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ABSTRACT
In this position paper we argue that the temporal features
of sensed data present a number of fundamental challenges
to the development of systems software and programming
approaches for the development of pervasive systems, that
are yet to be addressed. After an overview of these features,
we discuss their impact on the design of infrastructure to
support data storage, data access, and reasoning on sensed
information, and on approaches to programming with tem-
poral data.

1. INTRODUCTION
It is commonly accepted that pervasive systems – or more
generally systems that work with sensed data – present a
number of fundamental challenges that are not found in the
development of traditional distributed systems [1].

Over recent years, many successful projects have investi-
gated some of these issues: from the need for a common
language to represent heterogeneous data sources [2], to ab-
stracting data from its raw form to higher-level concepts [3],
and to capturing and categorising the uncertain nature of
such data [4].

However, another aspect of sensed data that we believe im-
pacts the development of pervasive systems as much as any
of the above is its temporal features. This covers several as-
pects involving time: from when data is generated and how
frequently, to how long the values produced can be expected
to be an accurate reflection of the state of the real world.

By forming a more complete understanding of these features
and the challenges they present to all levels of pervasive sys-
tems development, we believe the design of software and pro-
gramming abstractions required to store, access, and work
with sensed data can be better informed.

We begin in Section 2 by categorising the set of temporal
features exhibited by sensed data, followed in Sections 3

and 4 by a discussion of the challenges and opportunities
that these features present to the design of infrastructure
and programming-level support for pervasive systems. Fi-
nally, we conclude with a summary and outline of future
work in Section 5.

2. TEMPORAL FEATURES OF SENSED
DATA

The role of temporal information in the modelling of sensed
data is often simplified in the design of context models, sys-
tems software, and application APIs. A typical data model
sees the value of a sensor reported along with a timestamp
indicating the point in time at which it is generated. This
timestamped value is then used to update some form of rela-
tional model, where a set of entities (people, places, objects,
etc.) are associated with a set of timestamped attribute-
value pairs.

In this section we explore the temporal features of sensed
data to demonstrate why this approach is insufficient for
the demands of pervasive systems development.

2.1 Moment of Assertion
Timestamping is a ubiquitous technique in software devel-
opment for representing the point in time at which data
is generated and added to a system. In pervasive systems
development, we traditionally use a timestamp to indicate
when an attribute of an entity is asserted [5]. For exam-
ple, to represent the fact that Bob is located in the living
room of a house, we might write a statement of the form
〈bob locatedIn livingRoom〉, where bob and livingRoom

are entities in a system, and locatedIn is a unidirectional
relationship connecting them. To indicate when this state-
ment was asserted, we qualify it by using a timestamp. For
example, the statement:

〈〈bob locatedIn livingRoom〉
at [2010-03-01T09:00:00Z]〉

is interpreted as stating that Bob was located in the living
room as 9am on the 1st of Match 2010.

2.2 Temporal Relevance
Despite its universality as a modelling concept, systems that
only timestamp data are implicitly restricted to the asser-
tion of current state. That is, in previous example of Bob’s



location, the timestamp has an implicit dual meaning: it is
both the time at which the statement was asserted in the
model and the time at which the statement 〈bob locatedIn

livingRoom〉 should be interpreted as being true.

Although in many systems the value of these two temporal
properties never vary or the variation is not important, being
able to differentiate between the two provides a facility for
the modelling of both historic and predictive state. There
are many instances where this is useful, but here we restrict
ourselves to two examples: summarising a high volume of
sensor readings over a period of time, and representing cal-
endar data describing probable future events. Consider the
situation where a positioning system in the University of St
Andrews reports Bob’s location with a frequency of ten sec-
onds. While the precise location of Bob may be useful to
applications operating in real time, posteriori it is less so.
However, Bob’s general whereabouts may still be useful to
an application at a future date, so we may choose to abstract
and summarise this data, rather than remove it entirely. We
may do this by the post hoc assertion of Bob’s location over
a number of time intervals. For example:

〈〈〈bob locatedIn StAndrews〉 at

[[2010-03-01T09:00:00Z] - [2010-03-01T12:00:00Z]

[2010-03-01T13:00:00Z] - [2010-03-01T17:00:00Z]]〉
assertedAt [2010-03-02T00:00:00Z]〉

is interpreted as stating that Bob was located in St Andrews
between 9am and 12pm, and between 1pm and 5pm on the
1st of March 2010, and that this information was asserted
at 12am on the 2nd of March 2010.

Similarly, if we wish to represent information a priori, for
example about future events in a calendar application, we
can write:

〈〈〈bob locatedIn Dublin〉 at

[2010-03-23T00:00:00Z] - [2010-03-27T23:59:59Z]〉
assertedAt [2010-03-02T00:00:00Z]〉

which is interpreted as stating that on the 2nd of March
2010, we expect that Bob will be in Dublin from the 23rd
to the 27th of March 2010.

Note that the distinction between the temporal relevance of
the data, and the timestamp denoting the instant at which
it was asserted is what allows us to determine if data is
historic or predictive, irrespective of the point in time at
which the data is later used. The assertion time can also
be used to determine the most recent prediction of a future
state if multiple predications are present in the model.

2.3 Sample Rate
The rate at which sensors sample the real world is another
temporal property of sensed data. This information, which
is available from the technical documentation of a sensor or
set by the engineer responsible for its installation, is typi-
cally represented as a fixed duration. However some sensors
may require more complex descriptions of their operation.

For example, the sampling period of a water quality sensor
may increase if a trend towards some critical condition is
detected.

Such information usually forms part of a meta-model, that is
as a property of a sensor description rather than a property
of the data it produces. For example:

〈ubisenseSensor frequency 200ms〉

states that the sampling period of a Ubisense positioning
sensor is 200ms.

2.4 Predicted Rate of Change
Although the sample rate of a sensor tells us when a sensor
will (or may) report new data, it provides no indication of
the likelihood of a change in the reported state. For example,
the coordinate location of a person who is walking is likely to
change at the rate of under a second, while a representation
of their location at a higher granularity, such as a region of
a city or country will change less frequently: perhaps over
hours, days, or months. Indeed, little information is truly
static; even a person’s name, a building’s structure, and a
country’s geography is susceptible to change [6].

Information about the dynamics of data comes from com-
mon sense or expert knowledge of a domain, or may also
be obtained through the application of machine learning
techniques. A more sophisticated approach involves infer-
ring this information from the relations between data in the
model. For example, if a meeting is scheduled to last 30
minutes the predicted rate of change for the location of the
meeting participants could be implemented as a fuzzy func-
tion on the meeting time. There may also be types of data
for which this knowledge is impractical or impossible to ac-
quire. For example, if its dynamics are dependent on human
or environmental features that cannot be modelled or pre-
dicted with any degree of accuracy.

There are several options for representing expected rate of
change of data. A simple approach may be to tag a state-
ment with a duration over which it is expected to remain
stable, while a more complex approach may represent this
information as a set of duration-probability pairs, indicat-
ing the likelihood that the value will change over several
durations. For example:

〈〈〈bob locatedIn livingRoom〉 at

[2010-03-01T09:00:00Z]〉
assertedAt [2010-03-01T09:00:00Z] ;

predictedRateOfChange [[1s, 0.1%]

[1m, 1%]

...

[1hr, 82%]]〉

allows us to interpret the likelihood of Bob’s location chang-
ing within the next second, minute, . . . , and hour as 0.1%,
1%, . . . , and 82% respectively. The drawback of this ap-
proach is that the set of granularities (e.g., seconds, min-
utes, hours, or years) are an arbitrary choice. However,



we observe that these duration-probability pairs are essen-
tially samples of the probability distribution over the rate of
change of the variable. Therefore, if the cumulative distribu-
tion function (CDF) of the rate of change of the variable is
known, a set of samples could be taken at a number of prede-
fined percentages (e.g., 5%, . . . , 50%, . . . , 95%) to simplify
inspection of the data. Better still, the CDF could itself be
modelled (e.g., using MathML [7]). Although this approach
increases modelling complexity (and the cost to evaluate a
CDF at runtime may be undesirable), it supports the eval-
uation of the probability of a value remaining the same as
when it was observed at any future time point.

In the context of predictive data, an orthogonal extension
to this model is to also represent the dynamic nature of
a prediction: i.e., both the expected rate of change of the
predication and of the predicted data can be asserted as part
of the model.

2.5 Summary
This section has outlined four key temporal features of sensed
data: its moment of assertion, temporal relevance, sample
rate, and predicted rate of change. In the following sec-
tions, we examine the impact of these features on the design
of infrastructure-level support and programming approaches
for the development of pervasive applications.

3. THE IMPACT ON THE DESIGN OF
INFRASTRUCTURE SUPPORT

In this section we explore how the temporal features of
sensed data can be used to inform the design of infrastructure-
level support for pervasive applications. For the purposes of
this paper, we restrict discussion to the scenario of a dis-
tributed middleware in a university campus environment;
however, the examples we present are generally applicable
to other environments.

3.1 Data Storage and Distribution
The efficient storage of data is a primary concern of mid-
dleware in a data-rich environment. In our university cam-
pus example, we can conceive of many heterogeneous data
sources providing information about people, places, objects,
the environment, and events taking place.

As the amount of generated data increases, it becomes im-
possible to hold it all in memory simultaneously. A typical
solution to this problem is to discard the oldest data from
memory as the maximum capacity is approached. However,
it does not necessary follow that the oldest data stored is
that which is least useful. As a result, the situation ar-
rises where we need to periodically re-assert relatively static
data, such as a building layout, in order that it remains in
the model.

One solution to this problem is to incorporate rules in the
middleware design to treat different types of data differently
(e.g., to state that building layout information should never
be deleted). However the major drawback of this approach
is that a priori knowledge is required about the importance
of all types of data that may be added to the system, which
is unrealistic. Another possibility is to distinguish between
profiled data and sensor data at the point it is added: per-

haps by storing them in separate repositories and preferring
the removal of sensor data over profiled data.

A better approach, and one that can be handled in a generic
fashion, is to use information about the sample rate and pre-
dicted rate of change of data to select candidate data to be
discarded. For example, prioritising the discard of data that
is asserted frequently, but has a slow rate of change (e.g.,
ambient temperature) over data that is frequently asserted
but changes rapidly (e.g., a user’s coordinate location). At
the other end of the spectrum, and therefore unlikely that it
should ever need to be deleted, is relatively static data that
is infrequently asserted (e.g., building layouts)1.

An altogether different approach is to treat the data store
of the middleware as a repository only for highly dynamic
data. In this scenario, data that changes infrequently is
written to disk and is only fetched and integrated with the
highly dynamic data as and when it is required by applica-
tions. Pointers to the external sources of data (e.g., URLs)
are maintained by the middleware in order that this integra-
tion process can be done transparently from the perspective
of the application developer. As only relatively static data is
stored externally, the load on the servers in which it is con-
tained will be relatively light compared to that of the main
repository (as we can presume that application requests for
such data need only be sent infrequently). The middleware
developer can therefore focus on optimising storage of and
access to the highly-dynamic data generated by sensors.

Additionally, in distributed middleware (e.g. Construct [8]),
adopting such a strategy reduces the amount of data to be
transmitted between nodes to maintain consistent state.

3.2 Reasoning Strategies
The process of reasoning on a large data model, or any size
of data model using a large number of axioms can be both
time consuming and a performance bottleneck. However,
knowledge about the dynamics of data can play a role in de-
termining an appropriate reasoning strategy to adopt. For
example, we may choose to reason on relatively static data
as it is generated, adding the inferred knowledge directly
to the model. Whereas with highly dynamic data we may
decide to perform reasoning only at the point when an appli-
cation query is executed, and to restrict the reasoning to the
smallest amount of volatile data that will produce a correct
answer for a given query.

When incorporating reasoning capabilities into a middleware
design, a generic scheme to optimise performance can be de-
vised to partition, reason on, and integrate data over several
stages, where the stage at which any given data is reasoned
on depends solely on its temporal properties.

3.3 Data Summarisation
As the temporal model is orthogonal to the data model,
it is possible to design a generic approach (or at least a
partially generic approach) to the problem of summarising
and archiving sensor data. For example, a rule to trigger

1Note that if any data falls into the high rate of change,
infrequently asserted category then this probably indicates
a gap in sensing infrastructure that needs to be addressed.



the summarisation of location data may look like:

summarise 〈?u locatedIn ?l〉 after 2 hours:

max: 10hr intervals

which states that all statements about the location of enti-
ties in a model should be summarised using intervals of up
to 10 hours in length, two hours after each statement is as-
serted. Other summarisation strategies, including selecting
a maximum, minimum, or average value (e.g., for summaris-
ing temperature readings), or invoking a custom operator,
may be applied similarly. After data has been summarised,
it may be discarded or archived on disk for future use.

Inspecting the temporal properties of application queries can
also be a prompting to automatically adjust data summari-
sation rules. For example, if applications only query for
current state, the middleware may adapt to increase the
rate at which data is archived (improving the performance
of queries over the memory-held state). Conversely, if an ap-
plication regularly issues queries for historic data, then the
rate of summarisation can be slowed down, or previously
archived data may be reintroduced into the model.

4. THE IMPACT ON PROGRAMMING AP-
PROACHES

We have discussed the temporal features of sensed data and
the ways in which these features provide opportunities and
challenges to infrastructure-level support for managing the
lifecycle of data. In this section we turn our attention to ap-
plication programming, and the typical queries an applica-
tion might ask involving temporal semantics. For example:

• Where was Bob at 3pm on the 3rd of January 2010?

• What was Laura’s state at 5pm yesterday?

• Who was present at the most recent meeting attended
by Ric?

• When did Alice first travel to Italy?

• What was the duration of George’s stay in St Andrews
today?

• Where will Sarah be next Tuesday?

• How often does Claire travel to Glasgow?

• What usually happens before Nick cooks dinner?

• What is the average duration between Tom waking up
and leaving the house?

We briefly examine some issues relating to the design of APIs
and implementation considerations regarding these queries,
and propose an approach for working with predicted state.

4.1 API Design
Temporal design patterns [9] are one approach to designing
APIs that can work with time. To support the query where
was Bob at 3pm on the 3rd of January 2010? the Tempo-
ral Property pattern can be used to provide two implemen-
tations of the necessary method: one to query for current
state as normal (e.g., bob.getLocation()) and another that
takes an instant of time as a parameter to support querying
for historic state (e.g., bob.getLocation(Time t)).

When we are interested in several temporal properties of an
object, as with the query what was Laura’s state at 5pm
yesterday?, the Snapshot pattern can be used to provide a
copy of an object’s state at a particular instant in time.
This design pattern is realised as a method of the object
that takes as a parameter the time instant of interest (e.g.,
laura.getSnapshot(Time t)).

As the temporal semantics of queries increase in complex-
ity, a correspondingly complex API is required to work with
temporal concepts like most recent, first, duration, before,
yesterday, and usually to name but a few. For example,
in evaluating the query who was present at the most re-
cent meeting attended by Ric?, the first step is to find the
most recent meeting that Ric attended. One possible design
might adapt the Temporal Property pattern to accommo-
date this (e.g., ric.getMeeting(MOST_RECENT)), while an-
other conceivable route to this information is via a utility
class responsible for handling queries about meetings (e.g.,
Meetings.byParticipant(ric, MOST_RECENT)). Overuse of
the former approach results in excessively overloaded meth-
ods and bloated APIs, while the latter approach violates
good object-oriented design practice and requires the intro-
duction of multiple utility classes to handle similar queries.

We expect that the above problems only represent the tip
of the iceberg. A detailed exploration of the issues involved
in programming with temporal data is required.

4.2 Implementation Considerations
Programming languages are designed to model and manip-
ulate a single state. That is, the values of variables may
be updated over time, but there is no provision to access
the history of a variable. As a result, we require specialised
data structures to store data with temporal semantics, and
algorithms to query these data structures efficiently.

Tappolet et al. [10] have demonstrated the use of a tree-
based temporal index to perform efficient time-point query-
ing of temporally-qualified data in an RDF data model [11];
that is, selecting data whose validity is asserted to be within
a given period of time. However, the approach described
performs poorly where the temporal period associated with
each assertion in the data model is distinct, as is the general
case with sensed data. The development of similar algo-
rithms optimised to the temporal characteristics of sensed
data is one area requiring further research.

More complex queries require different strategies if they are
to be answered efficiently. For example, consider the evalu-
ation of the query who was present at the most recent meet-
ing attended by Ric?. One approach to evaluating this is to
generate time-point indexes only over certain “key” types of



data (e.g., “meeting events”), thereby decreasing the query’s
search space. A more targeted approach is to index all meet-
ings by person identifier and sort them by time. However,
the more optimised an index is to a particular query, the
heavier the reliance on guessing the likelihood of specific
queries to be executed. The tradeoffs between more generic
and targeted optimisations, and between performance and
the resources required to store and maintain multiple indices
in memory needs further exploration.

4.3 A Language-level Construct for Working
with Predictive Data

In Section 2 we described how it is possible for sensors to
assert predictive data; for example, calendar data that pro-
vides information about the expected future locations of a
person. A fundamental question to be addressed is how we
deal programatically with the situation where an action is
taken based on a particular assumption about the state of
the world that later turns out to be incorrect2.

One possible approach, influenced by design by contract pro-
gramming is to declare the assumptions upon which a block
of code is to be executed. A second block of code can then
be defined to mitigate the action of the first if we later find
out that an incorrect assumption was made. For example:

〈bob locatedIn Dublin〉@??/??/2010:
hotel = bookHotel(...) ;

rsvr = makeRestaurantReservation(...) ;

mitigate:

hotel.cancelBooking() ;

phoneAlert(‘cancel restaurant booking’,

rsvr.details()) ;

The above pseudo-code describes a generic action to book a
hotel and restaurant for each day Bob is in Dublin during
2010 (data that may be asserted by his calendar). If Bob’s
schedule changes, the mitigation block associated with oper-
ation takes steps to cancel the hotel booking and to inform
Bob to call the restaurant to cancel his reservation.

Although this is a simplified example, it indicates a new form
of semantics we require be supported within a programming
language where specifying actions based on potentially un-
sound data is a normal rather than exceptional case.

5. CONCLUSION AND FUTURE WORK
In this paper we argued that the temporal features of sensed
data present a number of fundamental challenges to the de-
velopment of architecture- and programming-level support
for pervasive systems that are yet to be addressed. After
outlining these features, we discussed their impact in the
areas of data storage, reasoning, and approaches to program-
ming pervasive applications.

We are currently in the process of extending our earlier
work, Ontonym, which developed a set of ontologies describ-
ing high-level concepts in pervasive environments [12], with

2We note that the inherent uncertainty associated with
sensed data makes it likely that code will often be executed
based on incorrect assumptions about the state of the world.

these temporal semantics. Based on this we are designing a
middleware for working with sensed data in which we will in-
vestigate further and apply some of the approaches we have
outlined within this paper.
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