

Abstract – Pervasive and autonomic environments make
extensive use of contextual information to guide adaptations
to changing external demands and circumstances. Context
takes many forms, and some form of categorisation of
information from different viewpoints can assist designers in
deciding how information should affect behaviour, and
inform the handling of uncertain or conflicting information.
We discuss the various approaches to context modeling, and
derive an initial methodology for including contextual
information in adaptive applications.

Index Terms – Pervasive computing, autonomic

computing, development methodologies1

I. INTRODUCTION

Pervasive and autonomic ccomputing envisage a world

with users interacting naturally with device-rich
environments to perform a variety of tasks [15]. These
environments are dynamic and heterogeneous, and are
required to be self-managing and autonomic, demanding
minimal user guidance. In this heterogeneous
environment, context- adaptation is a key concept to meet
the varying requirements of different clients [2]. In order
to enable context-aware adaptation, context information
must be gathered and eventually presented to the
application performing the adaptation. It is clear that
some form of context classification is helpful given the
wide range of heterogeneous context information. Two
importantclassification viewpoints are:

• Conceptual viewpoint – who, where, what

occurs, when, what can be used, what can be
obtained

• Measurement viewpoint – what is the room

1 Manuscript received 24 March 2006. This work is supported by

Science Foundation Ireland under the grant “Secure and Predictable
Pervasive Computing”.

The authors are with the Systems Research Group, School of
Computer Science and Informatics, UCD Dublin IE (email
abdur.razzaque@ucd.ie).

temperature or network bandwidth or network
latency

Systems can typically directly adopt the measurement

viewpoint, but applications are typically designed using
the conceptual viewpoint. To facilitate the programming
of context-aware applications an infrastructure is
necessary to gather, manage and disseminate context
information to applications. There are number of existing
approaches to context description, generally based on one
of the following methods:

• Set theory
• Directed graphs
• First-order logic
• Preferences and user profiles

Most models fail to both represent dependency

relations between the diverse context information and to
utilise these dependency relations. Some support only a
narrow classes of context and applied to limited types of
application. Furthermore most do not consider the issue of
Quality of Context, where the infrastructure takes account
of the reliability, precision and other factors associated
with the data being collected. This will be a critical issue
for the next-generation pervasive computing: the quality
of a given piece of contextual information will
dramatically effect the decisions made by an autonomous
application.

In this paper we explore several approaches context

classification and modeling, with a view to determining
the various factors that affect a system’s ability accurately
to model its environment. We develop some quality
notions for contextual information, and use these to
develop an initial methodology for context modeling.

Section II briefly discusses context and context

awareness. Section III presents context classification and
analyses its benefits, which are then used in section IV to
analyse various existing approaches. Section V presents

Classification and Modeling of the Quality of
Contextual Information

M.A. Razzaque, Simon Dobson, and Paddy Nixon

an initial methodology for incorporating contextual
information into applications in a principled manner,
while section VI concludes with some directions for the
future.

II. CONTEXT AND CONTEXT AWARENESS

It is unlikely that a single definition of context would

be accepted by all researchers: the definition varies from
time to time, and from application to application.
Historically, context has been adapted from linguistics,
referring to the meaning that must be inferred from the
adjacent text. In respect to computing world definitions of
context varies with computing environment (available
processors, devices accessible for user input and display,
network capacity, connectivity, and costs of computing)
user environment (location, collection of nearby people,
and social situation) and physical environment (lighting,
noise level etc). According to Dey, context is “any
information that can be used to characterize the situation
of entities (i.e. whether a person, place or object) that are
considered relevant to the interaction between a user and
an application, including the user and the application
themselves. Context is typically the location, identity and
state of people, groups and computational and physical
objects [3].” Although this definition encompasses the
definitions given by previous authors, it is sometimes too
broad. Winograd has given a more specific and role based
definition: according to him context “is an operational
term: something is context because of the way it is used in
interpretation, not due to its inherent properties [22].”
Most recently Coutaz et al. stated that context “is not
simply the state of a predefined environment with a fixed
set of interaction resources. It is part of a process of
interacting with an ever-changing environment composed
of reconfigurable, migratory, distributed, and multiscale
resources [2].”

Context awareness is a term from computer science,

which is used for devices that have information about the
circumstances under which they operate and can react
accordingly. Context-aware computing involves
application development that allows for collection of
context and dynamic program behavior dictated by
knowledge of this environment. Context-awareness is not
unique to ubiquitous computing: explicit user models
used to predict the level of user expertise or mechanisms
to provide context-sensitive help are good examples used
in many desktop systems. With increased user mobility
and increased sensing and signal processing capabilities,
however, there is a wider variety of context available to
tailor program behavior. Through the use of context-

awareness, rapid personalisation of computing and
communications services is increasingly possible.

However, current computer systems – even on mobile

devices – remain unaware of the user's context. They do
not discern what the user is doing, where the user is, who
is nearby and other information related to the user’s
environment. Instead they take the explicit input from the
user, process it, and output the result.

Pervasive computing will greatly change the way

today’s computers behave. The basic idea is to instrument
the physical and digital worlds with various sensors,
actuators, and tiny computers. A huge amount of
information can then be collected and processed by
computer systems, enabling computer systems to deduce
the user’s situation and act correspondingly with user’s
intervention [16].

III. CONTEXT CLASSIFICATION

Context classification refers to the recognition that “not

all sources of information are created equal,” and forms a
vital part of context-aware applications. The intention is
to help application designers and developers to uncover
the possible context and simplify context manipulation,
without introducing “unfounded certainty” from ignoring
inherent or generated errors. Classification of context
information can be helpful in providing quality context
information. For example, conflicts can be resolved by
favouring the sources of context that are most reliable
(static, profiled) over those that are more often subject to
error (sensed, inferred, derived).

Different systems have typically taken different views

on classifying their context sources, including:

• Internal context (the state of the user) versus

external context (the state of the environment)
[9]

• Material context (the location, device and
available infrastructure) versus social context
(social aspects and personal traits) [17]

• Primary context (location, time and activity) [3]
• Primary context (user environment, physical)

versus secondary context (environment,
computing environment) [19]

 Category Semantics Examples

User context Who? User’s profile: identifications, relation with others, to do
lists, etc

Physical context Where? Physical Environment: humidity, temperature, noise
level, etc

Network context Where? Network environment: connectivity, bandwidth, protocol,
etc

Activity context What occurs, when? What occurs, at what time: enter, go out, etc

Device context What can be used? Profile and activities of devices: identifications, location,
battery lifetime, etc

Service context What can be obtained? Information on functions which system can provide: file
format, display, etc

Figure 1. Some possible conceptual contextual parameters

None of these models really captures the distinctions

between the characteristics of different contextual
sources. A broader classification of viewpoints are the
conceptual or domain-level view, and the measurement or
physical view. Systems will typically be able to access the
latter directly, while the former is more useful to
applications.

It is interesting to note that this distinction in viewpoint
is often not explicitly recognised by designers. Many
location-based systems, for example, are phrased in terms
of an application’s adaptation to a user’s movements in
space (a conceptual view of context). However, the
underlying sensor infrastructure often has access only to
observations of a user’s PDA, RFID tag or other device
(measurement view). The measured observations act as a
proxy for the concept of user location, but are not actually
that location: the user may have lent their PDA to
someone else, forgotten their RFID badge, and so forth.
This use of one form of context as a proxy for another is a
significant source of potential errors.

A. Structure within viewpoints
The classification of context viewpoints provides a

useful starting point, but even within a viewpoint certain
additional structures can be identified.

1) Measurement viewpoint

Measurement involves abstracting a physical or (less

frequently) digital phenomenon into a more tractable
form. A number of different measurement styles may be
identified

In continuous context the value of context changes
continuously. The continuous context component is
function of

• current value of the context component,
• lowest threshold value
• highest threshold value
• compare value
• the metric of the value and it uses function

formula for the calculation.

In enumerative context the values of context are a set of

discrete values and defined in a list or set. The set may be
infinite, but more typically will consist of a finite
collection of values from which one or more are chosen at
any given time.

An important limited form of enumerative context is

state context. This category consists of two opposite
values and they toggle between them. This provides an
important link to predicate calculus.

Finally, descriptive context is based on the description
statement of the context and for this purpose it uses
predicate calculus to combine other statements.

2) Temporal view

Within the above forms of context we may differentiate
between elements of similar form but different temporal
properties. Static context describes those aspects of a
pervasive system that are invariant, such as a person date
of birth, social security number etc. However, pervasive
systems are typically characterized by frequent changes;
the majority of information is dynamic. The persistence of
dynamic context information can be highly variable; for
example, relationships between colleagues typically last
for months or years, while a person’s location and activity
often change from one minute to the next.

The relationship between dynamic context and truth is
subtle. Using an old dynamic value can be a source of
errors in applications. However, whether a particular use
of old information will lead to an erroneous behaviour
depends critically on the degree to which behaviour
changes with values. An old value, if “close” to the
“real” value, may result in an “acceptable” (even if
technically “wrong”) behaviour. We have used quotation
marks for good reason: these concepts are all semantic –
that is to say, conceptual – rather than being strictly the
domain of measured context. It is in general impossible to
assign a measurement significance to the degree of
“outdatedness” of a measurement, although such
significance is often obvious when considered in the
conceptual viewpoint.

3) Outline conceptual viewpoint

The users’ context refers to information that is directly

or indirectly related to one or more users . It is the context
of which the system should be aware is that of one or
more humans. Predominately users’ context is driven by
his/her goals and their corresponding application.

The system’s context is composed of a model of the

user’s context plus a model of its own internal context.
The system’s model of the user’s context provides the
means to determine what to observe and how to interpret
the observations. The system’s model of its own context
provides a means to compose the federation of
components that observe the user’s context.

A number of conceptual contexts are outlined in figure

1.

4) Derivation of context

The importance of the measurement/conceptual
distinction is that the conceptual viewpoint derives
indirectly from the measurement viewpoint. In general it
is vital that we maintain the process by which this
derivation is obtained, in order to understand (for
example) which measurements give rise to which
concepts. This linkage between concept and measurement
may then be used to ensure that behavioural adaoptation
follows the structure of the external measured world [5].

Direct or primary context is directly derived from the

sensors or information sources. Generally, this context
maintains a one-to-one relation with the measurement
underlying it. By contrast, derived or secondary context is
derived from one/more primary context is known as the
derived or secondary context. Sometimes due to

unavailability of appropriate sensors or context we need
to use derived context. Again this context can be derived
using the following ways:

In the one-to-one case single context is derived from a

primary context. For example, a GPS co-ordinate of a
location is a primary context and derived name space is
the secondary context. In the many-to-one case more than
one primary context will need to generate the secondary
context. For example, for the derivation of the comfort-
ability (derived context) of a room we need temperature,
humidity, sound level, etc.

In the one-to-many case one primary context or a
derived context will need to generate more than one
secondary context. For example, if we know the
temperature in a room is in a particular season (say
summer) is higher then the usual one then we can assume
or derived that the air conditioning is not working, room
occupancy is high and so on. Even if we know the
information the comfort (derived context) of a room, we
can derive approximate temperature, humidity, sound
level, and so on.

Conceptual and measurement viewpoint contexts could

be again classified as static or dynamic contexts. The
above classifications are not exhaustive: future pervasive
computing where context information will exhibit more
diverse characteristics but these could be very helpful for
application designer and developer in pervasive
computing to manipulate context information efficiently.

User Context
Network

Context

Service

Context

Activity

Context

Device

Context

Physical

Context

Continuous

Context
State Context

Enum erative

Context

Descriptive

Context

Context

Inform ation

Context

Information

Conceptual Context

Measurement Context

Figure 2: Hierarchical classification of context information

B. Benefits of Context Categorization

In near future use of context awareness in the

computing and communication world will be used widely.
That will require to deal with wide range of contexts. In
that situation, some of the possible benefits we can get
from the categorizations are followings:

• Context manipulation. Context classification

can help application designer and developer to
uncover the possible context and simplify the
context manipulation.

• Quality of context: Classification of context
information can be helpful in providing quality
context information. For example, conflicts can
be resolved by favoring the classes of context
that are most reliable (static followed by
profiled) over those that are more often subject
to error (sensed and derived).

• Selection of appropriate providers: It is
possible that a particular context may be
gathered by different infrastructures or context
providers. Now to select the best possible and
appropriate context information for a particular
application or services from more then one
context providers categorization of context may
help in selecting the best possible context source.

• Context refinement: It can be utilized for the
context refinement process of a context-aware
system. Main concern of context refinement is
the derivation of high level context information
form low level context information. This
derivation is necessary due to unavailability of
appropriate context sources. As mentioned
earlier categorization could be help in obtaining
a measure of quality of context, and the quality
of the particular low level context information is

an significant indicator of whether or not the
generation of high level context information
makes sense at all, and , if so, how to determine
the quality of the produced context information.
Not only context refinement but also
transformation between different formats of
representation or techniques like detection,
filtering, or inter- and extrapolation can be
manipulated further.

IV. CONTEXT MODELING

To facilitate the programming of context-aware
applications an infrastructure is necessary to gather,
manage and disseminate context information to
applications. And this infrastructure ultimately requires
the modeling of contextual information. Context
modeling is highly important to capture user
requirements/profile, application requirements, device
capabilities and relationships between contexts

Context information is gathered, stored, and interpreted

at different parts of the system. A representation of the
context information should be applicable throughout the
whole process of gathering, transferring, storing, and
interpreting of context information. Most of the existing
context models are based on one of the following
methods:

• Set theory
• Directed graphs
• First-order logic
• Preferences and user profiles

A. Set theory

Schmidt et al. used set theory for the context

presentation. The context T is described by a set of two-
dimensional vectors [20]. Each vector h consists of a
symbolic value v describing the situations and a number p
indicating the certainty that the user (or the device) is
currently in this situation.

Yau et al. also used set theory for the context and a

context-tuple is defined as a tuple <ai, aj, ak, . .. , an,, t> of
size n, where n is the number of unique contextual-data
sources present in the device. Each variable ai in the tuple
represents a value, which is valid for the corresponding
type of context. The variable t represents the time of the
tuple creation time [23].

Set theory describes context schematically and

dependency relations are not embodied.

B. Directed graphs

Hendrickson et el. proposed an object-based context

modeling in which context information is structured
around a set of entities, each describing a physical or
conceptual object such as person or communication
channel [11]. It uses the form of a directed graph for the
diagrammatic representation of context, in which entity
and attribute types form the nodes, and associations are
modeled as arcs connecting these nodes. This is a
comprehensive model which includes QoC and
dependency relations but fails to represent the
dependency relation accurately.

C. First-order logic

Ranganathan et al. proposed a context model named

ConChat and it is based on first-order predicate calculus
and Boolean algebra [18]. It covers the wide variety of
available contexts and supports various operations, such
as conjunction and disjunction of contexts and quantifiers
on contexts. It allows the creation of complex first-order
expressions involving context, so it is possible to write
various rules, prove theorems, and evaluate queries. This
modeling is consists of the four elements:

• the type of context
• the person, place, or thing, with which the

context is concerned
• a value associated with the subject
• a comparison operator, verb, or preposition

Examples:

context(people, Room 22,>=,3)
context(application, PowerPoint, Is, Running)
context(RoomActivity, 22, Is, Presentation)

This is a well-defined modeling to specific field like

electronic chat but in this model relation between
continuous data cannot be described easily and even it is
not dealing with QoC.

D. Preferences and user profiles

Composite Capability/Preference Profiles (CC/PP [13]

is the W3C’s proposal for a profile representation
language and it is a framework based on the Resource
Description Framework (RDF). CC/PP is intended to
express both device capabilities and user preferences. Its
specification defines a basic structure for profiles. A
profile is basically constructed as a strict two-level-
hierarchy: each profile having a number of components,
and each component having a number of attributes
(shown in figure 3). The particular components and
attributes are not defined by the CC/PP specification. The
definition of a specific vocabulary is up to other
standardization bodies. Although CC/PP able to fulfill all
the requirements except structural property of profile
representation mentioned but vocabulary is not rich
enough; it needs to be extended. Most importantly it can’t
represent the complex relationships and constraints. Even
Component/Attribute model becomes clumsy if there are
many layers.

Comprehensive Structured Context Profiles (CSCP)

[10] is based on the Resource Description Framework
(RDF) and overcomes the shortcomings of the Composite
Capability/Preference Profiles language (CC/PP)
regarding structuring. Furthermore it extends the
mechanisms to express user preferences. It cannot
represent the complex relationships and constraints.
Component/Attribute model becomes clumsy if there are
many layers.

E. Dependency relations

From the above study it is quite clear that existing

context models are suffering at certain extent which
makes them not very suitable as a context model for
future pervasive systems. Future’s full fledged pervasive
systems will require much more sophisticated context
models in order to support seamless adaptation to changes

in the computational environment. The context models
will need to specify a range of characteristics/quality of
context information including temporal characteristics
(freshness and histories) accuracy resolution (granularity)
confidence in correctness of context information, as well
various types of dependencies among the different context
information.

Profile

Component

Component

Component

Attribute

Attribute

Attribute

Figure 3. CC/PP

Future pervasive and context aware systems will need

to deal with heterogeneous services and contexts. It is
very likely that these context information will be some
how interrelated and dependent. According to
Henrickson, “a dependency is a special type of
relationship, common amongst context information,
which exists not between entities and attributes, as in the
case of associations, but between associations themselves
[11].” Here associations are the unidirectional
relationships between the entity and its attributes and a
dependency shows the reliance of one association upon
another. Efstratiou et al. showed the importance of
capturing dependencies in context aware applications.
Without knowledge of such dependencies, inappropriate
decisions can be made by context-aware applications that
lead to instability and unwanted results Error! Reference
source not found.. Moreover, knowledge of
dependencies is important from a context management
perspective, as it can assist in the detection of context
information that has become out-of-date. Dependency
relations will be critical in diverse context information
and it can’t be ignored most of the cases. Above analysis
on the number of existing context models show that they
don’t include these dependency relations and suffer for
this issue. Hence future context models should include
these dependency relations more comprehensively.

Constraint Logic Programming Language is a style of

programming language, which allows the programmer
simply to state relationships between objects and this,
could be used for the description dependency relation
[14]. Constraint languages provide powerful, high-level
descriptions for rule-based systems modelling which can
operate on different types of (primary and derived) data.
Consider, for example, displaying information in a smart
phone like Nokia 6630. Figure 4 shows a sample scenario
of the dependency description related to display
information in a smart phone where two main concerns
are battery power and file format.

V. TOWARDS A METHODOLOGY FOR ADDING QUALITY OF
CONTEXT TO A CONTEXT MODELING FRAMEWORK

In context aware systems, errors in context information

may arise as a result of errors in gathering (sensing),
interpretation and presentation level. As context
information is relied upon by applications to make
decisions on the user’s behalf, it is indispensable that
applications have some means by which to judge the
reliability of the information. Quality of context (QoC) is
a judgment parameter or criteria for the contextual
information or data. Most of the existing context models
do not consider the issue of quality. This will be a critical
issue for the next generation pervasive computing;
primarily because the quality of a given piece of
contextual information will dramatically effect the
decisions made by the autonomous application. Poor
information or data quality can have severe impact on the
overall effectiveness of the context aware system.
Therefore inclusion of QoC in the future context model is
highly necessary.

Pervasive and context aware systems will need to deal

with heterogonous applications which will require diverse
context information. Moreover these assorted applications
will require various qualities of service. To provide these
QoS we need various QoC to be incorporated in the
context model.

Before analyzing or managing information or data

quality, one must understand what information or data
quality means. Information quality management requires
understanding which dimensions of information quality
are important to the user or application. According to
Wang et al. we can define QoC in terms of information
quality parameters and information quality indicators as
below [21]:

Figure 4. Dependency Description

• An information quality parameter is a
qualitative or subjective dimension by which a
user evaluates context information quality.
Source credibility and timeliness are
examples.

• An information quality indicator is a context
information dimension that provides objective
information about the context. Source,
creation time, and collection method are
examples.

• An information quality attribute is a collective
term including both quality parameters and
quality indicators.

• An information quality indicator value is a
measured characteristic of the gathered and
stored data. The information quality indicator
source may have an indicator value like from a
sensor or user.

• An information quality parameter value is the
value determined for a quality parameter
(directly or indirectly) based on underlying
quality indicator values. Application-defined
functions may be used to map quality
indicator values to quality parameter values.
For example, because the source is user
himself for his date birth information, so
credibility is high.

• Information quality requirements specify the
indicators required to be tagged, or otherwise
documented for the information related to an
application or group of applications. If a
context model includes this then it is possible
to make the context aware system more
efficient and effective.

The need for diverse quality of context information has
been broadly recognized in number of research works, yet
none of the existing works address the problem in an
adequate or general way. Dey et al. suggest that
ambiguity in information can be resolved by a mediation
process involving the user [4]. But in case of potentially
large quantities of context information involved in
pervasive computing environments and the rapid rate at
which context can change, this approach places an
unreasonable burden on the user. Ebling et al. describe a
context service that allows context information to be
associated with quality metrics, such as freshness and
confidence, but their model of context is incomplete and
lacks formality [6]. Castro et al. define the notion of
quality based on measures of accuracy and confidence,
but their work limited to location information [1].
Schmidt et al. associate each of their context values with
a certainty measure that captures the likelihood that the
value accurately reflects reality [20]. They are concerned
only with sensed context information, and moreover take
a rather narrow view of context quality. Gray and Salber
include information quality as a type of meta-information
in their context model, and describe six quality attributes:
coverage, resolution, accuracy, repeatability, frequency
and timeliness [7]. Finally Henricksen et al. include QoC
in their directed graph based context model but this could
be limited to this sort of modeling [11]. Most of their
quality models are not formally defined, as they are
intended to support requirements analysis and the
exploration of design issues, rather than to support the
development of a context model that can be populated
with data and queried by applications.

.

Determine the application view of Context Information

User’s & Corresponding

Application’s Requirements

Determine (subjective) Quality Parameters for the
Application

Candidate Quality
Attributes

Application’s Quality
requirements

Determine (objective) Quality Indicators for
the Application

Quality View Integration

Application View

Parameter View

Quality View (i) Quality View (n)

Step-1

Step-2

Step-3

Step-4

Quality

Schema

Figure 5. The process of quality contextual information modeling

Step Input Output Process

1 User’s and Corresponding
Application’s requirements

Application view It embodies traditional context information
modelling and objective is to extract and
document application requirements of context
information.

2 Application view, application quality
requirement, candidate quality
attributes

Parameter view It determines the quality parameters (like
timeliness, reliability etc) to support
information quality requirements.

3 Parameter view(application view
included quality parameters)

Quality view It converts the subjective quality parameters
into measurable characteristics or quality
indicators(like timeliness to date, etc)

4 Quality view/views Quality schema This involves the integration of quality
indicators.

Figure 6. Brief description of the methodology for quality contextual information modeling

Considering the above limitations in quality modelling,
our effort is to provide a generic approach of quality
context information modelling based on Wang et al. [21]
Figure 5 shows the step by step methodology for quality
contextual information modelling where initial input is
user’s and corresponding application’s requirements and
the final outcome of the modelling is the quality schema.
Each step includes the input, process and output. Figure 5
provides a brief description of each step

VI. CONCLUSION

Next-generation context aware systems have to deal

with diverse context information. Classification of this
context information will be helpful for the context aware
application designers and developers. To address this
issue, this paper deals with categorizations and quality
modeling in context information.

We have explored the various ways in which contextual

information can be classified along a number of different
axes. We have further illustrated the need to maintain
linkages and dependencies between information at
different levels, especially in derived context where the
errors inherent in measured information can affect
inferencing.

A more principled approach to context modeling must

take account of these linkages and errors – the overall
quality of contextual information. Such a model provides
important information to any reasoning system layered on
top of a context model, since the build-up of uncertainty
cannot always be masked from applications. We believe
that this approach to context-aware applications
development – in which rich interconnections are
leveraged in a number of ways to control adaptations – is
central to building reliable and predictable adaptive
systems.

REFERENCES

[1] P. Castro, P. Chiu, T. Kremenek, R. Muntz “A probabilistic room
location service for wireless networked environments,”
Proceedings of UbiComp 2001. Atlanta GA, 2001

[2] J. Coutaz, J. Crowley, S. Dobson, and D. Garlan. “Context is key.”
Communications of the ACM 48(3), March 2005

[3] A.K. Dey, G.D. Abowd. “Towards a Better Understanding of
Context and Context-Awareness,” CHI2000 Workshop, 2000

[4] A. Dey, J. Manko, G. Abowd, “Distributed mediation of
imperfectly sensed context in aware environments,” Technical
Report GIT-GVU-00-14, Georgia Institute of Technology, 2000.

[5] S. Dobson, P. Nixon, “More principled design of pervasive
computing systems,” in Human computer interaction and
interactive systems, LNCS 3425, Springer Verlag, 2005.

[6] M. Ebling, G.D.H. Hunt, H. Lei, “Issues for context services for
pervasive com-puting,” Middleware 2001 Workshop on
middleware for Mobile Computing. Heidelberg DE, 2001

[7] C. Efstratiou, K. Cheverst, N. Davies, A. Friday. “An architecture
for the effective support of adaptive context aware applications,”.
Proceedings of Mobile Data Managemen. Hong Kong, CN:
Springer, 2001, pp.15-26

[8] P. Gray, D. Salber, “Modelling and using sensed context in the
design of interactive applications,” Proceedings of the 8th IFIP
Conference on Engineering for Human-Computer Interaction.
Toronto CA, 2001

[9] J.Gwizdka. “What’s in the Context?,” CHI2000 Workshop, 2000
[10] A. Held,, S. Buchholz,, A. Schill, “Modeling of Context

Information for Pervasive Computing Applications,” Proceedings
of the 6th World Multiconference on Systemics, Cybernetics and
Informatics (SCI2002). Orlando, FL, 2002

[11] K. Henricksen, J. Indulska, A. Rakotonirainy. “Modeling Context
Information in Pervasive Computing Systems,” Proceedings
Pervasive 2002, 2002.

[12] J. Indulska, R. Robinson, A. Rakotonirainy, K. Henricksen.
“Experiences in Using CC/PP in Context-Aware Systems.”
Proceeding of Mobile Data Management, 2003.

[13] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, “Composite
Capability/Preference Profiles (CC/PP): Structure and
Vocabularies,” W3C Working Draft, Mar 15, 2001

[14] K. Marriott, P.J. Stuckey, “Programming with Constraints: An
Introduction,” MIT Press, 1998.

[15] N. Streitz and P. Nixon, “The Disappearing Computer”,
Communications of the ACM 48(3), March 2005

[16] P. Nixon, F. Wang, S. Terzis and S. Dobson. “Engineering context
aware systems,” Proceedings of the International Workshop on
Engineering Context-Aware Object-Oriented Systems and
Environments, 2002

[17] D. Petrelli, E. Not, C. Strapparava, O. Stock, M. Zancanaro.
“Modeling Context is Like Taking Pictures,” CHI2000 Workshop,
2000

[18] A. Ranganathan, R.H. Campbell, A. Ravi, A Mahajan. “ConChat:
A Context-Aware Chat Program,” IEEE Pervasive Computing
1(3), July-Sept. 2002, pp.51 –57

[19] B. Schilit, N. Adams, R. Want. “Context-aware computing
applications,” Proceedings of IEEE workshop on Mobile
Computing Systems and Applications. 1994, pp.85-90

[20] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, et.al.
“Advanced Interaction in Context,” Proceedings of the 1st
International Symposium on Handheld and Ubiquitous Computing,
1999

[21] R.Y. Wang, H.B. Kon,, “Data Quality Requirements Analysis and
Modeling,” Proceedings. Ninth International Conference on Data
Engineering, 1993, pp.670-677

[22] T. Winograd, “Architecture for Context,” Human Computer
Interaction 16, 2001, pp.401-419

[23] S.S. Yau, F. Karim. “Context-Sensitive Middleware for Real-time
Software in Ubiquitous Computing Environments.” Proceedings.
4thIEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, 2001. Pp.163-170

[24] Arkady Zaslavsky. “Adaptability and Interfaces: Key to Efficient
Pervasive Computing.” NSF workshop series on Context-Aware
Mobile Database Management, 2002

M.A. Razzaque Mohammad Abdur Razzaque is a PhD
student in the School of Computer Science and
Informatics at UCD Dublin. He holds bachelor’s and
master’s degrees from the University of Dhaka in
Bangladesh. His research focuses on the use of multi-
level context to adapt the behaviour of communications
networks.

Simon Dobson Simon Dobson is with UCD Dublin’s
School of Computer Science and Informatics, where his
research centres on the semantics of adaptive systems and
the programming languages and methodologies used to
create them. He has held academic and research posts at
Trinity College Dublin and the CLRC Rutherford
Appleton Laboratory, and for two years was CEO of a
research-based start-up company. He has published
extensively in the fields of distributed and pervasive
systems.

Paddy Nixon Paddy Nixon is Professor of Distributed
Systems in the School of Computer Science and
Informatics at UCD Dublin. His interests are in
distributed and pervasive computing systems, supported
by over 70 internationally-reviewed papers. Prior to
moving to UCD he was a professor at the University of
Strathclyde and academic director of the Kelvin Institute,
and academic/industrial partnership funded by the
Scottish government.

