
Situvis: a visual tool for modeling a user’s
behaviour patterns in a pervasive environment

Adrian K. Clear, Ross Shannon, Thomas Holland,
Aaron Quigley, Simon Dobson and Paddy Nixon

Systems Research Group
UCD Dublin, Ireland
adrian.clear@ucd.ie

Abstract. One of the key challenges faced when developing context-
aware pervasive systems is to capture the set of inputs that we want
a system to adapt to. Arbitrarily specifying ranges of sensor values to
respond to will lead to incompleteness of the specification, and may also
result in conflicts, when multiple incompatible adaptations may be trig-
gered by a single user action. We posit that the ideal approach combines
the use of past traces of real, annotated context data with the ability for
a system designer or user to go in and interactively modify the specifi-
cation of the set of inputs a particular adaptation should be responsive
to. We introduce Situvis, an interactive visualisation tool we have de-
veloped which assists users and developers of context-aware pervasive
systems by visually representing the conditions that need to be present
for a situation to be triggered in terms of the real-world context that is
being recorded, and allows the user to visually inspect these properties,
evaluate their correctness, and change them as required. This tool pro-
vides the means to understand the scope of any adaptation defined in
the system, and intuitively resolve conflicts inherent in the specification.

1 Introduction

Context-aware pervasive systems are designed to support a user’s goals by mak-
ing adaptations to their behaviours in response to the user’s activities or cir-
cumstances. The accuracy and utility of these adaptations is predicated on the
system’s ability to capture and recognise these circumstances as they occur. We
system designers characterise these adaptation opportunities by collecting con-
text data from multiple heterogeneous sensors, which may be networked physical
instruments in the environment (measuring factors like temperature, humidity
or noise volume), software sensors retrieving information from the web or various
data feeds, or wearable sensors measuring factors like acceleration or object use.
These context data are voluminous, highly multivariate, and constantly being
updated as new readings are recorded.

Situations are high-level abstractions of context data, which free the user
from having to deal with raw context and allow more expressive adaptations [1].
We define situations in terms of context that has been encapsulated to a level of

understanding appropriate for a developer specifying a situation (e.g., symbolic
locations), rather than the raw sensor readings (e.g., 3D coordinates). Situations
are straightforward for both system designers and system users to work with,
as they symbolically define commonly-experienced occurrences such as a user
“taking a coffee break”, or being “in a research meeting”, without requiring
the user to understand any of the dozens of distinct sensor readings that may
have gone into making up these situations. Situations are thus a natural view
of a context-aware system, while the individual pieces of context are each “a
measurable component of a given situation” [2].

Thomson et al. observe that there are two approaches to situation determi-
nation: specification-based and learning-based approaches [3]. The specification-
based approach suffers from complexity. As the context information available
to a context-aware system at any moment is so extensive, dynamic and highly
dimensional, it is a significant challenge for a system observer to ascribe signifi-
cance to changes in the data or identify emergent trends, much less capture the
transient situations that are occurring amid the churn of the data.

On the other hand, learning-based approaches require training data and in-
terpretation. Many situations a user finds themselves in are subjective and hence
require a degree of personalisation. Here, we propose a hybrid of these user-driven
and data-driven approaches that utilises minimal annotated samples to frame
a situation specification, combined with a novel visualisation that simplifies the
manual process of fine-tuning.

Situvis is our scalable visualisation tool for illustrating and evaluating the
makeup of situations in a context-aware system. By incorporating real situa-
tion traces and annotations as ground truth, Situvis assists system developers
in constructing and evaluating sound and complete situation specifications by
essentially bootstrapping the manual process, affording the developer a better
understanding of the situation space, and the reliability of modeling with situa-
tions based on real, recorded sensor data. It is a framework that allows developers
to understand, at a high level, how their system will behave given certain inputs.

The following section provides some details of other approaches to the recog-
nition of context abstractions, a formal description of situation specifications and
a review of some challenges faced when working with context and situations. We
then describe the details of the Situvis tool, including a demonstration of its
utility, followed by a discussion of its properties.

2 Background

2.1 Activity Recognition

Techniques for activity recognition use machine learning techniques—both su-
pervised and unsupervised—to infer high-level activities from low-level sensor
data. Logan et al. present a long-term experiment of activity recognition in a
home setting using a semi-supervised technique [4]. Like the majority of activ-
ity recognition, the focus is on concepts that can be described and recognised

by body movements and object use. 104 hours of video data was manually an-
notated following the data collection. Many activities, such as dishwashing and
meal preparation, were accurately classified to a high degree. However, the study
showed that even with this large amount of data and annotation, some activi-
ties, such as drying dishes, could not be learned effectively due to lack of training
data caused by their infrequent occurrence, even over a 104-hour period.

Krause et al. describe an approach to learning context-dependent personal
preferences using machine learning techniques to refine the behaviour of Sensay,
a context-aware mobile phone [5]. The behaviour modifications, such as changing
the state of the ringer volume from loud to silent, are known in advance. The
task is to find the user’s “state” (or contextual circumstances) that corresponds
to them modifying the behaviour of their phone so that in the future it can
be done automatically. Machine learning of personalised states is favoured over
manual specification of general states as a result of a study showing that states
and desired phone behaviour differed among individuals. Because the behaviour
modifications are known, this method requires no supervision. Essentially, the
behaviour modifications serve as labels for the recorded sensor values.

Recognising higher-level abstractions Recent work has aimed to recognise
high-level abstractions of context called routines [6]. Routines are structured as
compositions of several activities that may be influenced by time, location and
the individual performing them. Examples include “commuting” or “working”.
In contrast to activities, routines cannot be identified through their local physical
structure alone: they consist of variable patterns of multiple activities; they range
over longer periods of time; and they often vary significantly between instances.
Moreover, they are subjective. As a result, the authors chose topic maps as an
alternative approach for recognition. Topic maps are a family of probabilistic
models often used by the text processing community and enable the recognition
of daily routines as a composition of activity patterns.

We too aim to be able to recognise high-level abstractions, and our approach
is designed to achieve this with minimal annotation. Situations and routines are
similar in that they are subjective, making long periods of annotation unscalable;
and they require more factors to recognise them than simply body posture, body
movement, or object use. Therefore, accurate situation determination cannot rely
completely on data-driven techniques. Situations are generally short term and
hence are logically more complex than routines—they can be partially described
in terms of individual activities but they are not lengthy nor activity-rich enough
to be represented as the most probable activities that are occurring over a long
time window. As a result, we are taking a hybrid approach to recognition that
includes a short ground truth collection period followed by manual fine-tuning
by a domain expert.

2.2 Situation specifications

Based on the extensive literature on the subject of modeling context for adaptive
systems [1,2,7,8,9,10], we can make some observations: the incoming sources of

context into a pervasive application are viewed as a finite number of variables:
either nominal or categorical values, e.g., activity levels {idle, active, highly
active . . . }; or quantitative ordinal values which may be defined over some known
interval, e.g., noise level in decibels {0, 140}.

Location information will typically arrive as individual values for an object’s
x, y and z coordinates in a space, and may be recorded by numerous disparate
positioning systems, but is modeled as a higher-level abstraction to make it
easier to reason with. Previously conducted research allows component x, y and
z coordinates to be composed into a symbolic representation, given some domain
information [11], and so we can work with locations as readable as “Simon’s
office” or “Coffee Area”. Our visualisation tool works equally well with simple
quantitative data or these higher-order categorised data.

Situations are high-level abstractions that serve as a suitable model with
which to develop context-aware systems, because they are intuitive concepts for
both designers and users to think in. In order for a computing system to be able
to recognise situations, they must first be specified in some way. Theory on the
semantics of situation specification can be seen in the work of Henricksen [1]
and Loke [12]. Based on this work, we also model situations using declarative
languages, which can simply be plugged-in to our tool.

Situation specifications are boolean expressions (or assertions)—they are ei-
ther true or false, denoting occurrence and non-occurrence, respectively. Asser-
tions may be composed using the logical operators and (∧), or (∨), and not
(¬), resulting in richer expressions. Domain-specific functions can also be de-
fined to enrich specification semantics (e.g., a distance operator could return a
numerical value of the distance between two locations).

We can thus define a situation specification as a concatenation of one or more
assertions about contexts, which leads us to the following formal definition:

A situation specification consists of one or more assertions about context
that are conjoined using the logical operators and (∧), or (∨), and not (¬).
Assertions may comprise further domain-specific expressions on context, given
that the required semantics are available.

2.3 Interactive Machine Learning

Existing work has applied the coupling of data- and user-driven processes to
carry out difficult tasks. In particular, the general Interactive Machine Learning
(IML) model consists of iterations of classical machine learning followed by re-
finement through interactive use. In the Crayons project by Fails and Olsen [13],
users can build classifiers for image-based perceptual user interfaces using a novel
IML model that involves iterative user interaction in order to minimise the fea-
ture set and build a decision tree. Moreover, Dey’s a CAPpella is a prototyping
environment, aimed at end-users, for context-aware applications [14]. It uses a
programming by demonstration approach, through a combination of machine-
learning and user interaction, to allow end-users to build complex context-aware
applications without having to write any code.

2.4 Visualisation of context data

The field of visual analytics uses interactive visual interfaces to aid end-users
in analysing and understanding large and complex multivariate data sets. In-
teractive visualisation tools help the viewer perform visual data analysis tasks:
exploring patterns and highlighting and defining filters over interesting data. For
example, Andrienko et al. developed a toolset for analysing and reasoning about
movement data (e.g., GPS coordinates). Following some preprocessing steps,
the data can be clustered according to different properties, such as start and
end points of trips, or similar behaviour over time [15]. Such properties can be
portrayed using different types of visualisations to increase user understanding.

There exist myriad visualisation techniques, from time-series to multi-dimen-
sional scatter plot methods, which can be adapted to the exploration of multi-
dimensional context data. Our focus here is not only on the exploration of such
context data, but also the scope of the higher order situations, their specifica-
tion, and data cases which fall outside the set boundaries. The Table Lens, a
focus+context visualisation, supports the interactive exploration of many data
values in a semi-familiar spreadsheet format [16]. In practice, due to the distor-
tion techniques employed, users can see 100 times as many data items within
the same screen space as compared with a standard spreadsheet layout. Rather
than showing the detailed numeric values in each cell, a single row of pixels,
relating to the value in the cell, is shown instead. The Table Lens affords users
the ability to easily study quantitative data sets, but categorical values are not
well supported.

3 Parallel Coordinates

Parallel Coordinate Visualisations (PCVs) are a standard two-dimensional tech-
nique ideally suited to large, multivariate data sets [17]. The technique excels at
visually clustering cases that share similar attribute values across a number of
independent discrete or continuous dimensions, as they can be visually identified
through the distribution of case lines within the visualisation [18]. The user can
see the full range of the data’s many dimensions, and the relative frequencies at
which values on each axis are recorded. These features are visible in Figure 1,
which shows context data from our user study, which we will describe in the
next section.

PCVs give users a global view of trends in the data while allowing direct
interaction to filter the data set as desired. A set of parallel vertical axes are
drawn, which correspond to attributes of the readings in the system. Then, a
set of n-dimensional tuples are drawn as a set of polylines which intersect each
axis at a certain point, corresponding to the value recorded for that attribute.
Discrete and quantitative axes can be presented in the same view.

As all the polylines are being drawn within the same area, the technique
scales well to large data sets with arbitrary numbers of attributes, presenting a
compact view of the entire data set. Axes can be easily appended or removed
from the visualisation as required by the dimensions of the data.

Fig. 1. Part of the main Situvis window showing our Parallel Coordinates Vi-
sualisation. This is a view of 96 overlaid context traces with 8 data dimensions
gathered over three days of summer. Strong correlations can be seen between the
days recorded: the subject spent the majority of all three days at their desk (the
first value on the “Location” axis), with some deviations due to coffee breaks or
visits to their supervisor’s office at irregular times.

As Parallel Coordinates have a tendency to become crowded as the size of the
data set grows larger, techniques have been designed to cluster or elide sub-sets
of the data to allow the dominant patterns to be seen [19]. Direct interaction to
filter and highlight sections of the data encourages experimentation to discover
additional information, as seen in Figure 2.

Hierarchical clustering [20] uses colour to visually distinguish cases that share
a certain range of values into a number of sets, increasing the readability of the
diagram. We use a similar technique to group case lines that are assigned to
a certain situation, colour-coding these as a group. Different situations can be
colour-coded so that the interplay of the context traces that correspond to them
can be easily seen. We will illustrate this ability in the next section.

Fig. 2. Here the user has “brushed” over a set of case lines (those that correspond
to times before 11am) by right clicking and dragging a line across them between
the first and second axes. This highlights these polylines throughout the diagram,
allowing the patterns that occurred among these times to be seen. This same
operation can be performed on any axis to select any subset of the polylines.

4 Evaluating Situations with Situvis

4.1 Description & case-study

The goal of Situvis is to combine data-driven and user-driven techniques for sit-
uation determination without relying on machine learning to make sense of the
data. The tool displays all of the situation trace data, along with annotations
where available, in a single view; and allows the user to clearly and easily high-
light the situation traces associated with an annotation label. The user can then
adjust the resulting set of ranged intervals over the context to create a more
complete and accurate situation specification.

Situvis is built using Processing [21], a Java-based visualisation framework
that supports rapid prototyping of visualisation techniques.1 Each context di-
mension is represented in Situvis as a vertical axis, and each axis contains a
set of points that correspond to permitted values for the dimension. A situation
trace is represented as a polyline—a line drawn starting at the leftmost axis and
continuing rightwards to the next adjacent and so on, intersecting each axis at
the point that represents the value that the context has in that situation trace.
For example if, in a given situation, a user’s computer activity level is “idle”,
and their location is “canteen”, and these two axes are adjacent, then a line will
be drawn between those two points. Each situation trace is plotted on the axes
and the result is a view of all of the situations, significant and insignificant, that
occurred in the system over a period of time.

To carry out our case-study, we required real context data with which we
could characterise situations. We chose to gather context data and situation
annotations manually over two three-day periods. While the capabilities exist to
collect these context data automatically, for this first trial we chose to collect the
data through manual journaling, so that we did not need to factor in issues with
the aggregation, uncertainty or provenance of the context data. As mentioned
previously, we assume the data is at an appropriate level of abstraction to begin
with.

We had a single trial participant record their context every fifteen minutes
(between 10am–6pm) for three consecutive weekdays, on two distinct occasions.
The first occasion was in summer and the second was in autumn. The journaling
gap between these two data sets is designed to capture adjustments in the rou-
tines and descriptions of situations that the trial participant found himself in.
The captured context consists of time, location, noise-level, number of colleagues
present, their supervisor’s presence (true or false), their phone use (either tak-
ing a call or not), calendar data (being busy or having no appointments), and
computer activity. For simplicity, the noise-level was recorded on a 4-point scale
of quiet, conversation, chatty, and noisy. Likewise, computer activity level was
scaled as idle for an hour or more, idle for less than an hour, active, and highly
active. We defined six symbolic locations: meeting room, canteen, sports center,
supervisor’s office, subject’s desk, and a lecture theatre. Figure 1 shows a view
of the Situvis tool with all of the traces from the first three consecutive days of
collection plotted together in one view.

The participant also annotated what, if any, situation he was in at the time
of data capture. These annotations are used in Situvis to identify situations that
require specification in the system, and to provide some ground truth to initiate
their specification.

4.2 Specifying situations with context

Situation specifications are structured according to the definition we discussed
in Section 2.2. Situvis enables a developer to select all occurrences of a given
1 Situvis is freely-available software, which you are encouraged to download from our

website at http://situvis.com.

http://situvis.com

Fig. 3. A view of the Situvis tool with our initial summer data set. The high-
lighted traces were annotated as a “meeting” situation. These situations occurred
at many different times throughout the day in two different locations, with a
range of values for the other contexts. Labels have been added to the axis for
clarity. They are normally shown when the user hovers over the axis.

annotated situation, and add further cases to this definition using interactive
brushing of polylines as in Figure 2, or by dragging a range indicator on the left
of the axis to expand or contract the range of values covered by this specification.
The user can evaluate existing situation specifications overlaid against actual
trace data and see where they need to be modified.

An example of this process can be seen in Figure 3 and 4. The trial subject
annotated multiple occurrences of a “Meeting” situation 2. By selecting these
traces, it is evident what context dimensions characterise them. We can see that
“Time” and “Supervisor presence” are not useful due to the multiple split lines

2 “Meeting” is a generalisation of two situations that the participant labelled, namely,
“Meeting with colleagues” and “Meeting with supervisor”. These are assigned sep-
arate colours in the figures.

Fig. 4. The user can interactively expand or contract the situation definition
along any of the axes. In this case, they have chosen to modify the situation
specification to allow for more colleagues to be present, the noise level to be
greater and the possibility of talking on the phone.

on their axes, and so are ineffective when defining constraints. The specification
is clear from the other dimensions, however, and could be expressed as:

{Location = (Meeting room ∨
Supervisor’s office)} ∧

{1 ≤ Colleagues present ≤ 2} ∧
{Noise-level = conversation} ∧
{Computer activity ≥ idle} ∧
{Calendar status = busy} ∧
{Phone use = none}

None of these values alone can characterise “Meeting”, as the trace data
illustrates. Furthermore, each dimension may not always be available. Situvis
allows one to identify combinations of dimensions which, when taken together
can provide a good estimation of the situation. For example, “Location” taken
with “Colleagues present” is a good indication of “Meeting”. This can also give

system developers an insight into which sensors in their system are the most
useful, and which types of sensors they should invest in to gain the most added
benefit in terms of the expressiveness of their system.

4.3 Situation evolution

When existing specifications are overlaid on the trace polylines, the developer can
see where they are too strong or weak. Constraints that are too strong will cause
the system to sometimes fail in determining when that situation is occurring.
Constraints that are too weak may be wrongly interpreted as an occurrence of the
specified situation, when in fact a different situation is occurring. By overlaying
our specification on top of the polylines, it will be obvious where constraints
need to be strengthened, weakened or even excluded altogether. Situvis enables
a developer to drag the boundaries of specifications to change the polylines that
they cover, essentially changing the constraints of the situation.

When the overlaid situation encompasses traces that are not relevant, the
user can strengthen the constraints by narrowing the range of values covered by
this situation specification (the shaded area in the diagram). Similarly, the user
can weaken constraints to include traces that happen to fall outside the existing
specification by widening the specification, as we have done in Figure 4.

As more trace data is added and annotated, the constraints that we have
defined for “Meeting” may be shown to be too strong. This is what we found to
be the case in Figure 5, which contains the traces for both our initial summer
data set, as well as the additional days from the autumn data set, for a total
of 48 hours of context traces. What we see is that in most cases, the previously
apparent patterns are strengthened, as essentially they have recurred. Comparing
Figure 3 and Figure 5, we can see that the annotated data that the user has
defined as corresponding to meetings results in a different situation specification.

4.4 Situation evaluation

Context-aware adaptive systems are very sensitive to incompatible behaviours.
These are behaviours that conflict, either due to device restrictions, such as ac-
cess to a public display, or due to user experiences, such as activating music play-
back while a meeting is taking place. Situations are closely tied to behaviours—
they define envelopes in which behaviour occurs. As a result, their specifications
are directly responsible for adherence to compatibility requirements. By harness-
ing this factor, we can address another key aspect of situation evaluation.

Conceptually relating situations to each other from a behaviour compatibility
standpoint is an overwhelming task for a developer. We recognise that there are
two situation relationships that may lead to incompatibility:

subsumption if a subsumes b, and b occurs, then a will certainly occur.
overlap if a overlaps b, then a and b may co-occur.

Fig. 5. After additional data collection, the case lines annotated as “Meeting”
exhibit a different pattern.

Our tool allows multiple situation specifications to each be coloured dis-
tinctly. When two or more situations are shown together, the overlap in their con-
stituent contexts is clear, as well as the extent of their dissimilarities. This view
allows the developer to alter constraints where necessary, while the overlap and
subsumption relationships are refreshed and displayed on-the-fly. A screenshot
of this scenario is seen in Figure 6, which also shows the specification selection
panel on the right-hand side. This area allows the user to toggle specifications
on and off, so that they can be compared and manipulated.

5 Conclusions and Future Work

We have presented Situvis, a tool that uses a Parallel Coordinate Visualisation
to illustrate situation traces and specifications. We have shown, using a case-
study, the utility of Situvis in the situation specification and evaluation processes.
Situvis presents a developer with a reference point for situation specification and
evaluation through the display of actual trace data and situation annotations.

Fig. 6. A view of three distinct situations. Here we are showing the specifications
for a meeting with supervisors, paper writing time, and time spent reading.
The dissimilarities between these situations are clear from the tool, and the
specifications can be further teased apart if required.

The relevance of the underlying context to a specification is made clear, and
contrasting situation traces can be used as a guide for specification.

Context-aware systems are dynamic—sensors, users and habits are constantly
changing. Hence, we cannot expect situation specifications to remain static. It
must be possible to re-evaluate them accordingly. Situvis allows developers to
visually overlay specifications on traces, and tailor their constraints as a re-
sult. Unlike traditional methods, Situvis clearly depicts cases where constraints
are too strong or too weak. Machine-learning techniques would require extra
time-consuming training periods for the re-evaluation process, whereas Situvis
provides the option of collecting a minimal amount of annotated data to initiate
the manual process.

By visually analysing the overlap of situation specifications within their sys-
tem, the developer can identify where multiple situations require similar context
values to be activated. Such overlaps may imply problems in the situation speci-
fications, as conflicting behaviours may be triggered by conceptually similar sit-
uations. Thus, the developer can compare situations against others, and change
the situation’s specifications to become stronger or weaker as necessary.

A feature missing from the current version of the Situvis tool is explicit
support for probabilities in situation specifications. In many context-aware ap-
plications, robust probabilistic inference is a requirement to handle the naturally

fuzzy data in the system. We are considering the addition of an overlay which
will allow users to set up a probability distribution, though this requires a more
in-depth study of the treatment of uncertainty in situations.

Some context dimensions are not easily represented on a line. In particular,
Location within buildings, with its domain relations like subsumption, is diffi-
cult to represent in two dimensions. We are researching techniques to flatten
hierarchies for a more intuitive representation of this context.

Situvis could also be used by users of the context-aware system as a gateway
to user programming: helping them to unroll the cause of a situation activation,
so that they can gain insight into why the system began to behave as it did.

References

1. Henricksen, K.: A Framework for Context-Aware Pervasive Computing Applica-
tions. PhD thesis, The School of Information Technology and Electrical Engineer-
ing, University of Queensland (September 2003)

2. Knox, S., Clear, A.K., Shannon, R., Coyle, L., Dobson, S., Quigley, A., Nixon,
P.: Towards Scatterbox: a context-aware message forwarding platform. In: Fourth
International Workshop on Modeling and Reasoning in Context in conjunction
with Context ‘07, Roskilde, Denmark (August 2007) 13–24

3. Thomson, G., Stevenson, G., Terzis, S., Nixon, P.: A self-managing infrastructure
for ad-hoc situation determination. In: Smart Homes and Beyond - ICOST2006
4th International Conference On Smart Homes and Health Telematics. Assistive
Technology Research Series, Amsterdam, The Netherlands, IOS Press (June 2006)
157–164

4. Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.: A long-term evalua-
tion of sensing modalities for activity recognition. In: UbiComp 2007: Ubiquitous
Computing, 9th International Conference, Innsbruck, Austria (September 2007)
483–501

5. Krause, A., Smailagic, A., Siewiorek, D.P.: Context-aware mobile computing:
Learning context-dependent personal preferences from a wearable sensor array.
IEEE Transactions on Mobile Computing 5(2) (February 2006) 113–127

6. Huýnh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models.
In: UbiComp 2008: Ubiquitous Computing, 10th International Conference, Seoul,
South Korea (September 2008) 1–10

7. Clear, A.K., Knox, S., Ye, J., Coyle, L., Dobson, S., Nixon, P.: Integrating multiple
contexts and ontologies in a pervasive computing framework. In: C&O 2006: ECAI
2006 Workshop on Contexts and Ontologies: Theory, Practice and Applications,
Riva Del Garda, Italy (August 2006) 20–25

8. Coutaz, J., Rey, G.: Foundations for a theory of contextors. In: CADUI: 4th Inter-
national Conference on Computer-Aided Design of User Interfaces, Valenciennes,
France, Kluwer (May 2002) 13–34

9. Dey, A.K.: Understanding and using context. Personal Ubiquitous Computing
5(1) (2001) 4–7

10. Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: Context is key. Communications
of the ACM 48(3) (March 2005) 49–53

11. Ye, J., Coyle, L., Dobson, S., Nixon, P.: A unified semantics space model. In:
Location- and Context-Awareness. Volume 4718 of LNCS., Springer (2007) 103–
120

12. Loke, S.W.: Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective. The Knowledge Engineering Review
19(3) (September 2004) 213–233

13. Fails, J., Olsen, D.: A design tool for camera-based interaction. In: CHI ’03:
Proceedings of the SIGCHI conference on Human factors in computing systems,
New York, NY, USA, ACM (2003) 449–456

14. Dey, A.K., Hamid, R., Beckmann, C., Li, I., Hsu, D.: a cappella: programming
by demonstration of context-aware applications. In: CHI ’04: Proceedings of the
SIGCHI conference on Human factors in computing systems, New York, NY, USA,
ACM (2004) 33–40

15. Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of
movement data. SIGKDD Explorations Newsletter: Special issue on visual analyt-
ics 9(2) (December 2007) 38–46

16. Tenev, T., Rao, R.: Managing multiple focal levels in table lens. In: Infovis 1997:
IEEE Symposium on Information Visualization, IEEE Computer Society. Wash-
ington, DC, USA (1997) 59

17. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-
dimensional geometry. In: VIS ’90: Proceedings of the 1st conference on Visualiza-
tion ’90, Los Alamitos, CA, USA, IEEE Computer Society Press (1990) 361–378

18. Card, S., Mackinlay, J., Schneiderman, B.: Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann (1999)

19. Artero, A., de Oliveira, M., Levkowitz, H.: Uncovering clusters in crowded parallel
coordinates visualizations. IEEE Symposium on Information Visualization (2004)
81–88

20. Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates
for exploration of large datasets. In: VIS ’99: Proceedings of the conference on
Visualization ’99, Los Alamitos, CA, USA, IEEE Computer Society Press (1999)
43–50

21. Reas, C., Fry, B.: Processing: a learning environment for creating interactive web
graphics. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Sketches & Applications,
New York, NY, USA, ACM (2003) 1–1

	Situvis: a visual tool for modeling a user's behaviour patterns in a pervasive environment
	Adrian K. Clear, Ross Shannon, Thomas Holland, Aaron Quigley, Simon Dobson and Paddy Nixon

