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Summary

Adaptive networks, which combine topological evolution of

the network with dynamics on the network, are ubiquitous

across disciplines. Examples include technical distribu-

tion networks such as road networks and the internet,

natural and biological networks, and social science net-

works. These networks often interact with or depend upon

other networks, resulting in multilayer adaptive networks.

We study susceptible-infected-susceptible (SIS) epidemic

dynamics on such networks revealing a new stable state

which only emerges in the case of weakly coupled net-

works [5]. In this state, the disease is endemic in one

network but neither becomes endemic nor dies out in the

other. Instead, it persists only at the interconnected nodes

and does not break out into the wider network.

Additional details

We consider two networks A and B with the same number

of nodes N
A

= N
B

= N , where a randomly chosen fraction

of nodes p
coup

from each network are connected through

inter-network connections to nodes in the other network [2,

1], see Fig. 1.

We extend Gross et al.’s model of SIS epidemic dynam-

ics on adaptive networks [4] from a single to multilayer

networks. Nodes in both networks can be in either one of

two states – susceptible or infected – where susceptible

nodes can get infected from their intra- and inter-network

neighbors and infected nodes can recover and become

susceptible again. In addition, each network is indepen-

dently adaptive in the sense that susceptible nodes can

rewire their intra-network edges from infected neighbors

to randomly selected susceptible ones.

However, the inter-links connecting between networks

are permanent (nonadaptive). This limits an individual

network’s ability to adapt in the face of challenges, since

it can change its own topology but not its dependence

on other networks. In geographically distant social net-

works, for example, long-distance links are often family

links which are not subject to rewiring compared to short-

distance friend and acquaintance links.
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Figure 1: Illustration of adaptive SIS dynamics consisting

of four local transformation rules on two interconnected

networks of the same size.

Results

We develop an analytical formalism consisting of 9 nonlin-

ear ODEs and 10 pair approximations, and confirm it with

an explicit simulation of the dynamics over a system of two

interconnected adaptive networks using the LARGENET2

C++ library [6]. We analyze the stability of stationary

disease prevalences using the dynamical systems analysis

software XPPAUT [3], see Fig. 2. For p
coup

= 0 (i.e. two

disconnected networks), our model recovers previous re-

sults for single adaptive networks [4] where the system

two stable branches corresponding to lower and upper

transition depending on the initial number of infected

nodes.

For p
coup

= 0.01, 0.1, both the results obtained analyti-

cally and numerically (shown more obviously in the inset)

show a new stable state of intermediate I⇤
B

values, where

the epidemic does not spread to all nodes in network B,

but does not die out either. This state is obtained by

starting the numerical simulation with no infected nodes

in network B and significant number of infected nodes in
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network A. As a result, the disease is quickly becoming an

endemic in network A but only spreads to the intercon-

nected nodes in network B and does not break out into

the wider network. This is the reason for the quantitative

disagreement between the analytical solution and the nu-

merical simulation observed for this state – in a partially

invaded network correlations exist that are not captured

by the pair approximation.
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Figure 2: Bifurcation diagram of the stationary disease

prevalence in network B, I⇤
B

as a function of the infection

rate, �. To compare results with those obtained for single

networks, we consider two ER networks of size N
A

=

N
B

= 100 000 nodes with similar properties to the ones

considered by Gross et al. [4], i.e. average connectivity 20,

recovery rate ↵ = 0.002 and rewiring rate � = 0.04.

The third stable state observed for p
coup

= 0.01, 0.1

becomes unstable again for strongly coupled networks,

see Fig. 2d. This is since for larger p
coup

there exists a

larger number of interconnected nodes that can not protect

themselves from infection due to inter-network links even

at small infection rates. Therefore, any epidemic persisting

in one network, will eventually spread and persist in the

other network as well.

Finally, we note hat the width of the multistability area

becomes smaller as p
coup

increases. In other words, the

range of � values for which more than one stable state

is reachable depending on the initial conditions becomes

smaller with more inter-network links meaning that a

system of tightly coupled networks is more stable and

depends less on the initial conditions.

Discussion

We have examined the stationary states of adaptive SIS

dynamics on a multilayer network consisting of two ran-

domly interconnected networks. Our analytical model

provides the exact number of nodes that, if their state

were synchronized across two networks (i.e. if they were

coupled), a process spreading in one network would spread

to the other. This approach could be used to determine

optimum firewall placement to resist cyber attacks and to

determine the maximum number of people that can travel

between two countries such that an epidemic spreading in

one will not spread to the other.

Perhaps more importantly, our work is also providing

an important insight into the future e↵orts needed to

take place in order to analytically describe the behavior

of multilayer networks. While the pair approximation

approach works well for single random networks, it fails to

describe the new stable state observed for weakly coupled

networks.
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