
1

Hybridising events and knowledge as a basis for
building autonomic systems

Simon Dobson, Lorcan Coyle and Paddy Nixon

Abstract— Event-based systems are a popular substrate for
distributing information derived from sensors to be used in
driving adaptive behaviour. This paper argues that using events
directly provides a poor model of context, and that a hybrid
approach that uses events to populate and maintain a distributed
knowledge base offers a more stable solution. The inherent uncer-
tainties in both sensor data and reasoning imply that traditional
knowledge-based system techniques applied to contextual systems
be extended to deal with more uncertain reasoning.

Index Terms— context, uncertain reasoning, event-based sys-
tems, knowledge-based systems

I. INTRODUCTION

Autonomic systems are intended to adapt to their environ-
ment in a way that optimises performance, robustness and
other features without requiring extensive human intervention.
The challenges arise from the need to deal with complex and
uncertain information about the environment, and to match
this to appropriate changes in system behaviour.

Events have long been used as a central architecture for
weakly-coupled distributed systems. Experience has shown
that event infrastructures can be made extremely scalable [1],
but this scalability may not translate into an attractive pro-
gramming paradigm for many applications. Complex control
structures, for example, can be difficult to build using event
systems, especially in the presence of event loss. Moreover
pervasive and autonomic systems suffer from problems of
“false” events generated by sensor inaccuracies, which further
complicate event-based programming.

This paper argues that the low-level attractions of event
systems are not matched by an attractive high-level program-
ming model in pervasive and autonomic systems. It argues
instead for hybridising event-based information transport with
a knowledge-based representation and reasoning infrastruc-
ture for context information. This use of knowledge as a
“stabiliser” on the system can lead to a significantly simpler
programming problem when creating complex self-managing
behaviours.

Section II reviews the way events can be used to model
and transfer information in sensorised systems, highlighting
some of the semantic issues in using events in the presence
of noise. This analysis leads to an architecture that hybridises
events for data transport with a distributed knowledge base
for reasoning (section III). This does not directly solve the

Manuscript received 29 March 2006. This work is partially supported by
Science Foundation Ireland under grant number 04/RPI/1544, “Secure and
Predictable Pervasive Computing”.

The authors are with the Systems Research Group, School of Computer
Science and Informatics, UCD Dublin IE (email simon.dobson@ucd.ie).

problems caused by erroneous events, and section IV describes
some techniques for data fusion, which are then deployed in
section V to address a simple example scenario. Section VI
describes some measures that would improve the effectiveness
of the knowledge-base by attempting to model and allow
adaptation of the system’s confidence in the context data
it receives from sensors. Section VII concludes with some
directions for further exploration and validation of these ideas.

II. CONTEXT, EVENTS AND KNOWLEDGE

Designs for autonomic systems draw their inspiration from
a number of sources. Prominent among these are biologically-
inspired systems built around stigmergy or swarm intelligence,
where simple individual responses to stimuli are aggregated
to produces a global result [2]. At the other extreme are
attempts to model adaptive systems in a closed-form way
that allows more precise characterisation of their behavioural
envelopes [3]. The former relies on ideas from control theory,
while the latter draws more on pervasive computing, continu-
ous mathematics and AI.

The context of a system captures the environment in which
it operates, including all ”additional” or ”non-functional”
aspects that, while not being ”core” to the system’s behaviour,
nevertheless affect the way in which that behaviour should be
optimised. Pervasive computing systems are good representa-
tives of the class of adaptive systems whose adaptations are
constrained by their surrounding environment.

The Context Toolkit [4] is the canonical example of pro-
gramming pervasive applications based on events. Such sys-
tems consist of a number of adapters or contextors [5], each
capturing some aspect of the environment such as the temper-
ature, or the reading from a location sensor. The advantage
of such systems is that it is straightforward to construct both
the infrastructure and the adapters; the disadvantage is that
they place a large load on the developer to build a sufficiently
flexible decision-support system to drive adaptive behaviour.

A. Why events and adaptation don’t match

To understand the problem of using events directly, consider
the following scenario. Suppose there are two people, P and
Q, and a room A. Two events are defined, enter(i,j)
and leave(i,j), indicating that entity i has entered (or
left, respectively) place j. These events are to be used to
drive a system that will adapt its behaviour when P and
Q are together in A. Angular brackets are used to denote
event traces: given events e1, e2, and e3, <e1,e2,e3>
is used to denote the sequence of events occurring in the



2

order given and <e1,...,e2> to denote e2 occurring
after e1 with zero or more events in between. In the sim-
plest model there are two possible event traces that can
bring the desired situation about: <enter(P,A), ...,
enter(Q,A)> or <enter(Q,A), ...,enter(P,A)>.
On observing either of these event traces the system may
adapt.

The problem, however, is that this approach is only
stable given three key assumptions. The first is that
events cannot be ”counteracted” by other events. Suppose
the event trace <enter(P,A), ..., enter(P,B),
...,enter(Q,A)> is observed. Does P entering B mean
that P is no longer in A? – in other words, are A and B
disjoint spaces? This cannot be definitively answered without
an understanding of the spatial relationships involved. Fur-
thermore in a open system new events might be introduced
which interact with existing events in unforeseen ways. Intro-
ducing an event leave(i,j) (with the obvious intention)
means that an event trace such as <enter(P,A), ...,
leave(P,A), ..., enter(Q,A)> is also not a valid
trigger for adaptation.

The second problem concerns triggers that rely on
a correspondence between events. Suppose the event
trace <enter(P,A), ..., enter(Q,A), ...,
enter(Q,A)> is seen – what should be concluded? Should
the second enter(Q,A) event be considered a duplicate, an
error, or the start of another trigger for which a corresponding
enter(P,A) event should be anticipated? This leads
directly to the third problem. Event systems were developed
from process algebra which in turn describes processes that
might be termed exact: the events that occur are assumed
actually to have occurred. The problem with many pervasive
(and other) systems that have a close connection to the real
world, for example by way of sensors, is that the processes
they are engaged in are inexact: the events may be noise.

It seems intuitively likely, in the absence of any intervening
enter() or leave() events, that the second enter(Q,A)
event is a duplicate. However, knowing this implies an enor-
mous amount of knowledge about the structure of the real
world and the external semantics of events. Moreover, encod-
ing this knowledge in a way that will be suitable for triggering
an adaptation seems likely to be inordinately complicated for
any realistic case.

Although simple, these cases would defeat most event-
algebra systems (for example the one described by Hayton
et alia [6]). This work hypothesises – without any formal
justification – that the twin problems of openness and noise
may render such algebraic systems intractable.

Perhaps the clearest way to view this problem is as follows.
Event systems are by their nature “crisp”, in the sense that
an event is a binary occurrence. Autonomic systems require
a significantly more fluid style of control to allow them to
adapt to a range of signals and to handle the uncertainties in
sensed and inferred information. This suggests that modeling
such systems using event traces will be unsatisfactory.

The conclusion that may be drawn is that, while event
systems may be scalable from a systems perspective, they
are decidedly not scalable from a programmer’s perspective.

The problem is that events are being used to two disjoint
purposes. On the one hand, events are used to indicate that
“something happened” (albeit with some uncertainty); on the
other hand, event traces are being used as the system’s model
of the outside world. The former is a system-level issue that
is handled well by events; the latter is a semantic-level issue
that is not. If the two are decoupled, a hybrid system may be
developed having the disadvantages of neither.

B. A more knowledge-driven approach

It may be observed that many adaptive systems decisions
are phrased in logical terms: “when P and Q are in the room
then . . . ”. Techniques from knowledge-based systems might
therefore be imported to drive adaptations when particular
conditions are true. This may be performed on a per-consumer
basis [7], but this passes much of the complexity of handling
noise onto component programmers. A more global approach
seems more attractive, for example Wang et alia’s use of RDF
to represent knowledge [8]. Several programming techniques
are then possible, including the use of truth-maintenance tech-
niques to execute adaptation code when a predicate changes
truth-state.

Such techniques face twin problems of uncertainty and
noise. Most information derived from sensors is inherently
error-prone, and sensors give rise to incorrect observations.
To take one example, several authors have used RFID sensors
to observe tags attached to people or artifacts. However, RFID
sensors will fail to spot some tags, perhaps because it is
moving too slowly to activate. They will also sometimes mis-
identify tags because of interference. This means that a sensor-
derived event may be incorrect or may be missed. It is easy
to see why event traces are such an inadequate source of
modeling.

However, it is possible to use a knowledge base as a
stabiliser on the context model. Events must be treated as evi-
dence for a fact, rather than as true Boolean values. Techniques
such as Bayesian probability, fuzzy logic or Dempster-Schaffer
evidence theory may then be used to combine individual pieces
of evidence into a more confidently-held view of the environ-
ment, which can then in turn be used to drive adaptation.
This helps combat the danger of a system changing state
dramatically as a result of a single, erroneous event, since other
already-accepted evidence can act as a counterweight. Adding
more knowledge about the system (such as the behaviour of
people in space) further increases this stabilisation effect.

RDF is attractive as an information model for a number of
reasons. It provides for immediate, standard-based exchange
of information between systems. As an open and extensible
system it reduces the level of ontological commitment required
of a developer, allowing new semantic elements to be intro-
duced as required. However, this flexibility comes at a cost.
Adding a new element is not unconstrained: the new element’s
relationship with existing elements must be clearly captured,
and new reasoning pathways may be required to handle the
new information provided. These issues may be mitigated
to some extent if new information (from new sensors, for
example) may be aligned with a known upper-level ontology.



3

The issue of reasoning in open semantic domains remains
however an open area of research.

C. Programming hybrids

The above discussion leads to a hybrid model in which an
event infrastructure is used to collect and distribute evidence
for the state of the system’s environment, with the evidence
being used to populate a knowledge base that maintains levels
of confidence (or uncertainty) about that environment. This
in turn leads to three observations about programming in the
presence of such a knowledge base.

The first observation is that all decisions are necessarily
tentative. Uncertain reasoning approaches may allow a system
to maintain an on-going level of confidence about its envi-
ronment. Having a confidence interval makes such systems
sensitive to small changes: a small change in evidence may
cause the decision-making process to “tip”. It remains the case,
however, that many adaptation decisions are ”crisp”, so that
the uncertain reasoning collapses to Boolean logic when the
decision is made. This uncertainty means that there is a need
to maintain one or more recovery strategies for any adaptation
or decision the system makes, since each may need to be
undone for at least two reasons: because circumstances change
to cause a new adaptation, or because the additional evidence
shows the initial adaptation to have been mistaken.

A second observation is that adaptations are not arbi-
trary: systems do not change from one behaviour to another,
completely unrelated behaviour, but rather change within an
envelope according to environmental changes. A core task for
engineering autonomic systems is to ensure that all adaptations
do indeed remain within the design envelope and do not take
the system to unacceptable parts of the behavioural space.

Finally, while autonomic systems of this type can make use
of significant bodies of existing AI research, the levels of noise
and uncertainty, coupled with the degree of unsupervised op-
eration required, do seem to pose genuinely novel challenges.
There are several foundational innovations to be made in the
logics and reasoning approaches used to describe autonomic
adaptation, as well as in the way this reasoning is used to select
adaptive behaviour. In particular, approaches that account for
the entire system behaviour at once may have advantages over
those which try to coalesce a number of individual independent
adaptations. In a sense this is the difference between set theory
and topology: that topological approaches may prove useful
for both the analysing and programming adaptive systems.

III. A KNOWLEDGE-BASED HYBRID ARCHITECTURE

The above argument would tend to suggest an architecture
in which events are used to transport data (to obtain scalability
and flexibility) while knowledge-based techniques are used to
process or reason about that data to generate the information
needed to drive self-adaptation.

A. Architecture

This work is built within a framework called Construct,
a fully-distributed and -decentralised context aggregation in-
frastructure [9]. Construct consists of a number of nodes that

Concept Description
PC-ID The identity of the terminal where the user is active.
User The user that is currently logged in.
Time The time of the reading.

TABLE I
CONTEXT DATA FROM AN ACTIVITY SENSOR

aggregate contextual data. Each node has its own data-store,
and sensors register themselves with a node and inject data into
it. There are three types of sensor: pure sensors that produce
and insert data (usually from the real world); applications
that query and consume context data; and aggregators that
query data, perform some translation on it, and insert some
new derived data. An event is modelled as anything which
causes a sensor to insert a piece of context data into the data-
store. Construct nodes gossip amongst themselves to maintain
a global view of system context. All information is represented
as (subject, predicate, object) triples using RDF [10] as
the underlying data model, which allows easy interfacing to
various technologies arising from the semantic web initiative.
Applications therefore see a “soup” of knowledge derived
both directly from sensors and indirectly from sensor-fusion
algorithms.

All contextual data comes with at least two pieces of meta-
data relating to their provenience: a reference to the sensor
that inserted it; and the time it was inserted. The pieces of
context data created by events are called context instances.
Context instances are made up of a number of features or
concepts, which can be viewed as simple attribute-value pairs.
Context instances may contain special concepts that relate to
the accuracy of the event. These concepts are loaded into
a knowledge base, which is used to provide a more stable
solution than the pure event-trace solution. This scheme will
be demonstrated using an example scenario from a tag-based
location detection application using Ubisense [11].

The knowledge base calculates a belief or certainty for
each piece of context data in the knowledge base. When an
application queries the knowledge base for a piece of data,
it examines every source of relevant context data and returns
the result that it believes is most accurate. It does this using
Bayesian inferencing, by aggregating the confidences it has in
the individual sources of data and selecting the piece of data
with the highest level of belief. The success of this technique
is dependant on having a good knowledge of the accuracies
of sensors. It is also advantageous to have as many sources of
context data as possible.

B. Knowledge Representation

A location-sensor is used to demonstrate the representation
of context data. This is a sensor that has been developed
in the Systems Research Group (SRG) in UCD Dublin. It
is a daemon that runs on each computer in the SRG lab. It
generates an event every time it detects user activity from
either the mouse or the keyboard. Table I shows the concepts
of a typical event and describes their meaning.



4

In event-trace terms, this event would look
like: activity(PC-1, waldo, ‘‘23:28
22/03/2006’’). This event says that the user waldo was
seen accessing PC-1 at time ‘‘23:28 22/03/2006’’.
Figure 1 shows a graph representation of the RDF that
describes the “output” of this event. The “verbs” hasID,
hasUser and hasTime are described by ontologies
developed both internally and externally (such as those
used in CoBrA [12], Gaia [13], and ASC [14]. Ontological
descriptions are important because subsets of these data may
be useful beyond the scope of activity sensation, and it should
be possible to extract them from this event. Furthermore they
must retain their semantics so that they are not misused.
Techniques from the Semantic Web domain are used to
“label” data with meaning that is retained even as data from
different sources are recombined into other forms [15], [16].

Fig. 1. Example output from the activity sensor

Another issue is the issue whereby different sensors will
provide contextual data that refer to the same concept but
require some translation to allow them to be compared directly.
An example of this would be the location feature [17]. Here are
three examples of location that come from sensors being used
in the SRG: “waldo is at location {x, y, z}”; “waldo is giving
a presentation in the boardroom at 2pm”; and “waldo is not
logged into this PC”. Each of these locations are correct, but
there is no way of mapping or comparing them directly without
defining an ontology for location that includes coordinate
data, symbolic data and more complicated constructs (such
as “waldo is not here”). Some semantic web technologies
exist (such as OWL [18]) that make it possible to define
relationships between pieces of data. By defining mappings
between these data it is possible to translate between the values
inserted by different sensors.

It should be noted that both PC-1 and waldo refer to
resources that may also have concepts attached to them. PC-1
is a computer that has a physical location, and waldo is a
human user that has attributes, such as a name, contact details,
identity tag information (used for SRG’s Ubisense sensors).

By defining these relationships using ontologies, and
by defining statements containing verbs such as PC-1
within RoomA relationships are defined between two sepa-
rate pieces of data, e.g., RoomA is-a Symbolic-Space
and Building is-a Symbolic-Space. Using state-
ments such as these an ontological tree can be defined that

contains the relationships between physical locations. Sensor
developers must ensure that the data outputted by these sensors
(i.e. the sensor readings) fits into this ontology. A definition of
the relative positions of location data might look like Figure 2.
Arrows in this tree refer to containment – so room A is
contained within Building, and door y is contained by both
room A and room B. This allows the context aggregator to
amass pieces of location data at a specific granularity (say
room or building granularity) that was originally produced by
sensors at a higher level of granularity.

Fig. 2. A Location Tree

Semantic web techniques, strong ontological descriptions,
and requiring that all sensor developers use the provided hooks
to ensure that the context data they provide maps to part of
the ontology, ensures that all contextual data should be in a
standard format. This goes some way to solving the “babel
problem”, whereby every application uses its own independent
ontology. In this way application developers need only to
query against the ontology, and not have any awareness of
specific sensors. The mappings that relate different granular-
ities context data will be used to ensure that data can be
converted into the correct granularity for consumption. All of
this decouples the producers and consumers of context data
and lowers the cost of entry for application developers.

Of course the next problem is that when an application
developer makes a simple request such as “what room is
waldo in now?” they will get multiple answers which may
not all be equal (or correct). The first problem is that answers
might be at different granularities; Clear et al. [16] describes
how Construct uses ontologies and a query service to allow
applications to query the data-store to get results at particular
granularities. The second problem, that of accuracy, is esen-
tially an unresolvable problem in pure event-based systems.
The next section describes how a knowledge based approach
may be used to resolve this problem, as well as the stability
issues inherent in event-based systems.

IV. AGGREGATING CONTEXT

Most computing systems expect their inputs to be correct,
at least at the level of not including erroneous information
(although information may be missing). In section II it was
noted that sensors do not have these properties, and moreover



5

generate data at different rates and with different precisions. A
further characteristic is that events may not reported accurately
by sensors – in fact it can safely be assumed that sensors will
occasionally misbehave. This makes it difficult to reason about
the system from its event traces, and introduces instabilities
into any reasoning process which need to be damped.

A. Modeling inaccuracy

Overcome these stability issues is attempted by modelling
inaccuracy and incorporating it into a knowledge-base. Con-
struct stores all event messages in a distributed data-store. The
knowledge-base is built upon this store. Events from different
sensors will be able to insert data into the knowledge-base,
which will attach a measure of its belief in the accuracy of
that data. When applications seek to query the data, the result
will reflect these beliefs, and the knowledge-base will have a
certain confidence in its answer.

Construct allows the application developer to pose a query
for a piece of contextual data. If that data is defined by one of
the ontologies, the tools outlined in Section III-B are used to
ensure that the resulting data is at the correct granularity. These
concepts are then passed to the inferencing engine, which will
return a single value with an estimation of its correctness. This
inferencing is performed using an aggregation function. This
function takes into account three pieces of data; precision,
decay and confidence.

1) Precision: Precision relates to the physical accuracy of a
sensor reading. With outdoor location systems, satellite based
systems such as GPS should have a higher precision (approx-
imately 2m) than network-based triangulation methods (up to
20m [19]). The burden of calculating precision should fall on
the sensor developer as they should be capable of providing
a more accurate estimation of their own precision than the
application developer who consumes the data. Sensors should
provide an estimation of their precision as a consequence of
reporting an event. This may be a difficult estimation for a
developer to make, and Section VI shows how it might be
possible to overcome bad estimations automatically.

2) Decay: Decay attempts to capture the reduction in belief
in a sensor reading as time passes since an event is reported.
If readings are generated regularly then the most up-to-date
report is likely to be the most accurate. The decay rate will be
different for different sensors. Decay will be directly related
to the frequency of readings. Evaluations will be needed to
investigate this premise.

3) Confidence: Confidence reflects the belief of the knowl-
edge base in a particular sensor reading. This is a more fluid
concept than either precision and decay, and can change based
on the knowledge-base’s trust in the readings provided by a
sensor. If one sensor is continuously different from all the
others its importance in the aggregation function should be
reduced. This altering by the knowledge base of the confidence
parameter is discussed in more detail in Section VI. As a rule,
confidence will be constant for all readings from an individual
sensor, although it may change over time.

Context data are aggregated as follows: context data are first
mapped to the granularity that will answer the query posed by

an application. In the case of the location example the query
is at the granularity of a room, so a number of data will be
returned at this granularity. Each value gets a vote towards
the determining of the correct value. However, these votes are
not all equal. Votes are attenuated by the precision, decay and
confidence values of the source data. The values for precision,
decay and confidence will each lie between zero and one. This
ensures that each piece of data, c gets to vote towards the
returned value using the equation:

Vote (c) = πc × δc × γc

where πc, δc, and γc refer to the precision, decay and
confidence of value c respectively. If many votes come from
an individual sensor they are averaged to prevent that sensor
from overwealming the alternatives in the aggregation process.
When all votes are counted, the datum with the highest vote
is that which is returned. The accuracy of that reading will
be related to the proportion of votes for that datum using the
equation:

Confidence (c) =
Vote (c)∑

i∈C Vote (i)

where c is the highest-ranked concept, and C is the set of
all concepts that recorded votes.

Smoothing of context data (especially fast changing data)
is performed implicitly by the decay parameter’s part in the
aggregation process. Data in Construct have expiry dates that
are different for each datum. This expiry date is part of the
meta-data that is provided by the sensor and managed by
Construct. If multiple data exist with the same source, they
are given votes proportional to the number of instances, for
example if there are five pieces of data from a single sensor
they are each given a fifth of a vote. Thus, smoothing is
performed when aggregation is performed due to the taking
into account of previous readings; decaying of readings over
time places a bias in favour of more recent readings.

V. EXAMPLE SCENARIO

In order to demonstrate the aggregation of contextual data
from multiple sources, an application scenario is described
that, although simple, is sensitive to possible sensor errors
and therefore benefits from a fusion-based approach. The
activity sensor was introduced in Section III-B. Table II
describes the activity sensor in more detail, as well as two
other location sensors. These sensors provide location data
at different granularities with different accuracies and decay
coefficients. An example is used to demonstrate how location
data provided by these sensors are aggregated into a single
location result with an estimation of the error. This example
uses the query “what room is waldo in now?”.

These sensors are located in a physical space described in
the map in figure 3. There are door sensors in door x and
door y, Ubisense sensors throughout the building and activity
sensors in both PC-1 and PC-2. There is also an aggregation
sensor that queries for (x, y, z) coordinate data (such
as that generated by the Ubisense sensors) and converts it



6

Sensor Type Description, Accuracy and Decay
UbiSense Determines the (x, y, z) coordinates of an individual

with a peak granularity of 30cm in 3D space. As
these sensors report events frequently (as often as
5Hz), the decay parameter is very high

Door Sensors Triggers an event whenever an individual passes
through a door frame (it may be implemented using
RFID). The granularity of this sensor is of the
order of two rooms, since it unable to determine
the direction the user is travelling in. These sensors
have a very low rate of decay since these events are
reported infrequently

Activity Sensor Determines whether an individual is located at a
computer by checking if they are logged-in and
active at that terminal. This sensor acts at a sub-room
granularity. These readings have a variable rate of
decay, since events are triggered either when a user
strikes a key or moves the mouse, or when there is
a long period of inactivity

TABLE II
SOME AVAILABLE LOCATION SENSORS

using a defined mapping into room granularity. The semantic
web tools described in Section III-B allow location data to be
translated easily between different levels of granularity; in this
example, location data are produced at room-level granularity.

Figure 3 shows an example set of location events that were
sensed by the Ubisense, door sensors and activity sensors
superimposed onto a physical map. The dotted line shows the
exact trace of where user waldo travelled with letters marking
the estimated location when each event was triggered.

These pieces of data are now entered into the knowledge-
base’s context aggregation algorithm. The data are shown in
Table III. The values for confidence have been omitted; for
now it is assumed that these values are constant for all sensors.
This this assumption will be challenged later in section VI.

Source Event δ π Proportion Vote
Door Sensor a 0.05 0.8 0.5 0.02 (A)
Activity Sensor b 0.9 1.0 1.0 0.9 (A)
UbiSense c 1 0.8 0.2 0.16 (B)
UbiSense d 0.8 0.8 0.2 0.13 (B)
UbiSense e 0.6 0.7 0.2 0.08 (A)
Door Sensor f 0.97 0.8 0.5 0.39 (A&B)
UbiSense g 0.4 0.9 0.2 0.07 (A)
UbiSense h 0.2 0.8 0.2 0.03 (A)

TABLE III
LOCATION DATA AT ROOM GRANULARITY

Figure 4 shows how votes are aggregated in this example.
The door sensor had two half votes, one each for events a and
f. The vote for event f (the right most arrow in the figure)
has a decay of 0.97 and a precision of 0.8 therefore its vote
is 0.39. All votes are aggregated and found to be 1.50 in
favour of room A and 0.68 in favour of room B. Therefore
the knowledge base will report that user waldo is currently
located in room A with a confidence of 69% (69% = 1.50 ÷
(1.50 + 0.68)).

This prediction is actually incorrect, since user waldo is
really in room B (he just crossed the boundary between room A
and B). However, as the readings from the activity sensor fade

due to decay, and further Ubisense data is inserted, the votes
in favour of Room A will reduce and those in favour of B will
increase until the knowledge base predicts the correct result.
This lag in accuracy can be expected whenever boundaries in
context are crossed and is a side-effect of smoothing.

VI. LEARNING CONFIDENCE

In the example no mention was made of certainty – the
third measure of accuracy – other than to say that it was
equal for all sensor readings and so did not take any part in
the overall accuracy calculation. Confidence comes into play
where the knowledge base believes a sensor is behaving in a
way that suggests it is unreliable. This could occur due to a
number of factors: the sensor is broken; the quoted precision
value for the sensor readings is incorrect; or the sensor is
misbehaving. On the other hand, the sensor may be behaving
correctly, in which case the knowledge-base is not justified in
suspecting the sensor of misbehaving (a false positive). This
section outlines some ways that confidence might be learned.

It is important at this point to stress the difference between
confidence and precision. A source of context data might
be very accurate and yet generate spurious data. A common
example of this that is when a user carries an incorrect Ubitag,
or when they leave their Ubitag on their desk and proceed to
walk around. Since this is not the sensor network’s fault it
should not have its precision value reduced, instead context
data referring to this user should be discounted until the
problem is resolved. It would be advantageous if this be done
automatically and if confidence is restored once the problem
is resolved.

Confidence can be learned in a supervised or unsupervised
manner. One could use a single context sensor (that the system
has confidence in) as a baseline or ground-truth by which
to compare other readings (the supervised approach). Or one
might compare subsequent readings and seeing if they are
reasonable (an unsupervised approach). An example of this
could be in a location-based sensor where readings vary wildly
over short periods of time. This could indicate that a person
is either moving very erratically or (much more likely) the
system is behaving erratically (i.e. inaccurately). The next
step in future work will favour the supervised approach and
an evaluation will be performed of a location sensor network
using camera tracking as the baseline.

When the system enters a new context (e.g., if user waldo
enters a new room), but the knowledge base predicts a different
context the system will attempt to correct it by reordering
the confidence weights. This technique is similar to that used
by Stahl and Gabel [20] and Coyle and Cunningham [21].
The correction or learning of confidence parameters should
ensure that one sensor cannot bully the system into providing
consistently incorrect readings. Obviously, where there is only
one source of context data, it is pointless to learn confidence
since the system is bound to accept the sensor’s value as it is
the only value available.

VII. CONCLUSION

This paper has presented a significant step toward a more
usable form on context gathering service based on precision,



7

Fig. 3. Events superimposed on the physical map

Fig. 4. Calculating votes for rooms A and B

decay and confidence processed by a probabilistic processing
system. It proposes the hybridisation of two techniques for
managing contextual information in adaptive systems. Events
by themselves seem too fragile in systems with significant
noise, but can be used effectively as a transport mechanism
underlying a system of sensor fusion and uncertain reasoning.
The reasoning approach needs to deal with the three factors of
sensor accuracy, observation timeliness and system confidence
in the results. Taken together these techniques can lead to very
scalable context-adaptive systems expressed at a reasonable
semantic level.

A combination of event-handling and knowledge manage-
ment – distributed systems combined with AI techniques –
offers a useful hybrid approach to modelling the context of
adaptive systems. The knowledge base provides an important
gain in the expressive power of the system in the face of
erroneous events. The partial and tentative nature of all such
knowledge means that programming techniques must make

extensive use of uncertain reasoning and other AI-derived
techniques. It is important to move away from one-adaptation-
at-a-time engineering to adopt a more holistic, closed-form
approach to describing, analysing and programming adaptive
behaviours.

The chief advantage of using a hybrid system is that it
provides a cleaner and more stable representation of the
state of the environment at a given time. However, as with
all smoothing systems there will be times where temporal
accuracy is sacrificed to this stability, which will become
apparent where behaviour causes context to cross boundaries.
This sacrifice may be necessary when dealing with real-
world sensors, since sensor accuracy is not as certain as with
theoretical models.

The way that adaptation alters the confidence parameters
for a particular sensor is analogous to a top-down reasoning
approach. By contrast, the way sensors alter the accuracy
parameter is a bottom-up approach. By combining the two,



8

it may be possible to achieve a happy medium. This is a
sensitive balance, and it will be instructive to produce some
formal results that compare the abilities of both approaches
individually and in concert.

As part of the further work in this area, a number of evalua-
tions will be performed to investigate the ability of precision,
decay and confidence to effectively capture and model the
accuracy of event reports. This will be done by calculating
the precision of a set of the location sensor network, by
altering the decay parameter and by performing an evaluation
of the aggregation function. By manipulating the data, and by
entering spurious data, it will be possible to investigate the
context aggregation process. The adaptation of the confidence
parameter will be evaluated in the same way.

An interesting application of confidence learning is that it
could be used for fault detection in sensor networks. In such a
system the knowledge base could automatically issue an alert
to sensor developers (or users) about problems in the system if
it loses confidence in the outputs of individual sensors (or the
network as a whole). This premise will be investigated further
with evaluations in the future.

An important strand of future work is the integration of
uncertain reasoning more closely into adaptive applications.
Current programming languages do not lend themselves to
truly pervasive uncertainty: we hypothesise that new language
constructions and types will be required properly to leverage
the flexibility introduced into systems by context fusion.

The Construct framework has been released under an open-
source licence1 and is being used to actively develop the
themes outlined in this paper.

Acknowledgements

A number of members of UCD’s Systems Research Group
have contributed extensively to the ideas presented here. The
authors would especially like to acknowledge the contributions
of Graeme Stevenson, Steve Neely, Juan Ye, Adrian K. Clear,
Stephen Knox, Graham Williamson and M.A. Razzaque.

REFERENCES

[1] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and evaluation of
a wide-area event notification service,” ACM Transactions on Computer
Systems, vol. 19, no. 3, pp. 332–383, August 2001.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from
natural to artificial systems. Oxford University Press, 1999.

[3] S. Dobson and P. Nixon, “More principled design of pervasive comput-
ing systems,” in Human computer interaction and interactive systems,
ser. Lecture Notes in Computer Science, R. Bastide and J. Roth, Eds.,
vol. 3425. Springer Verlag, 2004.

[4] D. Salber, A. Dey, and G. Abowd, “The Context Toolkit: aiding the
development of context-enabled applications,” in Proceedings of the
ACM Conference on Computer-Human Interaction, CHI’99, 1999, pp.
434–441.

[5] J. Coutaz and G. Rey, “Foundations for a theory of contextors,” in
Computer-aided design of user interfaces, C. Kolski and J. Vanderdon-
ckt, Eds. Kluwer, 2002, vol. 3, pp. 13–34.

[6] R. Hayton, J. Bacon, J. Bates, and K. Moody, “Using events to
build large-scale distributed applications,” in Proceedings of the 7th
ACM SIGOPS European workshop on systems support for worldwide
applications. ACM Press, 1996, pp. 9–16.

1Available online at: http://www.construct-infrastructure.
org

[7] G. Biegel and V. Cahill, “A framework for developing mobile, context-
aware applications,” in Proceedings of 2nd IEEE Conference on Perva-
sive Computing and Communications, 2004.

[8] X. Wang, J. S. Dong, C. Y. Chin, S. R. Hettiarachchi, and D. Zhang,
“Semantic Space: an infrastructure for smart spaces,” IEEE Pervasive
Computing, vol. 3, no. 3, pp. 32–39, July–September 2004.

[9] G. Stevenson, L. Coyle, S. Neely, S. Dobson, and P. Nixon, “Construct
— a decentralised context infrastructure for ubiquitous computing en-
vironments,” in IT&T Annual Conference, Cork Institute of Technology,
Ireland, 2005.

[10] O. Lassila and R. Swick, “Resource Description Framework
model and syntax specification,” World Wide Web Consortium,
Tech. Rep., 1999. [Online]. Available: http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/

[11] “Ubisense,” http://www.ubisense.net/.
[12] H. Chen, T. Finin, and A. Joshi, “An Ontology for Context-Aware

Pervasive Computing Environments,” Special Issue on Ontologies for
Distributed Systems, Knowledge Engineering Review, vol. 18, no. 3, pp.
197–207, May 2004.

[13] A. Ranganathan, R. E. Mcgrath, R. H. Campbell, and M. D. Mickunas,
“Use of Ontologies in a Pervasive Computing Environment,” Knowledge
Engineering Review, vol. 18, no. 3, pp. 209–220, 2004.

[14] T. Strang, C. Linnhoff-Popien, and K. Frank, “Applications of a Context
Ontology Language,” in Proceedings of International Conference on
Software, Telecommunications and Computer Networks (SoftCom2003),
D. Begusic and N. Rozic, Eds. Split/Croatia, Venice/Italy, Ancona/Italy,
Dubrovnik/Croatia: Faculty of Electrical Engineering, Mechanical
Engineering and Naval Architecture, University of Split, Croatia,
October 2003, pp. 14–18. [Online]. Available: http://www.kn.op.dlr.de/
∼strang/paper/softcom2003

[15] L. Coyle, S. Neely, G. Rey, G. Stevenson, M. Sullivan, S. Dobson, and
P. Nixon, “Sensor fusion-based middleware for assisted living,” in Proc.
of 1st International Conference On Smart homes & heath Telematics
(ICOST’2006) ”Smart Homes and Beyond”. IOS Press, 2006, pp.
281–288.

[16] A. K. Clear, S. Knox, J. Ye, L. Coyle, S. Dobson, and P. Nixon,
“Integrating multiple contexts and ontologies in a pervasive computing
framework,” in Contexts and Ontologies: Theory, Practice and Applica-
tions, Riva Del Garda, Italy, August 2006, pp. 20–25.

[17] S. Dobson, “Leveraging the subtleties of location,” in sOc-EUSAI ’05:
Proceedings of the 2005 joint conference on Smart objects and ambient
intelligence. New York, NY, USA: ACM Press, 2005, pp. 189–193.

[18] D. L. McGuinness and F. van Harmelen, “Owl web ontology language
overview,” World Wide Web Consortium,” W3C Recommendation,
February 2004.

[19] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,
T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert, P. Powledge,
G. Borriello, and B. Schilit, “Place lab: Device positioning using
radio beacons in the wild,” in Proceedings of PERVASIVE 2005, Third
International Conference on Pervasive Computing, Munich, Germany,
2005.

[20] A. Stahl and T. Gabel, “Using evolution programs to learn local simi-
larity measures.” in Case-Based Reasoning Research and Development,
5th International Conference on Case-Based Reasoning, ICCBR 2003,
Trondheim, Norway, June 23-26, 2003, Proceedings, K. D. Ashley and
D. G. Bridge, Eds. Springer, 2003, pp. 537–551.

[21] L. Coyle and P. Cunningham, “Improving recommendation ranking
by learning personal feature weights,” in Advances in Case-Based
Reasoning, 7th European Conference, ECCBR 2004 Madrid, Spain,
August 30th through Sep 2nd, 2004, Proceedings, P. A. G. Calero and
P. Funk, Eds. Springer, 2004, pp. 560–572.


