

Abstract

Systems for home automation are a necessary
component for intelligent smart homes applications.
Existing systems suffer both from competing and often
closed standards bases and from a message-based
architecture that can complicate the development of
flexible applications requiring information from
disparate sources. We describe a knowledge-based
pervasive computing middleware and show how it can
be used to provide semantically rich unification over a
range of home- and web-based automation systems.

1. Introduction

Whilst a number of automation systems for smart
homes are available commercially, their use of
competing (and often closed) standards and protocols
can impede the creation of “smart homes” in which
large numbers of heterogeneous devices communicate
freely. Such systems also typically use simple broadcast
or hub-and-spoke communications architectures which
lead to excessive centralisation and can impede the free
flow of information around a system, especially as new
sensors are added to existing installations. Moreover,
there is often a false dichotomy between sensor and
other data such as web-based information sources and
information stored digitally on PDAs or cellphones.
These asymmetries are unhelpful for application
developers.
A common approach to addressing such issues is
through the use of middleware. Traditional solutions
such as CORBA or JINI are generally regarded as being
too heavyweight for smart environments, where
devices' processing and communications capabilities
are limited by cost and power considerations.
However, alternative forms of middleware remain an
attractive solution to integrated home automation. In
particular, we believe that it is vital for developers to be
able to abstract away from the detailed topology,
protocols, data formats and control of sensors, actuators
and other information devices, and instead focus on the

fusion of information from disparate sources. This
provides great architectural flexibility and has the
potential to improve responses to the noisy and
uncertain information typically encountered in sensor-
rich environments.
In this paper we introduce a sensor-fusion-based
middleware for smart homes. The system – Construct –
treats all devices as either sensors or actuators, allowing
arbitrary home automation equipment to be controlled.
All data are given a uniform representation, and their
level of abstraction is raised through the use of
knowledge-based data-fusion techniques. This aids
developers in the process of building applications for
the smart home, providing them with information that is
semantically closer to their needs than the raw data
provided by individual sensors. Furthermore Construct
can collect data uniformly from other sources of
interest, such as the web. This provides developers with
a rich body of information with which to drive the
automated home. The system is fully decentralised and
decoupled from individual information sources,
allowing flexible and robust use of an evolving device
population.
To demonstrate the efficacy of Construct in the smart-
home and assisted living domains, we describe a smart
home-heating system that is under development.
Construct collects the inputs from a diverse set of
virtual and physical sensors and fuses them into a
distributed data store using Semantic Web technology.
Applications query this data directly rather than
maintaining point-to-point connections with sensors.
This decoupling of consumers of data from producers
enables application developers to work with a single
data format rather than requiring them to master a
number of proprietary formats. This allows us to
incorporate inferencing abilities into Construct that
would not be possible in a system with fragmented data
representation.
The rest of this paper is organised as follows: Section 2
discusses existing middleware solutions and home
automation standards. Section 3 describes the Construct
architecture and shows how it provides a semantic hub
for home automation systems. Section 4 demonstrates

Sensor Fusion-Based Middleware for Smart Homes

L. Coyle, S. Neely, G. Stevenson, M. Sullivan, S. Dobson, P. Nixon and G. Rey*

* Systems Research Group, School of Computer Science & Informatics, University College Dublin, Ireland
(Tel : 353-1-716-2485; Fax : 353-1- 269-7262; E-mail: lorcan.coyle@ucd.ie)

Construct's application to smart homes through a case
study in controlling home environments using a variety
of sensors based on radically different technologies. We
show that the system provides developers with an
integrated and homogeneous view of information that is
not possible in more message-based systems. Section 5
concludes with some observations on middleware for
smart-homes and some possible directions for future
work.

2. Home automation

The complexity involved in constructing multi-vendor
distributed systems can quickly become unmanageable
without support from a tailored infrastructure. The
standard approach is to build abstraction layers with
common services made available to developers.
Traditional middleware platforms provide these
facilities; middleware in this context can be broadly
defined as a layer between application and system
software. Middleware systems support developers by
automating much of the integration between various
products and platforms whilst maintaining the integrity
of the overall solution in terms of robustness and
reliability.
Middleware for general distributed systems has evolved
around a number of distinct categories. Object based
systems such as Java EJB and CORBA provide a
platform on which to build loosely-coupled object-
based systems, complete with operations for registering
objects, discovering new services, transaction handling,
security and facilitating object message passing.
Message-oriented middleware decouples client-server
communications using the exchange of small messages.
More recently, peer-to-peer (P2P) systems such as
Pastry [12] and Chord [14] have become an area of
significant research interest. By removing the need for
infrastructural support, P2P systems can potentially
support wireless (and other) ad hoc networks extremely
well while distributing the load and costs of service
provision over the node population – at a cost of more
complex resource location, and no guarantees that
particular services be, or remain, available. However,
the removal of a central point of failure results in P2P
systems having excellent fault tolerance properties that
can be exploited.
The building and automation industries have a number
of standard systems for use in the deployment of smart
spaces. The LonWorks platform from Echelon
Corporation is one such example. LonWorks was
designed to address the issues of installation,

performance, reliability and maintenance of control
applications. It is built on a low-bandwidth
communications protocol, LonTalk, facilitating the
networking of devices over twisted-pair, power cables,
fibre optics and radio. LonWorks has an affiliated IP
tunneling standard (EIA-852) that can connect devices
deployed on LonWorks-based networks to IP-aware
applications and remote network management tools.
This is an important step towards fully opening controls
systems to Internet-based applications and services, but
requires careful design, installation and management.
BACnet [4] is another example of a data
communication protocol designed to support
development of building automation and control
networks. BACnet was developed in an attempt to
create a standardised model for of representing devices
and interactions between them with control
applications. More recently the oBIX (Open Building
Information Xchange) standard [8] has emerged: oBIX
is an effort aiming to create standard XML and Web
Services to facilitate the exchange of information
between intelligent buildings and applications. A
technical committee is working towards defining a
standard web services protocol for exchange of
information with the mechanical and electrical systems
in commercial buildings.
Despite these efforts, there are an increasing number of
sensor systems and modules becoming available that
adhere to different (or indeed no) standards but which
provide essential information for many applications.
Some sensor vendors have focused on IP-enabled
platforms using WiFi or Bluetooth for communications.
Other systems provide proprietary, often research-based
interfaces: Smart-ITs [2], Wavenis [1] and i-Bean [11]
provide decentralised networks with simple data flows.
The technological landscape may be summarised as
follows. Middleware systems assume that component
nodes have significant processing and communications
capabilities – assumptions that are typically not
respected in pervasive computing systems, and perhaps
especially in systems intended for use in existing
buildings such as are typically encountered in home
automation. Sensor systems often have only simple
control and data interfaces, and do not provide an
attractive programming platform for complex
applications. It is hard to build decentralised
applications and hard to handle the inevitable addition
of (or failure of) devices in a way that does not require
significant application customisation.
Moreover the need for self-management, self-
description, self-configuration, self-optimisation and

other so-called “self-*” properties points towards the
need for more autonomic and decentralised approaches
to middleware targeting pervasive systems [9].

3. Construct

We have designed the Construct platform as a system
for integrating noisy data sources in clean, dynamic,
flexible and semantically well-founded manner.
Construct provides applications with a uniform view of
information regardless of how that information is
derived, and supports extensive inferencing and sensor
fusion within the platform to be shared between
applications.
Construct has a fully decentralised architecture; devices
within a smart space each run an instance. Each
instance manages the local data provided by sensors
(physical or logical) connected to that device – a “local
star” topology in which dumb sensors are connected to
more computationally capable hubs which then
exchange information between themselves.
Collectively, the devices maintain a global model of the
data within a smart space. All data are modelled using
the Resource Description Framework (RDF) [16],
which provides a standardised way in which to model
contextual information and properties. Construct stores
and manipulates this data using the Jena Framework
[10]. Data entering Construct are described using
ontologies and Construct provides a query service that
allows applications to query against the ontology rather
than the data [5]. Data exchange between instances of
Construct is performed using gossiping [15], which
provides robustness and fine control over network
utilisation.
Applications connect to a running instance of
Construct, and use its services to obtain required
information. Components with domain-specific
knowledge may request and aggregate data from
multiple sources in order to contribute new, or refined
information. All data stored within the system are
associated with metadata, which describe data lifespan
and security restrictions.
Construct provides a core set of components (shown in
Figure 1) that provide population management, data
management, querying, and data propagation
functionality [13]. Each deployment contains a Data
Store Manager that is responsible for maintaining the
local data model, and for removing old data as they
expire. The Query Service allows applications to
request the data they require to adapt their behaviour.
The Gossiping layer select peers with which to share

data, whilst components responsible for summarising
information select the view of local data to be gossiped
and integrated with remote deployments of Construct.
Finally the Network layer abstracts the underlying
communications medium.

3.1. Mapping sensor data
Construct views all information sources as sensors that
generate RDF triples. This uniformity means that to
support a particular middleware standard or sensor
protocol, a developer must define a mapping from that
system's internal representation to RDF. (This has the
incidental advantage of making the underlying system's
information more easily accessible to open services and
applications that can interpret RDF or XML
information.)
The oBIX standard provides a way to model sensory
devices in XML. We use the example of a simple
thermostat from the oBIX specification document [8] to
show how the XML information from oBIX is
transformed via XSLT to RDF. This process is
illustrated in Figure 2. The oBIX XML snippet models
the current state of the thermostat; its temperature; the
target temperature; and the actuator that controls the
furnace. An XML transform is used to convert this
XML to RDF. These RDF values are inserted into
Construct's data store.

3.2. Virtual Sensors
Although home automation systems focus “inwards” on
information sensed within the home, a properly
pervasive approach to assisted living should also look
“outwards” to information available on the web and
through other digital channels. In Construct these
information sources are simply additional sensors –
with the advantage that the emerging consensus on
XML and web services makes much of the information

Figure 1: Construct architecture diagram

available in formats that are close to (if not already)
RDF.
We believe that this integration of traditional home
automation with open access to web information is

vitally important for smart-home applications, granting
application developers access to a world of TV listings,
weather reports, stock quotes, supermarket prices, etc.
While these sources of data are somewhat useful for
traditional smart home applications, they become far
more valuable for applications tailored for inhabitants
dealing with impairment. One may easily envisage
scenarios in which an individual's medical or other
requirements are downloaded securely from remote
servers, and summaries of information derived from
home-based sensors are uploaded to provide medical
telemetry. Construct provides these capabilities
uniformly.

3.3. Programming
In addition to our work on web-sensors we are
developing a number of virtual sensors. Rather than
using physical or web data, virtual sensors operate on
Construct's data store, using RDF querying languages
(such as SPARQL or RDQL) to query for data of
interest. When such data is available, it is processed by
the sensors and the resultant values are added to the
data store. One possible use for this technique is data-
aggregation. For example, a virtual sensor can be used
to compute an average temperature from the forecasts
of several weather web sensors. Applications query data

from Construct in the same way as virtual sensors.
We take the development of virtual sensors a step
further by developing an inference framework that
integrates with Construct's data store. Such a

framework makes it possible for the system to discover
regular patterns in behaviour and to use these to
determine the context that underlies a sequence of
actions. An illustrative example of this in the context of
an assisted living smart home application would be if an
alarm sensor were put in place to ensure that infirm
users made safe night-time bathroom trips. If a person
takes an inordinate amount of time to return from a
bathroom trip it may be necessary to trigger an alarm.

4. Example Scenario

In this section we explore a simple smart homes
scenario in order to demonstrate how a more semantics-
driven approach to integration simplifies application
development. Our aim is to show how the use of
context fusion and symmetric information
representation can provide a significantly enriched
environment for pervasive applications over and above
traditional sensor-driven systems.

4.1. The scenario
Consider a smart home that has an autonomous heating
control system and a personalised alarm system. In
winter, especially if the house is left unoccupied for any
length of time, steps need to be taken to ensure that the

Figure 2: Diagrammatic representation of the transformation from oBIX to RDF

temperature does not fall below freezing (or else the
water pipes may burst). Normally, this would be
achieved using thermostat-controlled central heating.
However, this home uses storage heating. Storage
heaters use cheap electricity (usually at night-time) to
store heat in ceramic bricks and release it during the
day when electricity is expensive. It is more economical
than a typical heating system if it stores enough heat
each night to heat the house during the day.
The typical solution is for a user to manually turn the
heater up in cold weather and down in warmer weather.
Our proposal is to use web-published weather data to
regulate the thermostat in the storage heater. We use a
web-sensor to retrieve the weather forecasts and use
these predictions to adjust the thermostat to reflect the
expected temperature and store an appropriate amount
of heat. This makes the regulation of the thermostat
autonomous. If the weather forecast was incorrect, the
thermostat will ensure that the temperature does not fall
below freezing by turning the heaters on whenever
necessary, which will of course necessitate the use of
more expensive electricity.
This solution is enough to ensure that the house
temperature does not drop too low. But what if the
owner wishes to leave the house for a long period of
time or invite a guest to stay in their absence? We have
developed web-sensors that extract data from published
calendar files. By incorporating information about the
expected occupancy of the house and altering the
thermostat temperature accordingly we improve the
efficiency of the heating system.

4.2. The principles of a solution
Construct provides a solution to the problems of sensor
heterogeneity, device volatility, data propagation, and
application integration within smart-environments. Its
use of the RDF standard for modelling context provides
a common level of abstraction with which to represent
information generated within a smart-space. This allows
all data to be managed, manipulated, and disseminated
independently of the technologies used to acquire it. In
this way, Construct is able to deal with the
heterogeneous sensors and devices that are typical in a
smart-environment.
The arrangement of devices in a smart space may
change frequently as devices turn on and off, users
change location, and new data sources are integrated.
By using established discovery protocols (such as
Zeroconf [3]) to detect running instances of Construct,
and a decentralised protocol for data propagation,
Construct is robust to such changes. As the

infrastructure is fully decentralised, the failure or
removal of one deployment has minimal impact on the
smart-space. This allows Construct to evolve in size
gracefully, without the need for centralised
administration. New devices need only detect a running
instance of Construct to join the smart-space. In the
smart home application described in the previous
section, a new thermometer could be connected to the
network, and Construct's discovery protocols would
ensure that data from that thermometer was available to
whatever applications are consuming temperature data.

5. Conclusions and ongoing work

Existing home automation systems exhibit a tight
coupling between applications and the sensor networks
that they utilise. As it is desirable to support both the
integration of such systems and the sharing of sensed
data across multiple applications, there is a clear need
for middleware level support.
We introduce a sensor-fusion based middleware for
smart-homes called Construct. Construct treats all
components of a smart environment as sensors or
actuators and maps data from these components into a
unified format. This provides us with a common level
of abstraction which simplifies the process of
manipulating and querying for data.
Construct extends the traditional model of home
automation systems, which focus on information sensed
within the home to include information sensed from
external digital media. As increasing amounts of
information is published in digital formats and made
available, additional value-added features can easily be
integrated with assisted-living applications.
We describe an assisted-living scenario that
demonstrates how Construct fuses sensed data and
facilitates its consumption. Our next step is to continue
building up a repository of physical and virtual sensors
for use in the smart-home environment. We are
complementing this work by the development of an
inference framework that performs aggregation of data
and deals with inconsistencies that may arise when the
same type of data is produced from different sensors
(such as when location sensors provide data that says a
person is in two places at once) [6,7]. We are also
developing a set of heuristics for evaluating the
performance of Construct.
Construct is currently under development and will be
released as open source software in the fourth quarter of
2006. Several sensors, demonstrator applications and
ontologies describing context data will be part of this

release as well as a prototype of the smart home
application described in this paper.

Acknowledgements

This work was partially supported by the grants “Secure
and Predictable Pervasive Computing” from Science
Foundation Ireland and “A Platform for User-Centred
Evaluation of Context-Aware Adaptive Services” from
Enterprise Ireland.

References

[1] Coronis systems, wavenis technology
http://www.coronis-
systems.com/descriptif.php?id=descr_tech
[2] The Smart-Its project. http://www.smart-its.org/.
[3] Zeroconf. http://www.zeroconf.org/.
[4] S. Bushby and H. Newman. The BACnet
communication protocol for building automation
systems. ASHRAE Journal, 33(4):14–21, April 1991.
[5] A. K. Clear, S. Knox, J. Ye, L. Coyle, S. Dobson,
and P. Nixon. Integrating multiple contexts and
ontologies in a pervasive computing framework. In
Contexts and Ontologies: Theory, Practice and
Applications, Riva Del Garda, Italy, August 2006.
[6] L. Coyle, S. Neely, P. Nixon, and A. Quigley.
Sensor aggregation and integration in healthcare
location based services. In 1st Workshop on Location
Based Services for Health Care, November 2006. To
Appear.
[7] S. Dobson, L. Coyle, and P. Nixon. Hybridising
events and knowledge as a basis for building autonomic
systems. In Journal of Trusted and Autonomic
Computing, Sept. 2006. To appear.
[8] B. Frank. oBIX specification. Working Draft 0.8,
December 2005.
[9] J. Kephart and D. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–52, January
2003.
[10] B. McBride. Jena: Implementing the RDF model
and syntax specification. In Proceedings of the 2nd
International Workshop on the Semantic Web, Hong
Kong, May 2001.
[11] S. Rhee, D. Seetharam, S. Liu, N. Wang, and J.
Xiao. i-beans: An ultra-low power wireless sensor
network. In Interactive Poster in the Fifth International
Conference on Ubiquitous Computing (UBICOMP),
2003.
[12] A. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. Lecture Notes in Computer
Science, 2218:329–350, 2001.
[13] G. Stevenson, L. Coyle, S. Neely, S. Dobson, and
P. Nixon. Construct — a decentralised context
infrastructure for ubiquitous computing environments.
In IT&T Annual Conference, Cork Institute of
Technology, Ireland, 2005.
[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer- To-Peer

Lookup Service for Internet Applications. In
Proceedings of the 2001 ACM SIGCOMM Conference,
pages 149–160, 2001.
[15] S. Voulgaris, M. Jelasity, and M. van Steen. A
Robust and Scalable Peer-to-Peer Gossiping Protocol.
In The Second International Workshop on Agents and
Peer-to-Peer Computing (AP2PC), 2003.
[16] W3C. Resource Description Framework (RDF).
http://www.w3.org/RDF/.

