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Introduction

We’re experiencing one of the biggest socio-economic
disruptions of all time
▶ How do large epidemics behave?
▶ What changes might we need to make to control and

accommodate to the disease as it changes?

This talk
▶ Look at one approach to modelling, using network science
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Why am I here?
I’m a computer scientist interested in network science,
sensing, and data analytics
▶ A tool builder: how do we make computers useful for

answering questions?
▶ The questions themselves are less important. . .

The uses of computers in generating insight
▶ To simulate particular events in detail
▶ To explore the space of possible events to suggest options
▶ To understand the general computational and

mathematical processes involved
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Real diseases – general structure

Different periods
▶ Incubation: from infection to onset of symptoms
▶ Latent: from exposure to infectiousness
▶ Infectious: overlapping with symptoms (usually)

Periods defined by biology, of both disease and host
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Real diseases – examples
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Real diseases – spread

Disease is spread by the exchange of a pathogen
▶ From infected to non-infected individuals

Different infection patterns
▶ How many other people does each person meet each day?
▶ How closely do they interact? For how long? In what way?

For how long?

Infections defined by biology and environment
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Real diseases – evolution

A person infected at the end of an epidemic doesn’t get the
same disease as a person infected at the start
▶ Pathogen is constantly mutating
▶ Lateral gene transfer from co-infecting pathogens
▶ Another reason to work to reduce transmission

Selection pressures often (but don’t necessarily)
introduce a particular dynamics
▶ More transmissible
▶ Less severe
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R and all that 1

R, the case reproduction number
▶ Number of secondary cases per primary
▶ The exponent of an exponential growth process
▶ EspeciallyR0, reproduction absent countermeasures

Typically averages over (unknown) distributions
▶ Details may be very significant
▶ For example may see “superspreaders” creating lots more

infections

1Royal Society SET-C group. Reproduction number (R) and growth rate (r) of the COVID-19 epidemic in the
UK, August 2020. URL
https://royalsociety.org/-/media/policy/projects/set-c/set-covid-19-R-estimates.pdf
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The “wickedness” of covid-19
For “wild type”R0 ≈ 3, not particularly infectious
▶ More infectious, less severe (maybe) variants emerge
▶ Some tendency towards vaccine escape
▶ Prior infection doesn’t give clear-cut, long-term immunity

Substantial asymptomatic transmission
▶ Asymmetric costs (spreading vs dying, “long covid”)
▶ Effective countermeasures are collective (and expensive)

Infection fatality rate is about 1%
▶ Too large to comfortably ignore
▶ . . . but too small to generate a consensus on seriousness
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The goals of modelling

What are we trying to find out?
▶ Concrete: how will this particular outbreak behave, in this

particular population?
▶ Abstract: how can diseases behave in general? Are there

common mathematical structures?
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Compartmented models

Traditional epidemic modelling uses the framework of a
compartmented model of a disease
▶ A number of “compartments” that hold some fraction of

the population
▶ Can also think of a compartment as the state of each

individual within the population (we’ll come back to this)
▶ Rules on how these fractions change over time
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Continuous SIR

The model
▶ Susceptible individuals

can catch the infection
from Infected
individuals

▶ . . .who then are
Removed from the
dynamics by recovery
(or death)

Epidemic dynamics
▶ Susceptibles infected

per contact with
probability β

▶ Infecteds removed with
probability α

▶ Gives rise toR0 =
β
α

dS
dt

= −βSI dI
dt

= βSI − αI dR
dt

= αI
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Solution

Different disease structures 2

▶ SIR – complete immunity post-infection
▶ SIS – infection confers no immunity
▶ SEIR – exposed individuals are

infectious before symptoms
▶ MSEIR – initial immunity passed from

mother to child
▶ SEIRS – immunity wears off with time
▶ . . .

2H. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599–653, December 2000. URL
doi://10.1137/S0036144500371907
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Network science

Networks (or graphs)
▶ Model objects and relationships in an

abstract mathematical form
▶ Use as a substrate for processes that

affect the states of objects and their
relationships over time

Social networks
▶ Individuals and their social contacts
▶ May be real or synthetic
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Network science for epidemic modelling
Use a network as the substrate for the epidemic 3

▶ Only adjacent nodes can interact
▶ Compartment = label on node
▶ Infection passes over SI edges

Pros and cons
✘ Doesn’t scale as well as the differential equations (we’re

modelling explicit individuals)
✓ Can build contact structures and systems of equations we

can’t solve (but can simulate)
3M. Newman. Spread of epidemic disease on networks. Physical Review E, 66, July 2002. URL

doi://10.1103/PhysRevE.66.016128
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Basic treatment – networks

Start from a simple model of a population
▶ As a random process, collected from contact data, . . .
▶ Actually a lot we don’t know about how people interact

Add fine structure
▶ Structured contact patterns
▶ More- and less-well-connected sub-populations
▶ Adaptive behaviour to change features over time and/or in

response to the disease
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Basic treatment – processes

Assign a state vector to each node
▶ For epidemics, this might be the node’s compartment

Process defines changes to state vectors
▶ A function of current states of the node and its immediate

neighbours
▶ Generally stochastic, applied with some probability

Seed the network with initial state vectors
▶ For SIR, mainly susceptible with a few infected
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How to do analysis
The “gold standard” is an analytic
model with numerical validation
▶ Find an analytic description for

what happens under different
infection parameters

▶ Run process on random networks
with different topologies

▶ Lots of repetitions to squeeze out
variance

▶ (Hopefully) sample points land
on solutions to the equations 4

4P. Mann, V. A. Smith, J. Mitchell, and S. Dobson. Random graphs with arbitrary clustering and their
applications. Physical Review E, 103(1), January 2021a. URL https://doi.org/10.1103/PhysRevE.103.012309
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Discrete-event simulation

A simulation consists of a large series of events
▶ An infected person infected a susceptible person
▶ An exposed person developed symptoms
▶ An infected person recovered

Events selected using Gillespie’s algorithm 5

▶ P(τ, e) dτ the probability that an event e occurs in the next
interval (t+ τ, t+ τ + dτ)

▶ Draw a pair (τ, e) from this distribution

5D. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25):
2340––2361, 1977
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Tooling
There wasn’t any standard tooling, so we built some

A flexible way to express networks and processes
▶ epydemic, a simulation framework using networkx

▶ Reference epidemic (and other) processes
▶ Support for the main mathematical techniques, such as

generating functions

A way to perform repeated, repeatable, experiments
▶ epyc, a computational experiment manager
▶ Experiment submission, parallelism, remote evaluation

https://github.com/simoninireland 23/40
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Example code
import numpy

import pandas

from epyc import ClusterLab , HDF5LabNotebook , RepeatedExperiment

from epydemic import ERNetwork , SIR , StochasticDynamics

# notebook for results and lab with connection to compute cluster

nb = HDF5LabNotebook(’test.h5’, description=’My␣experiments␣in␣networking ’)

lab = ClusterLab(profile=’hogun’, notebook=nb)

# set up the experimental parameters

lab[ERNetwork.N] = 10000

lab[ERNetwork.KMEAN] = 40

lab[SIR.P_INFECTED] = 0.001

lab[SIR.P_REMOVE] = 0.002

lab[SIR.P_INFECT] = numpy.linspace (0.00001 , 0.0002 , num =50)

# construct the experiment: a process and a class of networks

m = SIR()

g = ERNetwork ()

e = StochasticDynamics(m, g)

# repeat runs across the parameter space

lab.runExperiment(RepeatedExperiment(e, 100))

# retrieve for analysis

df = nb.current (). dataframe(only_successful=True)
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Explorations

We’ve been experimenting with different
network structures
▶ Especially interested in “clustered” networks:

friends-of-friends and larger cycles
▶ Fine structure affects how processes evolve

Make the science more accessible 6

▶ With available and re-usable code
▶ With explanations

6S. Dobson. Epidemic modelling – Some notes, maths, and code. Independent Publishing Network, 2020. ISBN
978-183853-565-0. URL https://simoninireland.github.io/introduction-to-epidemics/
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The epidemic threshold
Erdős-Rényi (ER) networks
▶ For N nodes build the complete network KN

▶ For each edge, retain (“occupy”) it with probability pinfect
▶ Leads to pk normally distributed around ⟨k⟩ = pinfectN
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Not all networks behave like this

Too “even” to be a good model of human contacts
▶ Powerlaw with cutoff, pk ∝ k−α eK/κ

▶ Relatively insensitive to pinfect, but sensitive to α and κ
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Adaptive networks
Things can become even more complicated when the
network responds to the disease 7

▶ For example quarantine
▶ Social contacts with infected people are reduced

▶ Rewiring can balance (and even reverse) infection
7S. Shai and S. Dobson. Coupled adaptive complex networks. Physical Review E, 87(4), April 2013. URL

https://dx.doi.org//10.1103/PhysRevE.87.042812
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Herd immunity

Sufficient immune/recovered
individuals to stop an epidemic
propagating
▶ Infecteds never adjacent to

enough susceptibles
▶ First epidemic changes the

effective topology
▶ “Effective” ⟨k⟩ drops from 20 to

5.5
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Why pursuing herd immunity is a bad idea

Herd immunity was advocated by some as a covid-19
strategy8

Ignores some rather inconvenient facts
▶ A 1% death rate = 700K UK deaths, about one year’s excess
▶ At a rate that would collapse health services
▶ Immunity looks not to be permanent – which changes how

herd immunity behaves (is it appears at all)
▶ Long covid not accounted for in the costs

8See the “Great Barrington Declaration”, https://gbdeclaration.org
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Vaccination

“Herd immunity without the bad bits”
▶ Aim for the herd immunity threshold, generally about 60%

of the population
▶ . . .without anyone actually being infected

Epidemic proceeds at different rates
depending on topology
▶ “Enough” contacts removed to

stabilise the size of outbreak
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Vaccination strategies

Randomly vaccinate
▶ Massive reduction in epidemic size
▶ . . . but need to get ¿60% of the

population
▶ Only catching high-degree nodes at

random

Target 2% highest-degree nodes
▶ Immunise the most likely

super-spreaders
▶ Can also use social knowledge
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Physical distancing
What does a physically-distanced
contact network look like?
▶ Good question: lots of assumptions,

especially about compliance

Changes the epidemic threshold
compared to an ER network
▶ Needs a higher infectivity to take off

Slower take-off
▶ Not like a powerlaw network
▶ “Bursts” if the infection gets into a

bubble
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When multiple variants emerge
As the pathogen evolves, we see different variants with
different behaviours
▶ Often more transmissible but less severe
▶ Coupled of increased immunity, leads to epidemic dying

out

Environment controls selection pressures
▶ In systems with only short-range connections, highly

contagious variants are often contained by previous
infections

▶ Whereas in systems with long-range connections, the most
contagious variant almost always spreads globally 9

9M. Boots and A. Sasaki. ’Small worlds’ and the evolution of virulence: Infection occurs locally and at a
distance. Proceedings of the Royal Society B, 266(1432):1933–1938, October 1999
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Co-infection dynamics

What happens when variants co-exist?
▶ May co-operate: previous infection

with one makes you more sensitive to
the next

▶ Or may compete: having one reduces
the risk of re-infection 10

Lots more work to do to understand this

10P. Mann, V. A. Smith, J. Mitchell, and S. Dobson. Two-pathogen model with competition on clustered
networks. Physical Review E, 103(6), June 2021b. URL https://doi.org/10.1103/PhysRevE.103.062308
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Research directions

Multiple variants
▶ What happens when disease evolve?
▶ More detailed co-infection dynamics

We’re now very interested in network fine structure
▶ How do processes behave in detail?
▶ Can they be “steered” by disrupting small local features?
▶ New analytical techniques, based on graph signal

processing
▶ Improved tooling, new software and algorithms
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Three things to take away

1. Epidemic spreading still isn’t fully understood – there’s
lots of exciting work still to do, mathematically and
computationally

2. Interactions between network and process can be very
subtle, and may have significant effects

3. We can explore the space of public policy decisions as
“citizen scientists”, and also counter misinformation
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