	Results 00000000	Conclusions 0000

Consequences

Lifespan

- We will tend to leave expensive sensors in the field as long as possible, to try to extract maximum value from them
- \Rightarrow What happens to the results as they degrade?
- \Rightarrow How does (should) this affect our decision-making?

Placement

- Placement is often defined by where we *can* put sensors, rather than by where we might *want* to put them
- ⇒ What are the consequences of taking readings from "imperfect" locations? (More may not be better¹)

¹ D. Pianini, S. Dobson, and M. Viroli. Self-stabilising target counting in wireless sensor networks using Euler integration. In *Proceedings of the Eleventh IEEE International Conference on Self-Adaptive and Self-Organizing Systems* (SASO'17), pages 11–20, September 2017. doi: 10.1109/SASO.2017.10

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	●0000000000	00000000000	00000000	0000

Structure of this talk

Background

Studying placement and error

Data wrangling

Results

Conclusions

	ND ERROR DATA WRANG	gling Results	Conclusions
000000000000000000000000000000000000000	0000000	000000 00000000	0000

Scientific question

What are the effects of sensor placement and error on the analytic approaches we use to interpret the data collected?

0000 00000000 00000000 0000000	00000000 0000	

Scientific question

What are the effects of sensor placement and error on the analytic approaches we use to interpret the data collected?

Not simply on the raw data

- ► There's almost always substantial post-collection analysis
- We need to understand the impacts of error on what processes see *post facto*
- Different sensitivities to different issues

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	0000000000	00000000000	00000000	0000

Put sensors in the field and let them decay

- ► (This is what we wanted to do)
- ► It's difficult to persuade someone to fund it...

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	0000000000	00000000000	00000000	0000

Put sensors in the field and let them decay X

- ► (This is what we wanted to do)
- ► It's difficult to persuade someone to fund it...

Build a mathematical or simulation model

- There's really not enough known
- Assumptions would be in some senses arbitrary

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	0000000000	00000000000	00000000	0000

Put sensors in the field and let them decay X

- ► (This is what we wanted to do)
- ► It's difficult to persuade someone to fund it...

Build a mathematical or simulation model 🗡

- There's really not enough known
- Assumptions would be in some senses arbitrary

Find a dataset that's amenable to synthetic error

- Something that's dense enough to support "fake" failure and error
- Cause problems deliberately, in a controlled way

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	0000000000	00000000000	00000000	0000

Put sensors in the field and let them decay X

- ► (This is what we wanted to do)
- ► It's difficult to persuade someone to fund it...

Build a mathematical or simulation model 🗡

- There's really not enough known
- Assumptions would be in some senses arbitrary

Find a dataset that's amenable to synthetic error \checkmark

- Something that's dense enough to support "fake" failure and error
- Cause problems deliberately, in a controlled way

What we decided to do

- 1. Take a dataset that's been collected using a recognised methodology, and interpolated using an approach that accepted as "good enough"
- 2. Change the sample set, re-interpolate, and compare with the original
 - Failure Remove some fraction of nodes: are some failures worse than others?
 - Error Change the value at some fraction of nodes: are some errors more disruptive than others?
 - Placement Remove some nodes at points one would expect to be "good observations": are these nodes in places whose omission significantly changes the results?

What we decided to do

- 1. Take a dataset that's been collected using a recognised methodology, and interpolated using an approach that accepted as "good enough"
- 2. Change the sample set, re-interpolate, and compare with the original

 - Error Change the value at some fraction of nodes: are some errors more disruptive than others?
 - Placement Remove some nodes at points one would expect to be "good observations": are these nodes in places whose omission significantly changes the results?

Dataset desiderata

Large-scale

• Enough points for individual nodes not to dominate

Dense

 Enough points that we can remove some and still have a dense network

Some notion of ground truth

- An interpretation of the samples, for example by interpolating to a finer granularity
- (We also need to be able to reproduce this interpretation, at least to some level)

Background 0000	STUDYING PLACEMENT AND ERROR	Data wrangling 000000000000	Results 00000000	Conclusions 0000

Data sources

Climate science has a lot of datasets with (some of) the properties we need datasets

- ► UK Met Office CEDA MIDAS Archive: 150+ stations, extensive historical archive, a bit sparse in places
- Scottish EPA "tipping buckets": 280+ stations, geographically limited, about 20 years' of data from a varying sub-set of stations
- ▶ UK EPA: 950+ stations, live and recent data only

Background 0000	Studying placement and error 0000000000000	Data wrangling 00000000000	Results 00000000	Conclusions 0000

Data sources

Climate science has a lot of datasets with (some of) the properties we need datasets

- ► UK Met Office CEDA MIDAS Archive: 150+ stations, extensive historical archive, a bit sparse in places
- Scottish EPA "tipping buckets": 280+ stations, geographically limited, about 20 years' of data from a varying sub-set of stations
- ▶ UK EPA: 950+ stations, live and recent data only

Comments

• Density, stability, and longevity are a hard ask

INTERPRETATION SOURCES

A common interpretation

 CEH-GEAR interpolation ², whole UK at 1km resolution back to the 19th century using a stable and well-respected algorithm (now pretty much the global standard)

² V. Keller, M. Tanguy, I. Prosdocimi, J. Terry, O. Hitt, S. Cole, M. Fry, and D. Morris. CEH-GEAR: 1km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications. *Earth System Science Data*, 7:143–155, 2015. doi: 10.5194/essd-7-143-2015

INTERPRETATION SOURCES

A common interpretation

 CEH-GEAR interpolation ², whole UK at 1km resolution back to the 19th century using a stable and well-respected algorithm (now pretty much the global standard)

Comments

 Don't link to the raw dataset underlying the interpolation, or identify the actual stations

² V. Keller, M. Tanguy, I. Prosdocimi, J. Terry, O. Hitt, S. Cole, M. Fry, and D. Morris. CEH-GEAR: 1km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications. *Earth System Science Data*, 7:143–155, 2015. doi: 10.5194/essd-7-143-2015

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	00000000000	00000000000	00000000	0000

First take-away

You can't always get what you want.

M. Jagger

Datasets are always compromised

- ► They weren't collected with you in mind
- Often have varying histories, and inadequate metadata
- Missing values aren't always noted properly
- The sensors have errors funnily enough that often get through

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	000000000000	00000000000	000000000	0000

Data formats

There are, fortunately, standard data formats

- For example, NetCDF³ represents large multi-dimensional arrays efficiently
- (Although its string handling is terrible)
- Great metadata support
- Language bindings

³Unidata. Network Common Data Format (NetCDF). Technical report, University Corporation for Atomospheric Research (UCAR), 2019. URL http://doi.org/10.5065/D6H70CW6

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	000000000000	00000000000	000000000	0000

Data formats

There are, fortunately, standard data formats

- For example, NetCDF³ represents large multi-dimensional arrays efficiently
- (Although its string handling is terrible)
- Great metadata support
- Language bindings

 \ldots which makes it bizarre that some organisations prefer JSON or CSV

And not *just* CSV, but CSV where the first rows are metadata and free-text and only later become data...

³Unidata. Network Common Data Format (NetCDF). Technical report, University Corporation for Atomospheric Research (UCAR), 2019. URL http://doi.org/10.5065/D6H70CW6

Results DOOOOOOOOO Conclusions

Not actually as perverse as it seems

Support a lot of different use cases

- Web sites presenting live(ish) data
- Small-scale consumption of data from specific places
- ► Large-scale science

JSON isn't a bad choice for the first two

► ...but it's terrible for the third

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	00000000000	00000000000	000000000	0000

Access

Not all of this data is properly open-source

► Free for (UK) academic use, varied licences for others

Accessible through the web

- ► REST APIs (of different kinds)
- ...sometimes behind a username/password firewall
- ...and sometimes requiring a client-side SSL certificate to be installed first (and frequently)

Different arrangements

- Get data by time, or by station?
- One request per station? One per instrument? One per day? One per month? ...

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	0000000000	00000000000	00000000	0000

Second take-away

TANSTAAFL (There ain't no such thing as a free lunch).

Robert Heinlein

Truly open, interoperable data is (largely) a myth

- Understandable, given that someone paid for it to be collected and curated
- Every choice is predicated on a use case – and might not work well for others
- Supporting varied use cases requires significant commitment

Background	Studying placement and error	DATA WRANGLING	Results	Conclusions
0000	0000000000	•0000000000	00000000	0000

Structure of this talk

Background

Studying placement and error

Data wrangling

Results

Conclusions

Automating access – acquisition

We resisted the temptations of manual download

- Automate data acquisition
- Essential for reproducibility

We wrote a collection of scripts to hit the API endpoints

- Get the list of available stations
- Grab the data from each station in the form it's presented
- Wrangle it into the form we want

STUDYING PLACEMENT AND ERROR

Automating access – standards (again)

We then defined a standard data format to hold the data we acquired

- Took CEH-GEAR's NetCDF model as a basis
- Define a common format for raw data with metadata (we fortunately had some prior experience in this ⁴)

Metadata

- start :: the start date
- end :: the end date
- resolution :: daily or monthly
- description :: text description
- history :: text timestamp
- source :: the data source URL

Dimensions

- station :: the station number
- time :: the sample point in days since 1800-1-1

Variables

- name(station) :: the station name
- lat(station) :: the station latitude
- long(station) :: the station longitude
- $\boldsymbol{x}(\text{station})$:: the station easting to the nearest km
- y(station) :: the station northing to the nearest km
- rainfall_amount(time, station) :: rainfall in kg/m^2 (= mm)

⁴S. Dobson, M. Golfarelli, S. Graziani, and S. Rizzi. A reference architecture and model for sensor data warehousing. *IEEE Sensors Journal*, **18**, **2018**. doi: 10.1109/JSEN.2018.2861327

Background	Studying placement and error	Data wrangling	Results	Conclusions
0000	00000000000	0000000000	00000000	0000

The interpolation algorithm

Natural nearest neighbour interpolation

- ► Discrete points s_i, each with a sampled rainfall R(s_i)
- ► Within a boundary *B*

Background	Studying placement and error	Data wrangling	Results	Conclusions
0000	00000000000	00000000000	00000000	0000

The interpolation algorithm

Natural nearest neighbour interpolation

- ► Discrete points s_i, each with a sampled rainfall R(s_i)
- ► Within a boundary *B*

Background	Studying placement and error	Data wrangling	Results	Conclusions
0000	0000000000	00000000000	00000000	0000

The interpolation algorithm

Natural nearest neighbour interpolation

- ► Discrete points s_i, each with a sampled rainfall R(s_i)
- ► Within a boundary *B*

Divide-up the space

- ▶ The Voronoi diagram V
- ► For a sample point s_i , the Voronoi cell $\mathcal{V}(s_i)$ is the set of points $p \in \mathcal{B}$ that lie closer to s_i than to any other s_j



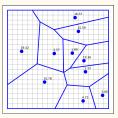
Data wrangling

Results 000000000 Conclusions

NNI – synthetic points

Interpolation grid

- Construct a grid of points at which to interpolate the samples
- The samples and the grid constitute the "map"



Results 200000000 Conclusions

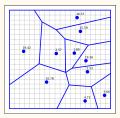
NNI – synthetic points

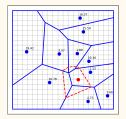
Interpolation grid

- Construct a grid of points at which to interpolate the samples
- The samples and the grid constitute the "map"

Construct synthetic points and cells

► For each interpolation point *d_{xy}*, construct a new Voronoi diagram *D* with a cell *D*(*s'*) for each point *s'* ∈ {*s_i*} ∪ {*d_{xy}*}



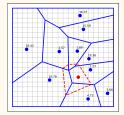


0000 000000000 0000000 0000000 000000 0000	Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
	0000	00000000000	00000000000	00000000	0000

NNI – values

Compute the interpolated samples

- For each interpolated point d_{xy} , the interpolated rainfall $\mathcal{R}^{int}(d_{xy})$ is the sum of $\mathcal{R}(s_i)$ times the fraction of $\mathcal{D}(d_{xy})$ that overlaps $\mathcal{V}(s_i)$, for all sample points s_i
- Only neighbouring cells contribute any value



Background	Studying placement and error	Data wrangling	Results	Conclusions
0000	00000000000	00000000000	00000000	0000

Complexity

This is, as you can imagine, quite a lot of computation

- Geometric calculations for every interpolation point
- Takes hours for even small examples
- Impractical to do this for every set of samples

Background 0000	Studying placement and error	Data wrangling 0000000000000	Results 00000000	Conclusions 0000

Third take-away

Science: that feeling you get when you realise that that thing you don't understand isn't actually understood by anyone.

The paper may not tell you what you need to know

- The authors might regard computation as just a mechanism, not what their readers will be interested in
- The authors may be using someone else's code that they don't understand
- ► The authors may be keeping their sauce secret

TENSOR FORMULATION

The weights that each sample contributes to each interpolation point are fixed for a given set of samples points

- Given a map, we can pre-compute the weights
- ► For each interpolation point d_{xy} there is a vector w_{xy} of weights, |w_{xy}| = |s_i|

A *tensor* capturing the interpolation of a given map

- ► A 3d block of numbers
- ► Each entry *T_{xyi}* is the weight given to the value *R*(*s_i*) in computing the interpolated value at *d_{xy}*

INTERPOLATION

Interpolation is just linear algebra

 Apply the tensor in a particular way to a vector of observations, one per sample point

Take the dot product of the weights vector (one-form) at each interpolation point with the vector of samples

- Given a tensor \mathcal{T} and vector of samples $\mathcal{R}(s_i)$, produce a matrix \mathcal{G} where $\mathcal{G}_{xy} = \sum_i \mathcal{T}_{xyi} \cdot \mathcal{R}(s_i)$
- Expensive if done using that standard maths routines (numpy.dot)

0000 000000000 00000000 0000000 0000	Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
	0000	00000000000	00000000000	00000000	0000

Optimisation – sparseness

Most weights are zero: an interpolation point typically uses the weights of about 6 observations

- Optimise to extract the non-zero elements
- Can interpolate rainfall over the whole of England at 1km resolution from the 980+ EPA stations in about 15s (single 3.8GHz Intel i7 core)

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	00000000000	0000000000	000000000	0000

Fourth take-away

In theory there is no difference between theory and practice. But in practice, there is.

J.L.A. van de Snepscheut

Big data often requires early optimisation

- ► Hard to get anywhere without optimised code
- ...even in order to do meaningful tests
- Some of the speed-ups are quite astonishing: small individual improvements, but millions of repetitions

A lot of this code also paralellises well

Background	Studying placement and error	Data wrangling	Results	Conclusions
0000	00000000000	00000000000	00000000	0000

Structure of this talk

Background

Studying placement and error

Data wrangling

Results

Conclusions

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	00000000000	00000000000	00000000	0000

LOADING THE DATASETS

We could now, finally, start work

 The full set of rain gauges available from EPA, SEPA, and CEDA MIDAS

We choose one of these datasets to work with

- ► The EPA ("live") set is the densest, with 980+ stations
- (SEPA + CEDA MIDAS has about 500+ stations but a better historical archive, and would also be a reasonable choice)

Results 000000000 Conclusions 0000

INTERPOLATING ENGLAND'S RAINFALL

For one particular day (2022-03-11)

Data wrangling

Results

Conclusions

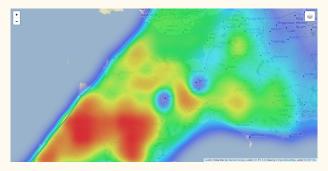
Focus on Cornwall and the south-west

About 220 stations

Results 000000000 Conclusions

Focus on Cornwall and the south-west

Without the stations



How does failure affect the interpolation?

Remove 40% of the stations at random

- A scenario of widespread failure or ageing of the rain gauges
- Or, alternatively, a scenario where we're deploying a smaller system to see whether it's "accurate enough" for our needs

What do we think a 40% reduction in observations will do?

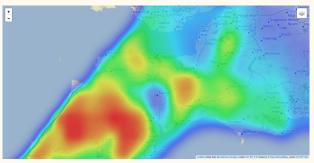
Background 0000 STUDYING PLACEMENT AND ERROR

Data wrangling

Results

Conclusions

How does failure affect the interpolation?



Perhaps not as dramatic as we might have expected

- An overall reduction in observed rainfall (less red)
- ...but not uniformly so: if we remove observation of no rain, we *increase* the impact of neighbouring rainy observations

Background	
0000	

Studying placement and error 000000000000

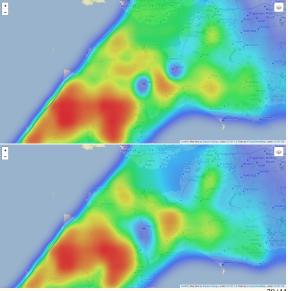
Data wrangling

Results 00000000 Conclusions 0000

Side by side

All the stations

60% of stations



39/44

Background	Studying placement and error	Data wrangling	Results	Conclusions
0000		00000000000	00000000	0000

HIGHLIGHTING THE DIFFERENCES

Subtract one map from the other

- Red means higher rainfall in original interpolation
- The differences are quite localised
- Clear that we don't uniformly increase or reduce
- Some dramatic variations

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	CONCLUSIONS
0000	00000000000	00000000000	00000000	●000

Structure of this talk

Background

Studying placement and error

Data wrangling

Results

Conclusions

Background	STUDYING PLACEMENT AND ERROR	Data wrangling	Results	Conclusions
0000	0000000000	00000000000	00000000	0000

Well that was unsatisfying...

There's a lot of work just to get started

- ► Far more than we anticipated
- Necessary experimental computational infrastructure

The groundwork is essential, though

- Understand the data and the techniques
- Have a properly-tested codebase, starting with small toy cases and working up to realistic scale
- (A surprising number of bugs just don't appear on small cases)
- Make everything reproducible, and ideally entirely automated

Background 0000	Studying placement and error 000000000000	Data wrangling 00000000000	Results 00000000	Conclusions 0000

Next steps

We've talked today about the start of a journey

- An experimental framework with some initial software infrastructure
- ► The challenges we encountered in practice

We can now hopefully move on to the interesting stuff

- Can we identify the most significant nodes, for removal and error? The ones that maximise divergence?
- What is the minimum set of sensors for a given quality of interpolation?
- We hypothesise that these might be determined by structures within the tensor

References

S. Dobson, M. Golfarelli, S. Graziani, and S. Rizzi. A reference architecture and model for sensor data warehousing. *IEEE Sensors Journal*, 18, 2018. doi: 10.1109/JSEN.2018.2861327.

V. Keller, M. Tanguy, I. Prosdocimi, J. Terry, O. Hitt, S. Cole, M. Fry, and D. Morris. CEH-GEAR: 1km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications. *Earth System Science Data*, 7:143–155, 2015. doi: 10.5194/essd-7-143-2015.

D. Pianini, S. Dobson, and M. Viroli. Self-stabilising target counting in wireless sensor networks using Euler integration. In Proceedings of the Eleventh IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO'17), pages 11–20, September 2017. doi: 10.1109/SASO.2017.10.

Unidata. Network Common Data Format (NetCDF). Technical report, University Corporation for Atomospheric Research (UCAR), 2019. URL http://doi.org/10.5065/D6H70CW6.