
Comparing Service-Oriented and Distributed
Object Architectures

Seán Baker1 and Simon Dobson2

1 IONA Technologies plc, Dublin IE
sean.baker@iona.com

2 School of Computer Science and Informatics, UCD Dublin IE
simon.dobson@ucd.ie

Abstract. Service-Oriented Architectures have been proposed as a re-
placement for the more established Distributed Object Architectures as
a way of developing loosely-coupled distributed systems. While superfi-
cially similar, we argue that the two approaches exhibit a number of sub-
tle differences that, taken together, lead to significant differences in terms
of their large-scale software engineering properties such as the granular-
ity of service, ease of composition and differentiation – properties that
have a significant impact on the design and evolution of enterprise-scale
systems. We further argue that some features of distributed objects are
actually crucial to the integration tasks targeted by service-oriented ar-
chitectures.

1 Introduction

Distributed Object Architectures (DOA) provide a stable computing platform
on which to co-ordinate information systems within enterprises. The increasing
desire to integrate very large, very loosely-coupled systems, and to automate
business-to-business interactions, has led to an appreciation of the complexities
of extending DOA technologies across enterprise boundaries. Service-Oriented
Architectures (SOA) have been introduced with the goal of providing both intra-
and inter-business services, and so potentially acts both as a complement to, and
replacement for, DOA as an enterprise platform.

SOA and DOA are aimed at different problems, however. The origins of
DOA lie with systems such as the CORBA standard, which was defined as a
general-purpose integration technology. Because there was little support for im-
plementing servers when CORBA was introduced in the early 1990s, CORBA
implementations (and indeed the standard), concentrated on helping program-
mers to implement clients and servers. CORBA’s commercial success made it a

† This paper appears as Seán Baker and Simon Dobson. Comparing service-oriented
and distributed object architectures. In Robert Meersman and Zahir Tari et al, edi-
tors, Proceedings of the International Symposium on Distributed Objects and Applica-
tions, LNCS. Springer Verlag, 2005. To appear. Copyright c© 2005, Springer-Verlag.
Distributed with permission.



rival for other middleware: CORBA and the various other middlewares formed
middleware islands, each with good internal integration, but poor inter-island
integration. J2EE was introduced, among many other reasons, to provide a dis-
tributed object facility for Java.

SOA has been introduced to tackle the highest-level integration task, one
important aspect of which is the integration of these middleware islands. DOA
can be very specific to one specification or standard; SOA has to be more tech-
nology neutral. SOA has to work at a wider scale across an enterprise, across
middleware islands in an enterprise, and across enterprises themselves.

One may debate, therefore, whether SOA is a minor re-adaptation of DOA
ideas to a more XML-based world, a new departure in middleware that differs in
fundamental ways from what came before it, or a business-driven replacement
for old-style technology-driven middleware designs that better reflects modern
concerns. This paper contributes to the debate by analysing the features that
make SOA and DOA similar and identifies a number of subtle features that make
them different. We take a more architectural perspective than that of Vogels[15],
while reaching many similar conclusions. In particular, we argue that some of the
features that some SOA advocates deprecate – especially standardised interface
types and fine-grained object decomposition – might actually be key features
in the integration task that SOA is targeting, while other features that are
sometimes cited as being core differences – such as the use of messages rather
than method calls – are of little deep significance. We argue that, despite being
small individually, the sum of these differences leads to a radically different set
of properties for enterprise-level system modeling and design.

Section 2 highlights the superficial similarities between the two approaches
and argues that these mask the deeper differences which are explored in more de-
tail in section 3. Section 4 concludes with some observations on how the features
sets of DOA and SOA point towards an more complete approach to enterprise
integration.

2 Similarities

For most of this paper we use Web Services and CORBA as prototypical exam-
ples of SOA and DOA respectively. This is simply to provide a concrete context
for discussion, and should not be taken as suggesting that either system is a pure
exemplar of the architectural style. The choice of Web Services carries some par-
ticular worries: it is very new technology and therefore not yet mature, and as it
matures it may begin to concentrate too strongly on its own specifications and
lose sight of the broader, technology-neutral requirements of SOA. We believe
that, because SOA is used at such a high level within enterprises, it cannot be
based solely on any one middleware.

Perhaps unsurprisingly there is no universally agreed definition of either SOA
or DOA: however, there is a certain convergence on the general thrust of the two
architectures:



Service Oriented Architecture “A service is a set of functionality provided
by one entity for the use of others. It is invoked through a software interface
but with no constraints on how the functionality is implemented by the
providing entity . . . A service is opaque in that its implementation is hidden
from the service consumer except for (1) the data model exposed through
the published service interface and (2) any information included as metadata
to describe aspects of the service which are needed by service consumers to
determine whether a given service is appropriate for the consumer’s needs.”
(OASIS)

Distributed Objects Architecture “[Distributed object] applications are com-
posed of objects, individual units of running software that combine function-
ality and data, and that frequently (but not always) represent something in
the real world. Typically, there are many instances of an object of a single
type . . . For each object type you define an interface. The interface is the
syntax part of the contract that the server object offers to the clients that
invoke it. Any client that wants to invoke an operation on the object must
use this interface to specify the operation it wants to perform, and to marshal
the arguments that it sends. When the invocation reaches the target object,
the same interface definition is used there to unmarshal the arguments so
that the object can perform the requested operation with them.” (OMG)

These bare definitions obviously share many similarities, and one might ar-
gue (as indeed several commentators have) that SOA is simply a marketing re-
invention of DOA. However, the similarities are actually rather deceptive, and
we believe that some of the differences, although subtle, are vitally important in
understanding the true relationship between the two approaches.

First the similarities. Both SOA and DOA are structured around remote enti-
ties (services or objects) which perform actions on behalf of clients. The remote
entities typically export a strongly-typed interface defined using a language-
neutral interface definition language (WSDL[6] or IDL[9]), transported using a
language-neutral wire protocol (SOAP[18] or IIOP[9]). Not all implementations
function in exactly this way: Java’s J2EE architecture is based on distributed ob-
jects but has a language-specific interface language and wire protocol, although
J2EE objects can also act as part of CORBA systems.

Perhaps the most common comparison between SOA and DOA contrasts
SOA’s technological neutrality against DOA’s lack of flexibility. Web services
are presented as being able to use lightweight HTTP interactions, but without
being tied to HTTP or WSDL, and this is contrasted against CORBA’s de-
pendence on heavyweight IIOP and IDL. This comparison is largely specious,
in principle if not always in practice. CORBA’s interoperable object references
(IORs) encapsulate multiple “profiles” for accessing the same object via different
protocols, allowing an ORB that supports a number of protocols to access the ob-
ject using whichever protocol is most appropriate. It would be perfectly possible
for an ORB to use HTTP as an optimised lightweight transport while transpar-
ently interoperating with every other CORBA installation. Equally the dynamic
stub and skeleton interfaces provide independence from IDL when required. (See



[1] for more details.) The point here is not to praise CORBA unnecessarily but
rather to focus the debate on actual rather than superficial differences between
systems.

Both SOA and DOA provide invocation by clients of operations at remote
sites. DOA “prefers” two-way interactions both because this matches the needs
of a typical application and because CORBA poorly defines the semantics of one-
way calls; and by default a method call invokes a remote operation and waits
for it to complete. SOA is more neutral, in that it supports interactions being
constructed explicitly from messages. This makes one-way interactions simpler
to construct.

Some authors have contended that this difference in invocation forms the
essence of the difference between DOA and SOA. However, experience shows
that this is deceptive. CORBA, for example, supports both synchronous and
asynchronous communication. The former predominate, and normal use of IDL
interfaces implies synchronous communication: however, one-way calls can be
defined and more advanced RPC structures such as “promises” can be used to
make two ways calls non-blocking[11]. By contrast, a large fraction of SOA sys-
tems make almost exclusive use of two-way synchronous calls constructed from
messages. While DOA and SOA may have different “preferences”, the similar-
ities dominate1. While there is a difference between methods and messages it
actually occurs elsewhere, not in the basic calling conventions – a point we return
to in section 3.7.

SOA and DOA place similar emphasis on the signatures of operations, but
place different emphases on interfaces types for the services themselves. DOA
systems emphasise the use of interface compilers to construct client-side stubs
for invoking methods. While some commentators have stressed that SOA oper-
ations can be called individually, without interface compilation, our experience
in practice is that large-scale SOA systems are using interface compilers too.

Both SOA and DOA are essentially families of systems sharing common ar-
chitectural principles, and it is instructive to see the extent to which these sets
of principles also overlap. SOA advocates stress the separation of systems into
services with well-defined interfaces accessed using a common communications
framework, allowing composition of services and removing the boundaries be-
tween applications and middleware islands. DOA advocates would provide a
remarkably similar list: indeed, CORBA’s initial raison d’être was to provide
such a bridge between different applications, later extended to operate between
middlewares. The point of both architectures is to provide interoperability rather
than homogeneity.

3 Differences

What, then, are the differences between SOA and DOA? The (alleged) novelty
and dynamism of the former are often set against the (alleged) rigidity of the
1 It is certainly the case, however, that synchronous CORBA interactions are signifi-

cantly more optimised that asynchronous calls in most ORBs.



latter: it is hard to see how this can be true given their clear technical simi-
larities. The source of these comparisons may actually reflect the differences in
maturity between the two approaches: DOA has a small number of dominant
implementatations, and the features and restrictions of these are used to define
the overall approach. Even though SOA is too new now for such definition and
restriction, the two have always have strong similarities.

However, perhaps the defining characteristic of enterprise-scale software ar-
chitecture is its sensitivity to small differences, and we believe that SOA and
DOA place this in high relief. Despite the similarities described above there are
differences, and moreover these differences count in aggregate. A system engi-
neered with SOA will be significantly different from one engineered with DOA,
especially in terms of its long-term evolution. Moreover each approach has fea-
tures that could be used beneficially by the other. It is these effects that we
explore in this section.

3.1 Granularity

Granularity refers to the size of entities that are independently addressable
within a system. In DOA systems these entities are individual objects; in SOA
they are services. While this is a distinction that is, it must be admitted, im-
possibly subjective, we believe that some useful general observations may be
made.

DOA inherits from standard (single-host) object-oriented programming a
preference for fine-grained interfaces, although needing a somewhat coarser gran-
ularity to perform well over a network. Interface designers and programmers
are encouraged to divide systems using interfaces providing a single abstraction
(strong cohesion) and exhibit minimal dependence on the implementations of
other interfaces (weak coupling). In designing a system for a travel agent, for
example, a DOA designer might define interfaces for individual travel itineraries
with methods for costing, booking and querying, and then make these accessible
through an interface to a travel agent that collects together the itineraries and
provides additional aggregate operations (figure 1(a)).

A SOA designer, by contrast, would probably take a more coarse-grained
approach, for example designing a travel agent service providing operations on
itineraries, with the itineraries themselves being specified by a reference number.
The travel agent interface would provide itinerary creation, querying and so on,
without exposing itineraries as an abstraction in their own right – although
they would probably exist within the implementation (figure 1(b)). Indeed, the
internal object model in the SOA case may be identical to that in the DOA case,
differently exposed.

The difference is more than superficial. At a modeling level, DOA encour-
ages an approach that is more purely object-oriented in the sense of identifying
each abstraction and making it available in its own right as a first-class ob-
ject. SOA encourages a decomposition in terms of real-world entities that have
a concrete existence at the business level, and which captures the relationships



(a) DOA (b) SOA

Fig. 1. Different granularities of visible objects

and interactions between business entities without introducing other, extraneous
abstractions.

As a SOA system evolves, new service interfaces will be introduced only when
a new business entity is used. Continuing the example, a travel agent’s interac-
tion with a travel-insurance company will result in an insurance service interface
being defined, again encapsulating the insurance business’ business-level facil-
ities. A DOA system evolves similarly, except that introducing an insurance
service would also involve introducing a collection of smaller abstractions and
interfaces (for policies, claims etc) that would typically be elided in public in the
SOA case.

The coarse-grained, SOA view is that, from a business perspective, a travel
agent is an entity “worthy” of an interface whilst itineraries are not: business
interoperability should occur at the level of businesses, not with those businesses’
internal abstractions. The finer-grained, DOA view is that itineraries, policies,
claims etc are domain objects in their own right and should be modeled as such.
This obviously reflects more that a simple difference in technology,. and cuts to
the heart of the differences in approaches promoted by the different architectural
styles.

There are significant advantages to the SOA view. It reduces the “surface
area” of interfaces, and hence the learning curve for client programmers. It also
tends to produce interfaces that perform operations in fewer interactions. The
DOA view may lead to interactions that are too “chatty”, in the sense of requir-
ing a number of interactions to accomplish the same effect. In many systems this
will increase the number of network operations to accomplish a single business-
level task, reducing system throughput.

This may also explain why concurrency control and transactions are a sig-
nificantly more visible issue in DOA than in SOA. A fine-grained system will
inevitably involve multiple object interactions in a single business task, and so
will need to make transactions visible to clients. SOA by contrast exposes the
business tasks explicitly, and so is better able to abstract concurrency control



behind the service interface. However the SOA approach needs concurrency con-
trol in order to scale, and these issues are re-appearing at the services level to
support the emerging activity on web services transactions.

A significant literature has grown up around design patterns for object-
oriented systems, some part of which now targets distributed object systems.
(Good examples are [13, 7]). One immediate observation is that these design
patterns almost always result in finer-grained decompositions of objects. This
suggests that the usual object-oriented approaches translate well to DOA (with
the caveat that they must be balanced against the need to avoid over-chatty
interactions in the interests of performance and robustness), but not necessarily
so readily into SOA.

3.2 Interface types

DOA systems typically place significant emphasis on the definition of interface
types. Interface types appear for applications (for example, standardised objects
models for different vertical domains), for common services (for example the
CORBA services and facilities definitions), and in the standards for DOA mid-
dleware themselves. The use of interfaces is pervasive and can be used to great
effect: the CORBA trading service provides an interface for choosing between
instances of an interface, with the interface repository providing a machine-
readable description of the interface types.

SOA places less emphasis on common interface types: some commentators ac-
tually go further, asserting that SOA services should not have interface types that
can have multiple instances[17]. However it seems inconceivable that a widely-
deployed SOA infrastructure would not converge, at least to some extent, at
least ad hoc, within specific vertical markets, on a set of commonly-agreed in-
terface types. For example, a travel agency consortium could specify a shared
definition and insist that all of its members adopt it. It is not sensible to prevent
the consortium defining such an interface type – as indeed many are already –
and the notion of SOA would be weakened if it does not actively support this.

Standardising interface types requires that there is an authority able to man-
age the standard. This authority may be defined in system-centric terms (all
users of this system agree to these interfaces), or may be defined per-vertical (a
set of common interfaces for the travel industry) or globally (a common interface
to discovery services). In DOA there is typically strong agreement throughout a
given system – although the system may be very large and most programmers
may only be familiar with the interfaces of the sub-systems with which they
work. In SOA by contrast – which targets even larger systems that DOA, and
which specifically deals with systems spanning enterprises – there is no global
attempt to control interface types.

Standardised interfaces within industry verticals can provide leverage at the
modeling level as well. If we again consider the example from above, a travel
agent using a travel insurance company will often be able to re-use the exist-
ing, agreed object model for insurance companies, reducing both the costs of
extension and the degree of coupling between parties.



SOA advocates argue that the lack of standardised interface types increases
flexibility and dynamism. However, interface standardisation evolved for a rea-
son: without such interfaces, system developers must explicitly write adapters
for each component. As system size and complexity increase, creating and (much
more importantly) maintaining this “glue” code becomes the dominant cost. It is
impossible to avoid the concern that large-scale SOA deployment may be better
able than DOA to encompass a wider range of disparate systems, but only at the
cost of hugely increasing the amount of interface adaptation and maintenance
required.

In many large systems each interaction will typically only use a small fraction
of each interface. This is perhaps more true for SOA than DOA, as the interfaces
involved tend to be larger (section 3.1). One might argue that SOA adapters can
therefore focus on providing only the part of the interface required, which may
simplify their development. Experience suggests that this argument is specious
over the long term, as increasing complexity will tend to “fill out” the use of
interfaces over time.

The reduced emphasis on interface type standards therefore does not remove
the pain of standardisation for enterprises, but instead simply defers it to inte-
gration time and replicates it for each integration.

3.3 Composition

The usual response to an overly fine-grained decomposition (typically manifested
as poor performance) is to re-engineer the system to coalesce several interfaces.

In many cases the internal design of a system will follow its external decom-
position, with objects for itineraries etc. Coalescing interfaces will typically take
the form of providing a façade that hides the individual objects.

Composition of services is an integral part of SOA, often referred to as or-
chestration and supported by a number of emerging standards (for example
BPEL4WS[2]). Individual “partners” in a composite service are specified by pro-
viding the service port, optionally including a port type (interface type). Many
programming languages have similar constructions, notably the structure and
signature system in Standard ML[12].

One can provide orchestration without interface types. However, the absence
of standardised interfaces make it difficult to see how a single process descrip-
tion can be re-used on different instances of services. The point is that interfaces
provide more than individual operation signatures. An interface combines a set
of operations with an implicit (or, increasingly, an explicit) contract on the way
in which these operations will work together. Adherence to an agreed, reviewed
and documented standard provides developers with confidence – albeit some-
times misplaced – that the operations will function together as intended and
will respect the interface’s contract. Allowing orchestration on the basis of indi-
vidual operations, without this level of confidence in their consistent underlying
assumptions, seems unlikely to succeed on a large scale.



3.4 Identifying instances

Both SOA and DOA provide names for instances of interfaces: SOA typically
identifies services by URLs for their service endpoints where queries should be
directed, providing direct integration with the web, while DOA systems typically
use more opaque identifiers such as CORBA IORs or J2EE object references.

A fine-grained DOA decomposition means that individual entities will typi-
cally have a distinct identity. We can identify an itinerary using an object refer-
ence, and both interact with it directly and pass it to other objects for them to
use (figure 1(a)). By contrast a SOA decomposition focuses on service endpoints
which will not typically identify such a small object with a (SOA-level) identi-
fier, and so will use an ad hoc reference such as itinerary number, reflecting the
submerging of the object model behind the business interface.

Fig. 2. Standardised documents replace standardised interfaces for data exchange

The coarse-grained approach has an immediate impact on systems architec-
ture. Since data objects cannot be referred to directly by reference, the designer
has two options. The first alternative is to identify internal data by some form of
reference number, forcing the service implementor to manage an ad hoc names-
pace of objects. These namespaces are private, in the sense that an identifier
generated by one instance cannot be used by another instance. To use the travel
agent example again, a client must keep track of which travel agent service is
managing which itinerary, so that queries are directed to the right interface.
A service that used multiple services, for example when booking hotels through
multiple providers, would be faced with quite a complex task. In SOA these issues
must be managed outside the framework; in DOA they are typically managed by
the middleware. This weakens SOA’s claim to provide location transparency[16]:
while technically true, the added complexity of namespace management reduces
its impact in practice.



The second alternative (figure 2) is to manage data using a more document-
centric approach, with a service creating documents that describe the data being
manipulated: the travel agent provides an itinerary document in XML to the
client, which may then store it or pass it back to the service at a later point.
Such documents can be passed between services if they have an agreed format,
so some level of standardisation across enterprises is again needed to facilitate
integration. Services still need to convert documents to and from an internal
representation and must take steps against alteration or forgery of date held
externally, both of which complicate data management and interface coding.

If SOA is widely deployed, private namespaces and/or document formats will
inevitably proliferate and complicate interactions. It seems possible to us that
the DOA model therefore has significant advantages in terms of orchestration,
service composition and re-purposing, as the single notion of object provides a
significant simplification at the level of composition even though it may compli-
cate individual interactions.

Some more structured approaches to endpoint description are emerging.
BPEL4WS encourages the instanciation of business processes to handle state-
ful interactions, using correlation sets to identify specific instances[2, section
10]. WS-Addressing also provides more structure for addressing into individual
services[4]. Neither approach provides support for the service implementor in
managing their internal namespaces or entity lifecycles.

3.5 Modeling

Is the SOA or DOA modeling approach better? The answer essentially depends
on the view we take as to what is happening when an analyst or modeler pro-
duces an object model. Both views may be derived depending on our initial
assumptions:

If we take the view that the set of interface types identified are fundamentally
tied to the system being modeled, capturing its essence, then it follows that these
are unlikely to change unless there is a fundamental change made to the system.
If such a fundamental change is made, any model – wherever it lies on the
spectrum of granularity – will have to change. It also follows that such a set
of interfaces will be easy to use because they model the real world so well. It
also follow that making each object visible will allow improved re-use and reduce
complexity, since the designer can focus on providing only the different functions
in the system at each interface. We would therefore conclude that exposing the
detailed object model will improve and simplify the long-term evolution of the
system.

On the other hand, if we take the view that the object model is a detail
in the day-to-day internal running of a business, it follows that the model will
be subject to frequent change as the business evolves. It thus follows that such
change should be masked from clients as it has no real significance to business-
to-business interactions; would lead to undue coupling between businesses; and
would anyway be too complicated for an external client to understand as under-
standing the decomposition (and hence the functions available) would involve



too much understanding of the business. (This is essentially a model-level ver-
sion of the well-known “yoyo problem”[14] at the code level.) We would therefore
conclude that exposing only business-level functions, preferably in one interface
and with no visible dependencies on other services, will improve the robustness
of business-to-business interactions in the face of evolution.

Both positions are perfectly defensible. Our own view is that SOA cannot be
dogmatic on the approach used. The guidance from practice would be that main-
stream object-oriented decomposition can lead to over-fine interfaces for DOA.
Interfaces cannot be so fine-grained that they will perform well only over very
fast networks: this would lead to too tight a coupling between a service and its
clients. However, the SOA principles themselves – and certainly the technology
used to implement them – should not restrict the modeling approach that an
enterprise believes in. In particular, it is too fine a point for an architecture to
regulate on how granular a set of interfaces should be.

Objects can be business level or system level. Viewed simplistically, services
must be business level: however, it is difficult to draw the dividing line between
business- and system-level entities, and this raises much the same issues around
modeling as above. In addition, the principles behind SOA (such as well-defined
contracts and separating implementation and interface) are just as valid at the
system level as they are at the business level. (Some commentators even use
the term SOA for the system level, and the term B-SOA for the business level;
we prefer to define SOA as the uppermost level of integration and use the term
Enterprise Service Bus to refer to the technology that facilitates communication
between SOA entities).

In both SOA and DOA, it is common for programmers to generate ser-
vice/object interfaces from some form of interface on existing systems (perhaps
a description of the data that is exchanged, or interfaces defined in programming
languages). These lead to low-level – and often inappropriate – interfaces. The
only excuse for doing this in DOA is as a stepping stone to offering a proper
high level interface to clients; there is probably no excuse for doing it in SOA.

The rise in interest in model-driven architecture[8] provides a possible bridge
between the modeling views. MDA defines a system architecture as a set of trans-
formations between models to reflect the different levels of concern in systems
development. Coarse-grained SOA interfaces fit well into this scheme, although
this still leaves the problems (exemplified in section 3.4) that arise from the
inability to share model objects across enterprises.

3.6 Inheritance and implementation

Inheritance is often regarded as a core characteristic of object-oriented sys-
tems[5]. Many DOA systems support inheritance at two distinct but related
levels. At the interface level, an interface may specialise another by adding new
operations. At the implementation level, it is often possible (although not re-
quired) to re-use the implementation of one interface in defining the specialisa-
tions of that interface.



Not all DOA systems have this feature, however. J2EE is particularly re-
stricted in this regard, in that there is exactly one implementation of each inter-
face within a single application instance, and that implementation is (somewhat
perversely) not a valid Java-level instance of its own external interface type. The
lack of polymorphism means that many approaches used in other DOA systems
do not translate well into J2EE. It also complicates some simple but highly
effective optimisations, most notably using language-level references instead of
external network references when exchanging references to objects within the
same server.

WSDL does not provide the notion of interface specialisation, perhaps in
keeping with SOA’s reduced emphasis on interface types altogether2. However,
sub-interfaces provide a vital mechanism for differentiating providers without
compromising interoperability: a client may use additional features provided by
a particular provider if it understands them, but may rely on a core of operations
being available uniformly regardless of provider. Run-time interface manipula-
tions and sub-interface checks make this process reasonably straightforward. We
persist with our view that interface types are actually more important for SOA
than for DOA, given the focus on cross-enterprise integration.

Inheritance is not the only form of extension, however. Delegation-based mod-
els are also extremely powerful, and neither SOA nor DOA typically support the
notion intrinsically. While such mechanisms are useful linguistically, they can be
approximately provided using events (see below).

3.7 Operations, messages and events

Returning to the use of messages versus operations, one may ask the question
why this difference is so insignificant, given the widespread belief that messages
(in one form or another) are an essential feature of loosely-coupled systems.

Both SOA and DOA allow clients to invoke operations on individual inter-
faces. While messages (or one-way methods) may decouple the request from its
completion, they do not change this model.

By contrast, event-based systems allow information to be transferred to zero,
one or more consumers according to several possible models. In the CORBA
event service’s “push” model, receipt of an event automatically triggers the ex-
ecution of handler code, so a single event can cause code to be invoked on the
different objects that are subscribed to the same event channel.

The key difference is not (as is sometimes stated) between messages and
method calls as invocation mechanisms, but rather between first-class events
which may be manipulated programmatically and second-class invocation mech-
anisms that operate beneath the language level. To use the terminology of aspect-
oriented programming[10], events reify the calling mechanism into the language
and allow it to be modified to (for example) queue invocations or distribute
them more widely. The XML nature of SOAP messages makes them easier to

2 Although sub-interfaces may be added to later versions.



manipulate programmatically. Such manipulations are also common in CORBA
systems however, albeit with considerably more effort being required.

Both SOA and DOA infrastructures have external event services (often with
a standardised interface type in the case of DOA). Clients may interact with such
event services using either messages or method calls, which are then converted
into events and operated on using filters, publish/subscribe etc. While events
provide powerful support for loose coupling, SOA’s explicitly message-based in-
vocation mechanism provides little or no such advantage over DOA.

4 Conclusion

We have explored the similarities and differences between the service-oriented
and distributed object approaches to enterprise system modeling, design and im-
plementation. While the approaches (and their underlying technologies) share
significant features in common, their differences – while subtle – lead to sig-
nificantly different views of enterprise system structuring and evolution. This
strongly suggests that SOA in particular represents more than simply a market-
ing phenomenon, and conversely that DOA has both a significant on-going niche
and a number of important lessons to impart.

Of all the issues examined, four stand out. Firstly, SOA requires a signif-
icantly coarser granularity of exposed object model than DOA. The focus on
coarse-grained, aggregated interfaces may simplify interactions across enterprises
(or business divisions) by reducing the number of interface interactions needing
to be understood. This is an important simplification in a world in which busi-
nesses interact more dynamically and without necessarily establishing long-term
relationships between their information systems: programmers need to under-
stand less of the target businesses’ infrastructure in order to avail of its services.

Secondly, the ability to exchange references to objects within the framework
seems to be a positive step for orchestration, allowing different providers to work
with each others’ data directly rather than via private references or descriptive
documents – which require standardisation anyway. Forcing designers to deal
with these additional complexities seems to serve no useful purpose.

Thirdly, SOA’s de-emphasising of interface types will not lead to simpler in-
tegration over the long term. While simpler to establish, such ad hoc approaches
push complexity out into each integration, the costs of which will spiral as SOA
increases in market penetration. It would seem prudent to repeat the OMG’s
experience in defining standardised object models and interfaces within vertical
market segments, allowing providers to differentiate themselves in other ways or
by providing extensions to the basic structures.

Finally, business integration did not start with SOA. There is a existing
volume of work in modeling the issues, objects, operations and relationships of
specific industries. The significance of this work lies in the understanding it gives
of industries and the degree of commonality that exists between providers, rather
than in the object models per se. Perhaps, then, a more appropriate, business-
level question is: how can this understanding be re-used in the slightly different



context of SOA? It may be that the underlying modeling assumptions are too dif-
ferent to allow simple translations, although providing a service-oriented façade
might allow SOA to use the existing DOA infrastructures with little additional
cost.

These are extremely subtle issues, but taken together the different solutions
that SOA and DOA take to them aggregate to deliver distinctively different sys-
tem architectures. SOA systems are likely to use more asynchronous invocations
and to involve less up-front cost to establish, although the complexities of adap-
tation may over time may make this a rather Pyrrhic victory. DOA systems may
more closely reflect a conceptual object model of the application domain and
make information sharing and exchange simpler, but only in situations where
standard object models and interface definitions can be agreed upon and when
the value of the expected interactions justifies the standardisation costs.

The messages versus remote method calls debate misses the point. The dis-
tinction is rather between first- and second-class invocation mechanisms, and
flexible event systems are equally definable in – and complementary to – both
SOA and DOA, and so do not provide a reason to choose one over the other.
Indeed, Gartner Group have suggested that any system architecture requires
both invocation-based and event-based interactions to maximise loose coupling.

SOA’s goals of a more “business-friendly” distributed platform are laudable,
economically significant and technologically challenging. It is however important
to remember and re-use the features from more traditional DOA approaches that
can usefully be included into the top-level integration of enterprise systems.

References

1. Common Object Request Broker Architecture (CORBA/IIOP), v.3.0.3. Technical
Report formal/2004-03-12, Object Management Group, 2004.

2. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana
Trickovic, and Sanjiva Weerewarana. Business Process Execution Language for
Web Services, version 1.1. Technical report, IBM, 2003.

3. Seán Baker and Simon Dobson. Comparing service-oriented and distributed object
architectures. In Robert Meersman and Zahir Tari et al, editors, Proceedings of the
International Symposium on Distributed Objects and Applications, LNCS. Springer
Verlag, 2005. To appear.

4. Don Box, Erik Christensen, Francisco Curbera, Donald Ferguson, Jeffrey Frey,
Marc Hadley, Chris Kaler, David Langworthy, Frank Leymann, Brad Lovering,
Steve Lucco, Steve Millet, Nirmal Mukhi, Mark Nottingham, David Orchard, John
Shewchuk, Eugène Sindambiwe, Tony Storey, Sanjiva Weerawarana, and Steve
Winkler. Web services addressing (WS-Addressing). W3C member submission,
August 2004.

5. Luca Cardelli and Peter Wegner. On understanding types, data abstraction and
polymorphism. ACM Computing Surveys, (4):471–522, 1985.

6. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language 1.1. Technical report, World Wide Web Con-
sortium, 2001.



7. Martin Fowler. Patterns of enterprise application architecture. Addison Wesley,
2003.

8. David Frankel. Model driven architecture: applying MDA to enterprise computing.
Wiley, 2003.

9. Michi Henning and Steve Vinoski. Advanced CORBA programming with C++.
Addison Wesley, 1999.

10. Gregor Kiczales, Jim des Rivières, and Daniel Bobrow. The art of the metaobject
protocol. MIT Press, 1991.

11. Barbara Liskov and Liuba Shrira. Promises: linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the ACM
SIGPLAN conference on Programming Language Design and Implementation,
PLDI’88, pages 260–267. ACM Press, 1988.

12. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The definition
of Standard ML (revised). MIT Press, 1997.

13. Thomas Mowbray and Raphael Malveau. CORBA design patterns. Wiley, 1997.
14. David Taenzer, Murthi Ganti, , and Sunil Podar. Object-oriented software reuse:

the yoyo problem. Journal of Object-Oriented Programming, 2(3):30–35, 1989.
15. Werner Vogels. Web services are not distributed objects. IEEE Internet Comput-

ing, 7(6):59–66, November/December 2003.
16. Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on distributed

computing. In Jan Vitek and Christian Tschudin, editors, Mobile object systems:
towards the programmable Internet, pages 49–64. Springer-Verlag, 1997.

17. Jim Webber. Horses for courses: services, object and loose coupling. Web Services
Journal, 4(4), January 2004.

18. Dave Winer. XML-RPC specification. http://www.xmlrpc.com/spec, 1999.

About the authors

Seán Baker is Chief Scientist at IONA Technologies plc, one of the world’s
leading middleware companies. He has over 20 years’ experience in distributed
object systems and was involved in the development of Orbix, one of the first
commercial CORBA systems. He holds a PhD in computer science from Trinity
College Dublin, is a Chartered Engineer, and has published a number of books,
papers and articles in the area of distributed computing.
Simon Dobson is a lecturer with the School of Computer Science and Informat-
ics at UCD Dublin. His research interests centre around programming languages
and architectures for adaptive, distributed, pervasive computing systems. He has
over 15 years’ experience with distributed systems both in academia and indus-
try. He holds a BSc and PhD in computer science, is a Chartered Engineer and
member of the BCS, ACM and IEEE.


