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Overview

A talk in three parts
● Matrices
● Why sparse matrices are different, and why this causes problems
● Our plan to improve the situation

Don’t expect to see any results

Wherever there is a pattern (if you can find it)...

...there is (potentially) an optimisation (if you can find it)

...and this is hopefully how we find it
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Matrices

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

A block of numbers that are 
treated as a whole, with their own 
algebra of operations

rows

columns

Not necessarily square 
(but often are)
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Matrices

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

x + 2y +5z
3x + 6y +7z +3p
4x + 5y +2z + 9p
4x + 7y + z + 8p

A block of numbers that are 
treated as a whole, with their own 
algebra of operations

The operations mirror the way that 
linear equations are handled, with 
the numbers in the matrix 
corresponding to coefficients in 
the corresponding equations
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Matrix multiplication

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x
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Matrix multiplication
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Matrix multiplication

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8
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Matrix multiplication

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

= (1 x 5) + (2 x 5) + (5 x 8) + (0 x 8) = 55 ...

3

...
Each element in the result matrix 
is the sum of four multiplications of 
elements in the argument matrices
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Patterns

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

How does this number 
interact with the numbers 
in the other matrix?
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Patterns

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

The numbers in column 1 are 
multiplied by all the numbers in 
row 1

This pattern is independent of the 
numbers themselves: it’s purely structural

(1 x 5) + ... ...

...

(1 x 2) + ...=
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Other sources of matrices

1

3
4

2
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Other sources of matrices

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1

3
4

2
 1      2       3      4 1      2       3      4

1

2

3

4

Cell is 1 if there is an edge from 
node i to node j, and 0 otherwise

Row/column positions correspond to node labels

The adjacency matrix A 
corresponding to the graph
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Operators

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1

3
4

2
 1      2       3      4 1      2       3      4

1

2

3

4

The adjacency matrix captures the 
static features of the graph – its 
structure

Define an operator that maps values 
at nodes to new values based on the 
edge structure – the dynamics of 
processes over the graph
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Operators

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1

3
4

2
 1      2       3      4 1      2       3      4

1

2

3

4

How would information (or something 
else) “flow” across the edges of the 
graph?

The adjacency matrix captures the 
static features of the graph – its 
structure

Define an operator that maps values 
at nodes to new values based on the 
edge structure – the dynamics of 
processes over the graph
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Operators

L = D - A

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1

3
4

2
 1      2       3      4 1      2       3      4

1

2

3

4

The degree of nodes on the 
diagonal; -1 where nodes are 
adjacent; 0 otherwise

2 -1 -1 0

-1 3 -1 -1

-1 -1 2 0

0 -1 0 -1

 1      2       3      4 1      2       3      4

1

2

3

4

The Laplacian matrix L 
corresponding to the graph

In linear algebra “operator” typically 
(although not necessarily) means “a 
special matrix derived somehow that 
we’ll then multiply by”
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Operators

Wikipedia

A rotation operator, a constant matrix 
that takes any point (expressed as a 
column vector) to that point rotated 
around the origin by θ

cos θ x-sin θ

sin θ cos θ y
x

Matrices are closely related to 
geometry, and any operator has a 
corresponding (not always obvious, 
or interesting) geometric analogue
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Representing matrices

1 2 5 0 3 6 7 3 4 5 2 9 4 7 1 8

“Row-major”: row 1 followed by row 2 followed by ...

A

Low address High address

The two-dimensional structure is mapped 
into a linear structure, corresponding with 
how memory is represented



18

Representing matrices

1 2 5 0 3 6 7 3 4 5 2 9 4 7 1 8

“Row-major”: row 1 followed by row 2 followed by ...

1 2 5 03 6

7

34 5 2 94 7 1 83

“Column-major”: column 1 followed by column 2 followed by ...

A

B
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Why this matters

Instruction decode

Branch prediction

ALU

Main memory

The “von Neumann” model of a processor core: a 
single CPU interacting with a single block of memory

(John von Neumann would probably be horrified to 
have his name associated with this, but never mind...)
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Why this matters

Instruction decode

Branch prediction

ALU

On-chip
(level 0)
cache

Cache controller

Level 1 
cache

Main memory

Getting performance means 
having data in on-chip cache 
ready to be accessed by the ALU

May be several levels of cache, with 
their own logic and/or API to move data 
around programmatically between the 
core and the main memory

Fast (but not much of it) Slow (but lots of it)
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Why this matters

1 2 5 0 5 5 8 8x

To do multiplication efficiently, we need to 
move the rows and columns into cache so 
we can multiply and sum them

Instruction decode

Branch prediction

ALU

On-chip
(level 0)
cache

Cache controller

Level 1 
cache

Main memory

...but we know the pattern, so the compiler 
can statically schedule this activity
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Why this matters

1 2 5 0 5 5 8 8x

To do multiplication efficiently, we need to 
move the rows and columns into cache so 
we can multiply and sum them

Instruction decode

Branch prediction

ALU

On-chip
(level 0)
cache

Cache controller

Level 1 
cache

Main memory

...but we know the pattern, so the compiler 
can statically schedule this activity

Wherever there is a pattern (if you can find it)...

...there is (potentially) an optimisation (if you can find it)
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Sparsity

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

Our first matrices so far were 
dense: few if any of the values 
are zero
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Sparsity

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

The adjacency matrix, however, 
is sparse: most of its elements 
are zero
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Sparse multiplication

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Lots of zero terms in one (or 
both) argument matrices
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Sparse multiplication

2 5 7

8 1 2

6 3 1

3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

(0 x 5) + (1 x 5) + (1 x 8) + (0 x 8) = 13 ...

...

Several result terms are necessarily 
zero, regardless of the other matrix

5

5

8

8
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Sparse multiplication

2 5 7

8 1 2

6 3 1

3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

              (1 x 5) + (1 x 8)               = 13 ...

...

Only do the multiplications that 
can result in a non-zero result

5

5

8

8

{
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Sparsity patterns

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x = (1 x 5) + (2 x 5) + (5 x 8) + (0 x 8) = 55 ...

3
...

In the dense case the pattern of 
operations is constant and 
independent of the actual values 
in the argument matrices
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Sparsity patterns

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

5 2 5 7

5 8 1 2

8 6 3 1

8 3 5 9

x

=

(1 x 5) + (2 x 5) + (5 x 8) + (0 x 8) = 55 ...

3
...

In the sparse case, by contrast, the 
multiplications that take place depend 
critically on the sparsity pattern of one 
or both argument matrices

2 5 7

8 1 2

6 3 1

3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

              (1 x 5) + (1 x 8)               = 13 ...

...

5

5

8

8
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Sparsity and performance

x1 1 5 8

The compiler only knows what to move 
to which cache with reference to the 
actual data in the argument matrices

...and we can’t know this until run-time

...and we can only get performance 
when we have the data in cache: if it’s 
in main memory the core can’t run at 
anything approaching full speed
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Sparsity and storage

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 1      2      

1

2

999,999

1,000,000

...    

...    ...    

...    

Consider the adjacency matrix for 
a 1,000,000-node graph
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Sparsity and storage

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 1      2      

1

2

999,999

1,000,000

...    

...    ...    

...    

If each node has on average 100 neighbours, 
each row has on average 100 non-zero 
elements and 999,900 zero elements

Zero almost everywhere
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Sparse representations

1 2 5 0

3 6 7 3

4 5 2 9

4 7 1 8

Dense: two representations 
(row- versus column-major)
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Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations
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Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

(((0 1) 1) ((0 2) 1)
 ((1 0) 1) ((1 2) 1) ((1 3) 1)
 ((2 0) 1) ((2 1) 1)
 ((3 1) 1))

Co-ordinate list (COO)

(((1 1) (2 1))
 ((0 1 (2 1) (3 1))
 ((0 1) (1 1))
 ((1 1)))

List of lists (LoL)
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Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

(((0 1) 1) ((0 2) 1)
 ((1 0) 1) ((1 2) 1) ((1 3) 1)
 ((2 0) 1) ((2 1) 1)
 ((3 1) 1))

Co-ordinate list (COO) List of lists (LoL)

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

The non-zero values 
in row-major order

The column position of each 
non-zero element in its row

The start of each row, 
as an index into V

V

Compressed Sparse Row (CSR)

RINDEX

CINDEX

The length of V

(((1 1) (2 1))
 ((0 1 (2 1) (3 1))
 ((0 1) (1 1))
 ((1 1)))
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Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

(((0 1) 1) ((0 2) 1)
 ((1 0) 1) ((1 2) 1) ((1 3) 1)
 ((2 0) 1) ((2 1) 1)
 ((3 1) 1))

Co-ordinate list (COO) List of lists (LoL)

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

The non-zero values 
in row-major order

The column position of each 
non-zero element in its row

The start of each row, 
as an index into V

V

Compressed Sparse Row (CSR)

RINDEX

CINDEX

(((1 1) (2 1))
 ((0 1 (2 1) (3 1))
 ((0 1) (1 1))
 ((1 1)))
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Sparse representations

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

Sparse: 11+ representations

(((0 1) 1) ((0 2) 1)
 ((1 0) 1) ((1 2) 1) ((1 3) 1)
 ((2 0) 1) ((2 1) 1)
 ((3 1) 1))

Co-ordinate list (COO) List of lists (LoL)

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

...and none of these representations make 
use of the two most obvious facts:

- All non-zero values are 1
- The matrix is symmetrical (Aij = Aji)

V

Compressed Sparse Row (CSR)

RINDEX

CINDEX

(((1 1) (2 1))
 ((0 1 (2 1) (3 1))
 ((0 1) (1 1))
 ((1 1)))
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Our challenge

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

V

Compressed Sparse Row (CSR)

RINDEX

CINDEXMake this:

Work efficiently on this:
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Our challenge

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

V

Compressed Sparse Row (CSR)

RINDEX

CINDEXMake this:

Work efficiently on this:

What are the patterns 
we observe in (sparse) 
matrix operations that 
we can use to drive 
efficient computation?
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The plan

2 5 7

8 1 2

6 3 1

3 5 9

x

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

              (1 x 5) + (1 x 8)               = 13 ...

...

How do the different representations 
interact? Are there special cases?

5

5

8

8

=

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

V

RINDEX

CINDEX 5 5 8 8 2 8 6 3x ...
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The plan

1 1 1 1 1 1 1 1

1 2 0 2

1 2 5 7

3 0 1 1

8

V

RINDEX

CINDEX

L = D - A

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 1      2       3      4 1      2       3      4

1

2

3

4

2 -1 -1 0

-1 3 -1 -1

-1 -1 2 0

0 -1 0 -1

 1      2       3      4 1      2       3      4

1

2

3

4

2 -1 -1 -1 3 3 -1 -1

0 1 2 0

3 7

1 2 3 0

V

RINDEX

CINDEX

...

...

...

Are there efficient ways of deriving the 
interesting operators under different 
representations?
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Present state

Writing a matrix library that records the basic operations (as well as 
doing them)

● Gives us a stream of element-wise multiplications and additions

Implement the algorithms against (descriptions of) the different 
representations

● What sorts of locality of
reference are there?

● Do the special operators generate
characteristic patterns of data or
operations?

Wherever there is a pattern (if you can find it)...

...there is (potentially) an optimisation (if you can find it)

...and this is hopefully how we find it
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