
1

University of St Andrews

Understanding how to implement
sparse matrix operations efficiently

Simon Dobson

simon.dobson@st-andrews.ac.uk
https://simondobson.org
https://mastodon.scot/@simoninireland

mailto:simon.dobson@st-andrews.ac.uk
https://simondobson.org/
https://mastodon.scot/@simoninireland

2

Overview

A talk in three parts
● Matrices
● Why sparse matrices are different, and why this causes problems
● Our plan to improve the situation

Don’t expect to see any results

Wherever there is a pattern (if you can find it)...

...there is (potentially) an optimisation (if you can find it)

...and this is hopefully how we find it

3

Matrices

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

A block of numbers that are
treated as a whole, with their own
algebra of operations

rows

columns

Not necessarily square
(but often are)

4

Matrices

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

x + 2y +5z
3x + 6y +7z +3p
4x + 5y +2z + 9p
4x + 7y + z + 8p

A block of numbers that are
treated as a whole, with their own
algebra of operations

The operations mirror the way that
linear equations are handled, with
the numbers in the matrix
corresponding to coefficients in
the corresponding equations

5

Matrix multiplication

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

6

Matrix multiplication

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

7

Matrix multiplication

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

8

Matrix multiplication

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

= (1 x 5) + (2 x 5) + (5 x 8) + (0 x 8) = 55 ...

3

...
Each element in the result matrix
is the sum of four multiplications of
elements in the argument matrices

9

Patterns

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

How does this number
interact with the numbers
in the other matrix?

10

Patterns

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

The numbers in column 1 are
multiplied by all the numbers in
row 1

This pattern is independent of the
numbers themselves: it’s purely structural

(1 x 5) +

...

(1 x 2) + ...=

11

Other sources of matrices

1

3
4

2

12

Other sources of matrices

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1

3
4

2
 1 2 3 4 1 2 3 4

1

2

3

4

Cell is 1 if there is an edge from
node i to node j, and 0 otherwise

Row/column positions correspond to node labels

The adjacency matrix A
corresponding to the graph

13

Operators

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1

3
4

2
 1 2 3 4 1 2 3 4

1

2

3

4

The adjacency matrix captures the
static features of the graph – its
structure

Define an operator that maps values
at nodes to new values based on the
edge structure – the dynamics of
processes over the graph

14

Operators

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1

3
4

2
 1 2 3 4 1 2 3 4

1

2

3

4

How would information (or something
else) “flow” across the edges of the
graph?

The adjacency matrix captures the
static features of the graph – its
structure

Define an operator that maps values
at nodes to new values based on the
edge structure – the dynamics of
processes over the graph

15

Operators

L = D - A

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1

3
4

2
 1 2 3 4 1 2 3 4

1

2

3

4

The degree of nodes on the
diagonal; -1 where nodes are
adjacent; 0 otherwise

2 -1 -1 0

-1 3 -1 -1

-1 -1 2 0

0 -1 0 -1

 1 2 3 4 1 2 3 4

1

2

3

4

The Laplacian matrix L
corresponding to the graph

In linear algebra “operator” typically
(although not necessarily) means “a
special matrix derived somehow that
we’ll then multiply by”

16

Operators

Wikipedia

A rotation operator, a constant matrix
that takes any point (expressed as a
column vector) to that point rotated
around the origin by θ

cos θ x-sin θ

sin θ cos θ y
x

Matrices are closely related to
geometry, and any operator has a
corresponding (not always obvious,
or interesting) geometric analogue

17

Representing matrices

1 2 5 0 3 6 7 3 4 5 2 9 4 7 1 8

“Row-major”: row 1 followed by row 2 followed by ...

A

Low address High address

The two-dimensional structure is mapped
into a linear structure, corresponding with
how memory is represented

18

Representing matrices

1 2 5 0 3 6 7 3 4 5 2 9 4 7 1 8

“Row-major”: row 1 followed by row 2 followed by ...

1 2 5 03 6

7

34 5 2 94 7 1 83

“Column-major”: column 1 followed by column 2 followed by ...

A

B

19

Why this matters

Instruction decode

Branch prediction

ALU

Main memory

The “von Neumann” model of a processor core: a
single CPU interacting with a single block of memory

(John von Neumann would probably be horrified to
have his name associated with this, but never mind...)

20

Why this matters

Instruction decode

Branch prediction

ALU

On-chip
(level 0)
cache

Cache controller

Level 1
cache

Main memory

Getting performance means
having data in on-chip cache
ready to be accessed by the ALU

May be several levels of cache, with
their own logic and/or API to move data
around programmatically between the
core and the main memory

Fast (but not much of it) Slow (but lots of it)

21

Why this matters

1 2 5 0 5 5 8 8x

To do multiplication efficiently, we need to
move the rows and columns into cache so
we can multiply and sum them

Instruction decode

Branch prediction

ALU

On-chip
(level 0)
cache

Cache controller

Level 1
cache

Main memory

...but we know the pattern, so the compiler
can statically schedule this activity

22

Why this matters

1 2 5 0 5 5 8 8x

To do multiplication efficiently, we need to
move the rows and columns into cache so
we can multiply and sum them

Instruction decode

Branch prediction

ALU

On-chip
(level 0)
cache

Cache controller

Level 1
cache

Main memory

...but we know the pattern, so the compiler
can statically schedule this activity

Wherever there is a pattern (if you can find it)...

...there is (potentially) an optimisation (if you can find it)

23

Sparsity

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

Our first matrices so far were
dense: few if any of the values
are zero

24

Sparsity

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

The adjacency matrix, however,
is sparse: most of its elements
are zero

25

Sparse multiplication

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Lots of zero terms in one (or
both) argument matrices

26

Sparse multiplication

2 5 7

8 1 2

6 3 1

3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

(0 x 5) + (1 x 5) + (1 x 8) + (0 x 8) = 13 ...

...

Several result terms are necessarily
zero, regardless of the other matrix

5

5

8

8

27

Sparse multiplication

2 5 7

8 1 2

6 3 1

3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 (1 x 5) + (1 x 8) = 13 ...

...

Only do the multiplications that
can result in a non-zero result

5

5

8

8

{

28

Sparsity patterns

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x = (1 x 5) + (2 x 5) + (5 x 8) + (0 x 8) = 55 ...

3
...

In the dense case the pattern of
operations is constant and
independent of the actual values
in the argument matrices

29

Sparsity patterns

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

=

(1 x 5) + (2 x 5) + (5 x 8) + (0 x 8) = 55 ...

3
...

In the sparse case, by contrast, the
multiplications that take place depend
critically on the sparsity pattern of one
or both argument matrices

2 5 7

8 1 2

6 3 1

3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 (1 x 5) + (1 x 8) = 13 ...

...

5

5

8

8

30

Sparsity and performance

x1 1 5 8

The compiler only knows what to move
to which cache with reference to the
actual data in the argument matrices

...and we can’t know this until run-time

...and we can only get performance
when we have the data in cache: if it’s
in main memory the core can’t run at
anything approaching full speed

31

Sparsity and storage

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 1 2

1

2

999,999

1,000,000

...

... ...

...

Consider the adjacency matrix for
a 1,000,000-node graph

32

Sparsity and storage

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 1 2

1

2

999,999

1,000,000

...

... ...

...

If each node has on average 100 neighbours,
each row has on average 100 non-zero
elements and 999,900 zero elements

Zero almost everywhere

33

Sparse representations

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

Dense: two representations
(row- versus column-major)

34

Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

35

Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

(((0 1) 1) ((0 2) 1)
 ((1 0) 1) ((1 2) 1) ((1 3) 1)
 ((2 0) 1) ((2 1) 1)
 ((3 1) 1))

Co-ordinate list (COO)

(((1 1) (2 1))
 ((0 1 (2 1) (3 1))
 ((0 1) (1 1))
 ((1 1)))

List of lists (LoL)

36

Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

(((0 1) 1) ((0 2) 1)
 ((1 0) 1) ((1 2) 1) ((1 3) 1)
 ((2 0) 1) ((2 1) 1)
 ((3 1) 1))

Co-ordinate list (COO) List of lists (LoL)

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

The non-zero values
in row-major order

The column position of each
non-zero element in its row

The start of each row,
as an index into V

V

Compressed Sparse Row (CSR)

RINDEX

CINDEX

The length of V

(((1 1) (2 1))
 ((0 1 (2 1) (3 1))
 ((0 1) (1 1))
 ((1 1)))

37

Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

(((0 1) 1) ((0 2) 1)
 ((1 0) 1) ((1 2) 1) ((1 3) 1)
 ((2 0) 1) ((2 1) 1)
 ((3 1) 1))

Co-ordinate list (COO) List of lists (LoL)

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

The non-zero values
in row-major order

The column position of each
non-zero element in its row

The start of each row,
as an index into V

V

Compressed Sparse Row (CSR)

RINDEX

CINDEX

(((1 1) (2 1))
 ((0 1 (2 1) (3 1))
 ((0 1) (1 1))
 ((1 1)))

38

Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

(((0 1) 1) ((0 2) 1)
 ((1 0) 1) ((1 2) 1) ((1 3) 1)
 ((2 0) 1) ((2 1) 1)
 ((3 1) 1))

Co-ordinate list (COO) List of lists (LoL)

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

...and none of these representations make
use of the two most obvious facts:

- All non-zero values are 1
- The matrix is symmetrical (Aij = Aji)

V

Compressed Sparse Row (CSR)

RINDEX

CINDEX

(((1 1) (2 1))
 ((0 1 (2 1) (3 1))
 ((0 1) (1 1))
 ((1 1)))

39

Our challenge

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

V

Compressed Sparse Row (CSR)

RINDEX

CINDEXMake this:

Work efficiently on this:

40

Our challenge

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

V

Compressed Sparse Row (CSR)

RINDEX

CINDEXMake this:

Work efficiently on this:

What are the patterns
we observe in (sparse)
matrix operations that
we can use to drive
efficient computation?

41

The plan

2 5 7

8 1 2

6 3 1

3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 (1 x 5) + (1 x 8) = 13 ...

...

How do the different representations
interact? Are there special cases?

5

5

8

8

=

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

V

RINDEX

CINDEX 5 5 8 8 2 8 6 3x ...

42

The plan

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

V

RINDEX

CINDEX

L = D - A

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 1 2 3 4 1 2 3 4

1

2

3

4

2 -1 -1 0

-1 3 -1 -1

-1 -1 2 0

0 -1 0 -1

 1 2 3 4 1 2 3 4

1

2

3

4

2 -1 -1 -1 3 3 -1 -1

0 1 2 0

3 7

1 2 3 0

V

RINDEX

CINDEX

...

...

...

Are there efficient ways of deriving the
interesting operators under different
representations?

43

Present state

Writing a matrix library that records the basic operations (as well as
doing them)

● Gives us a stream of element-wise multiplications and additions

Implement the algorithms against (descriptions of) the different
representations

● What sorts of locality of
reference are there?

● Do the special operators generate
characteristic patterns of data or
operations?

Wherever there is a pattern (if you can find it)...

...there is (potentially) an optimisation (if you can find it)

...and this is hopefully how we find it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

