

An Approach to Scalable Parallel
Programming

Simon Andrew Dobson

Submitted for the degree of Doctor of Philosophy

University of York

Department of Computer Science

18 May, 2012

sd
Sticky Note
This is when I assembled this PDF, having recovered the thesis from its old sources on 3.5" floppy discs with the aid of a Mac PowerBook 540c and an external ethernet transceiver

- i -

Table of Contents

Table of Contents ___ i

Table of Figures __ v

Acknowledgements __ vii

Declaration ___ ix

Abstract ___ xi

Introduction ___ 1

Chapter 1. Scalable Parallel Computing ______________________________ 5
1.1. What is Scalability? ... 5

1.1.1. Scalability in Various Guises ... 6
1.1.2. Précis: Scalability for Programmers and Users 7

1.2. A Scalable Machine ... 8
1.2.1. Hardware .. 8
1.2.2. Operating Systems .. 10

1.3. Programming for Scalable Systems ... 11
1.3.1. Issues in Scalable Programming ... 11
1.3.2. Memory Models ... 13
1.3.3. Concurrency ... 22
1.3.4. Configuration .. 25
1.3.5. Object-oriented Systems ... 26

1.4. A Scalable Programming System .. 30
1.5. Résumé .. 31

Chapter 2. An Abstract Machine View of Scalable Parallel Programming __ 33
2.1. Abstract Machines ... 34
2.2. Programming Environments as Abstract Machines .. 36

2.2.1. Programming Languages as Abstract Machines 36
2.2.2. Toolkits in Scalable Programming ... 38

2.3. Memory as an Abstract Structure .. 39
2.3.1. Object-oriented Memory .. 39
2.3.2. Distributing Abstract Memory ... 44
2.3.3. Concurrency Regulation and Memory ... 44

- ii -

2.4. The Scalable Abstract Machine ... 45
2.5. Résumé .. 49

Chapter 3. Implementing Scalable Typed Memory _____________________ 51
3.1. Requirements ... 51
3.2. Partitioning: Representing Scalable Memories .. 52

3.2.1. Overview of Partitioning .. 52
3.2.2. Managing Data Access ... 53
3.2.3. Managing Distribution ... 53
3.2.4. Resolution ... 54
3.2.5. Parameters Affecting the Distribution Architecture 55
3.2.6. Generic Structure of Partitioned Collections 59

3.3. A Kernel of Partitioned Storage Architectures .. 61
3.3.1. Arrayed Storage .. 62
3.3.2. Associative Storage .. 68
3.3.3. Directed Storage ... 77
3.3.4. Mathematical Structures ... 81

3.4. Creating User-level Data Structures .. 82
3.4.1. Customisation and Refinement .. 83

3.5. The Semantics of Failure ... 87
3.6. Résumé .. 91

Chapter 4. Concurrency in Scalable Systems __________________________ 93
4.1. Concurrency in Object-oriented Systems .. 94
4.2. Concurrency Control ... 95

4.2.1. Concurrency Control in Object-oriented Systems 96
4.2.2. Concurrency Control and Scalability ... 98

4.3. Concurrency Regulation .. 104
4.3.1. Approaches to Concurrency Regulation ... 104
4.3.2. Regulating Concurrency in a Scalable Environment 105
4.3.3. Concurrency Regulation in the Partitioned Model 106

4.4. Résumé .. 111

Chapter 5. Phœnix: a Prototype Environment ________________________ 113
5.1. The Structure of Phœnix .. 114
5.2. The Host Language and Environment ... 115

5.2.1. Design Issues .. 115
5.2.2. The Phœnix Pre-processor .. 116

5.3. The Virtual Machine Layer ... 119
5.3.1. Design Issues .. 119
5.3.2. Implementation Overview .. 119

5.4. The Partitioned Environment .. 123
5.4.1. Design Issues .. 123
5.4.2. Basic Classes .. 125
5.4.3. Collections .. 127
5.4.4. Partitions ... 128
5.4.5. Activities .. 129

- iii -

5.5. Extensions .. 130
5.5.1. Issues in Extending Phœnix Classes ... 130
5.5.2. Example Extensions ... 130

5.6. Résumé .. 132

Chapter 6. Evaluation __ 135
6.1. The Partitioned Object Model ... 136

6.1.1. Meeting the Aims of Scalable Memory .. 136
6.1.2. A Comparison of Possible Alternative Implementations 138
6.1.3. Some Problems with the Chosen Implementation 140
6.1.4. The Programming Model and Method ... 141

6.2. The Phœnix Prototype ... 142
6.2.1. Sufficiency of the Base System .. 142
6.2.2. Extensibility .. 142
6.2.3. Refinement ... 144
6.2.4. Defects .. 147

6.3. Performance ... 151
6.3.1. Theoretical Performance .. 151
6.3.2. Experimental Performance ... 154
6.3.3. Discussion ... 160

6.4. Three Examples ... 161
6.4.1. Example One: the Booch Components .. 161
6.4.2. Example Two: a Cellular Automaton .. 164
6.4.3. Example Three: an Inference System .. 170

6.5. Scalable Memory, Partitioning and Phœnix: a Judgement 175
6.6. Résumé .. 176

Chapter 7. Conclusions and Further Work ___________________________ 179
7.1. Réprise ... 179
7.2. Further Work ... 182
7.3. Conclusion ... 184

References __ 187

Appendix A. A Formal Treatment of Partitioning _____________________ 197

Appendix B. Wisdom ___ 207
B.1. The Wisdom Nucleus .. 207
B.2. The Filing Systems .. 209
B.3. Wisdom in Use .. 210

- v -

Table of Figures

Figure 1: Page faulting in distributed shared virtual memory 16
Figure 2: The workings of object-oriented memory .. 41
Figure 3: Two paradigms for concurrent processing ... 46
Figure 4: Collections and concurrency in the scalable abstract machine 47
Figure 5: Flat distribution management .. 55
Figure 6: Hierarchical distribution management ... 56
Figure 7: A generic partitioned collection ... 60
Figure 8: The general case of resolution ... 61
Figure 9: Arrays as metric spaces .. 63
Figure 10: Distribution and resolution in dimensional decomposition 64
Figure 11: Distribution and resolution in regional decomposition 66
Figure 12: Dynamic hashing: splitting a bucket ... 71
Figure 13: Extendible hashing: splitting a bucket .. 72
Figure 14: A comparison of extensible hashing schemes 73
Figure 15: Distributed extensible hashing: splitting a bucket 74
Figure 16: A strategy for naming graph nodes .. 80
Figure 17: The effects of a node failure on resolution .. 88
Figure 18: Generic collection with replicas ... 91
Figure 19: Different styles of asynchronous method call .. 95
Figure 20: Attaching activities to a collection ... 108
Figure 21: The Structure of Phœnix .. 114
Figure 22: The compilation process .. 116
Figure 23: Control flow for resolution in Phœnix ... 124
Figure 24: Analysis of costs involved in accessing data 153
Figure 25: The Wisdom nucleus .. 208
Figure 26: A Wisdom system in use (showing load balancing) 210

- vii -

Acknowledgements

No programme of research occurs in a vacuum: the participation of other
researchers as both supportive friends and knowledgeable critics is invaluable. For
this reason a few acknowledgements are in order.

First and foremost to Andy Wellings, my supervisor over the last three years, for
preventing me from going down any of the several “blind alleys” which I
encountered and for correcting some of my less precise flights of English.

Secondly, my thanks must go to the members of the Department of Computer
Science at York, who have provided a most stimulating and friendly environment in
which to conduct research. The other members of the Wisdom group – Kevin
Murray and Paul Austin – acted as excellent teachers in the vagaries of Transputer
systems, whilst Martin Atkins and Paul Butcher made useful and constructive
comments on some of the language ideas.

Finally my thanks go to all my friends both within the department and outside
who stopped me spending all my time working. Thanks especially to Andy and
Karen Coombes, Matt and Jacqui Cuttle, Dave Cattrall and Dave Scholefield.

The use of all trademarks, copyrighted symbols and quotations is gratefully
acknowledged.

- ix -

Declaration

Some parts of this thesis have appeared in previously-published work. The
initial ideas for the partitioned object model were presented in:

S.A. Dobson and A.J. Wellings, “Programming highly parallel
general-purpose applications”, pp. 49-56 in Collected position papers
of the BCS workshop on abstract machine models for highly parallel
computers 2, University of Leeds, 25-27 March 1991.

A more complete discussion of the principles of partitioning, together with

implementation details and example program fragments, appeared as:

S.A. Dobson and A.J. Wellings, “A system for building scalable
parallel applications”, pp. 215-230 in “Programming environments
for parallel computing,” ed. N. Topham, R. Ibbett and T. Bemmerl,
North Holland Elsevier, 1992.

Appendix B is adapted in part from Austin[11], taking into account

improvements in, and experiences with, Wisdom since his survey was produced. It
also includes a brief survey of Austin's work.

- xi -

Abstract

Current parallel programming environments are inadequate in dealing with the
problems introduced by highly parallel, highly scalable, general-purpose computing
systems. They fail to tackle problems of conceptual modelling, distribution
management and concurrency regulation which are central to the effective use of
such systems.

It is argued that sophisticated models of memory and processing hold the key to
scalable programming, by allowing applications to be written in an abstract
framework which may then be mapped transparently onto an underlying scalable
machine. A model of memory based around scalable typed abstract memory
modules is developed, which allows applications to create and manipulate arbitrarily
large collections of data, independently of the collection's distribution, and to use
these collections as an infrastructure for creating and regulating concurrent activity.

A set of implementation techniques for representing scalable memories is
developed, covering the commonly-encountered forms of memory. Concurrency
control and regulation in such architectures are considered. A prototype
programming environment based on these techniques is presented and discussed.
The abstract model, implementation architectures and prototype are then evaluated

The evaluation shows that scalable memory is indeed a viable programming
solution for scalable systems, simplifying the construction and configuration of a
range of parallel applications. However, the prototype environment is shown to be
deficient in several key respects. Future work is proposed to rectify these faults,
thereby creating a realistic environment for scalable programming.

- xiii -

If I'd the knack
I'd sing like
Cherry flakes falling.

 Basho

Introduction

If we offend, it is with our good will.
That you should think, we come not to offend,
But with good will. To show our simple skill,
That is the true beginning of our end.

 Quince in A Midsummer Night's Dream

The course of computer science, over its short history, might be described as a
conflict between two sometimes contradictory aims: increasing the power of
computers in order to tackle harder problems, whilst finding better ways to express
solutions to these problems.

It is a truism that computer users have an insatiable demand for more computing
power, both to address more complex problems and to increase the sophistication of
user interfaces. However, there are limits – both physical and fiscal – to the
performance which may be obtained from a single processor. Most modern
computers make use of dedicated support processors for input/output and floating-
point arithmetic; recently there has been much interest in systems where a number of
general-purpose processing elements are connected together. In particular, systems
of processor-memory pairs connected by a sparse network of point-to-point links
have become popular.

Multicomputers have several highly attractive features. Firstly, each processing
element may be built from affordable off-the-shelf hardware rather than from
expensive custom units. Secondly, processors may be added to a system as required
by simply connecting them to the existing system with additional communications
links. The architecture is thus both highly scalable and massively parallel, and allows
extremely high-performance machines to be built at a reasonable cost – which in turn
allows highly computationally intensive problems to be tackled.

Programming language evolution is essentially concerned with finding new
models within which programmers may express applications. In general, the trend
has been towards greater levels of abstraction in programming languages, taking
programmers away from machine-oriented concerns and allowing applications to be

- 2 -

expressed in terms which are close to the programmer's conceptual model. The
price for this simplification of programming is generally a decrease in a program's
run-time efficiency, as more demands are placed on the compiler and run-time
system.

Hence there is a conflict: on the one hand, applications programmers wish to
exploit the power of the new multicomputer machines in order to create more
complex applications; on the other, the languages which would best allow these
applications to be expressed incur (sometimes unacceptable) performance penalties.
In the quest for obtaining the best possible efficiency, programmers have often been
forced to return to the low-level practices which high-level language evolution has
sought to banish, but multicomputer architectures – especially their distributed
memory and massive parallelism – make high-quality programming difficult for any
but the most trivial and regular applications.

Programming for scalable multicomputers thus presents a classic paradox: the
features which make the architecture attractive are precisely those features which
make the creation of applications most difficult.

Intentions of this Thesis

The goal of the research described in this thesis is to develop a new method of
programming by which the power of the multicomputer architecture can be
harnessed. It is intended to explore the notion that a high-level, application-oriented
view of programming – concentrating on the structures which are of most use to the
application developer, rather than simply on those which are most attractive from a
theoretical standpoint – would considerably simplify the programming task. The
overall aim is the production of the theoretical framework for programming scalable
applications, together with a prototype programming system. Five related problems
need to be satisfactorily tackled:

• managing and co-ordinating large quantities of structured data

in a distributed-memory environment;
• regulating and controlling of massive amounts of concurrent

activity;
• hiding architectural details from programmers through the use

of an abstract programming model;
• providing a supportive programming framework with scope

for re-use, to avoid unnecessary re-invention; and
• ensuring scalability by ensuring that applications can take

advantage dynamically of whatever resources are available at
run-time.

The intention is to produce a programming environment to run on top of a

suitable scalable parallel operating system: the work does not address operating
system issues such as process management or load balancing, although these are
crucial to the success of the system.

- 3 -

Thesis Structure

Any new course of work must first begin with a thorough study of what has
gone before. Chapter one, therefore, contains a survey of the literature of parallel
computing. It covers three broad fields – parallel architectures, operating systems for
parallel computers, and parallel programming systems – but approaches each by
considering from the start the scalability of each element and its relationship to other
elements. As a result of this survey, some shortcomings in the programming models
used on previous highly parallel systems are observed.

Chapter two addresses these shortcomings by describing a programming model
specifically aimed at scalable parallel programming. The model's emphasis is on the
transparent and scalable use of resources, and on the ease with which applications
may be created and re-used. The central theme of the model is the use of scalable
memory as a basis for programming. Memory is seen as being typed, being similar
to the data structures commonly found in applications.

Chapter three presents a set of techniques which aim to implement scalable
memory efficiently. Several alternative implementation strategies are considered:
the one chosen makes extensive use of fully distributed algorithms to avoid
performance bottlenecks. The effects of various parameters for distribution are
considered. Three variations on the main theme are described to implement three
common forms of storage – arrayed, associative and directed – which may form the
kernel of a programming environment.

Chapter four considers the problems and consequences associated with the
introduction of large amounts of concurrency into applications. Scalability demands
a high degree of system involvement in the creation and location of processes, and
these problems are addressed via the scalable memory implementations described
earlier. Concurrency control is also discussed.

Chapter five presents Phœnix, a prototype programming system based around
the abstract model. Phœnix realises the implementation techniques discussed in
chapter three as a set of classes for use in constructing object-oriented applications.
The use of object-oriented techniques allows a substantial amount of code and design
re-use to occur both between classes and across applications – a feature considered
vital for the successful programming of complex parallel systems.

Chapter six contains an evaluation of the Phœnix prototype. The evaluation
approaches Phœnix from three directions: in terms of efficiency, programmability
and abstraction. The weak points of the system are highlighted and analysed.

Chapter seven concludes the thesis with a résumé of the work described. It
comments upon the decisions taken during the work, discusses the design of
programming languages and operating systems for an “ideal” scalable parallel
system, and points to some directions for future research.

Some Conventions

There is currently a healthy debate within the programming language
community as to the exact meanings of the common terms concurrent, parallel and
distributed. These words have been used in contexts so disparate as to destroy their

- 4 -

usefulness. Without wishing to contribute to this debate, we shall henceforth adopt
the following convention:

• a concurrent system is a system in which several loci of

control may be active simultaneously, at least from the
programmer's conceptual viewpoint;

• a parallel system is a concurrent system in which the number
of simultaneously active processes is very large – of the order
of hundreds or thousands; while

• a distributed system is a system built from a number of largely
independent computers connected by a network, so that nodes
do not share memory.

A similar debate exists around the term scalable. As the meaning of this term is

central to this thesis, it is discussed in chapter one as the basis for the literature
review.

Within this thesis, all fragments of code, class definitions and the like appear in
Courier typeface.

Chapter 1.

Scalable Parallel Computing

Half of the people can be part right all of the time,
Some of the people can be all right part of the time,
But all of the people can't be all right all of the time.
I think Abraham Lincoln said that.

 Bob Dylan, Talkin' World War III Blues

There exist many surveys of the field of parallel processing (for
example[95][106][109]), but few have considered the scalability of systems as their
primary organisation. This is our aim here.

The concept of scalability is very important in understanding the aims of the
current work, so we shall begin by defining the term and analysing the ways in which
it may be applied to different computing tasks. We shall then use this definition to
examine the literature appertaining to the creation of parallel applications,
concentrating on the available operating systems and programming languages. We
shall investigate the advantages and failings of different systems when considered for
scalable programming, and shall derive from this investigation some factors which
are characteristic of programming system suitable for scalable computing.

1.1. What is Scalability?

The term “scalable” has different meanings to different people, and we shall first
define it more precisely.

The idea of scale derives from notions of measurement. We may speak of things
being “on different scale,” such as a mountain and a mole-hill, where the same

- 6 -

characteristics are apparent at two different orders of magnitude; and of “changes of
scale” when a phenomenon occurring in small objects manifests itself in larger
domains. We may also speak of things which are constant across a range of scales,
either qualitatively or quantitatively.

Essentially, something is scalable if, without altering its gross characteristics, its
size may be increased or (less commonly) decreased. That is, the phenomenon can
deal with changes of scale without apparent change. The key word here is
“apparent”: scalability does not imply that no changes occur internally but simply
that, to the outsider's view, the system being studied remains qualitatively the same
across a range of problem sizes.

Scalability offers a number of advantages. It allows underlying factors to
change without these changes propagating beyond the scalable system's boundaries;
allows systems to be compared across changes in size; and allows a system to be
applied to a range of different scales, which in turn implies that the scale of problem
is not relevant to its solution. Thus scalability is an important form of abstraction.

Another important facet of scalability is that it tends to be an emergent property:
when a group of smaller items are collected together, scalability arises from their
interactions. The scalability of a system is not latent within the components of the
system , but arises solely from their interconnection and interaction.

1.1.1. Scalability in Various Guises

The most commonly-mentioned form of scalable system is represented by a
class of algorithms which may be applied to problems of radically different sizes.
Coming as it does from computational complexity theory, this form of scalability is
pervasive. A common statement is that, for an algorithm or system to be truly
scalable, it must have a computational complexity of no more than logn (or
sometimes n nlog) for a problem of size n. This implies that, for a system to be
scalable according to this definition, no important algorithm or structure must have a
complexity greater than this, otherwise this item will become a brake on the system
as it grows – a “bottleneck.” A good example might be a system which used a
bubble-sort in one of its fundamental algorithms: since bubble-sort has a complexity
of order n2 [70], this algorithm will bottleneck as the number of elements rises.

Another frequently-encountered scalable system is the interconnection network
of a multicomputer. The scalability in this case applies to the complexity of routing
messages between nodes: since communication is so fundamental to multicomputer
systems, it is vital that the hardware which controls message routing is scalable –
otherwise there is a maximum number of nodes representing the point of diminishing
returns, beyond which the addition of more nodes will be counter-productive due to
communication delays. The hypercube architecture[55], with a communication
complexity of logn for an n-node system, thus has “perfect” scalable
communications characteristics.

A third example of scalability is found in the creation of operating systems for
scalable computers such as multicomputers. Scalability here refers to the ability of
the operating system, seen as a whole, to support any number of processors without
alteration. This, however, differs from the above in that it is scalability from an

- 7 -

external viewpoint only: the operating system can scale across a range of hardware
configurations without changing qualitatively to users, programmers and
applications, although quantitatively it will have changed to provide more processing
power, more memory et cetera.

This is a good illustration of the emergent nature of scalability: such an
operating system is only scalable because all its components are themselves scalable,
in isolation and in conjunction.

There is clearly an incremental dimension to all these forms of scalability. It is
important to be able to vary the system at an arbitrary rate, without any “jumps.” A
scalable system must support the range of possible scales continuously and
gradually.

1.1.2. Précis: Scalability for Programmers and Users

If a system may transparently accommodate changes in problems sizes, the size
of problem to which the system is applied has effectively been abstracted away from.

For the programmer, having a scalable system means that the same software
system may be used on problems of arbitrary size, since the system will scale to deal
with the problem without programmer intervention. For users a similar benefit
accrues: a scalable application may deal with any problem which the user sets,
regardless of its complexity.

A good example of a scalable application would be a “sort” command. There
are a great many sorting algorithms, but their efficacy often depends upon the
problem size being tacked: bubble sort is more efficient than quick sort on small
problems, but less so on large data sets. Therefore a scalable sort command would
choose the most appropriate algorithm for the job being requested, and would appear
to users as a perfectly scalable system able to respond to the demands being placed
upon it. The alternative is to offer either a command with unpredictable (and possibly
unacceptable) performance or a selection of commands from which the user must
choose the correct one.

Another example would be a parallel system in which the degree of parallelism
varies depending upon run-time conditions. The selection of how much parallelism
to use on a problem, and how much distribution, is a complex one, and is further
complicated by systems whose capabilities may be scaled. A scalable application
must be able to take advantage of whatever resources are available at run-time.

However, for the programmer this view of scalability also introduces problems,
since it implies that all applications software must be scalable. The familiar view of
software components as “black boxes” exporting a functional interface must be
extended with the notion of scalable black boxes which may be used on problems of
any size.

1.2. A Scalable Machine

The purpose of this chapter is to review the current state of the art in
constructing highly parallel systems, with a view towards the scalability of existing

- 8 -

techniques. We shall begin our examination of scalability by looking at the hardware
platform being used.

1.2.1. Hardware

The construction of a scalable machine involves building a computer system
which is capable of extension to provide additional resources and processing power.
Ideally one would like to be able to scale a machine's capabilities incrementally, so
that it may be expanded gradually to meet changing requirements. Indeed, this might
be seen to be the major advantage which scalable machines have over more
traditional centralised systems: they may be extended as requirements – and finances
– allow.

The classification of machine architectures due to Flynn[46] divides machines
into four categories:

• single instruction, single data (SISD), where a single

instruction stream is applied to a single data stream;
• single instruction, multiple data (SIMD), where instructions

are applied to many data items in parallel;
• multiple instruction, single data (MISD), encountered only in

some advanced digital signal processing chips; and
• multiple instruction, multiple data (MIMD), where separate

sets of instructions act on separate data streams.

The SISD category thus encompasses all the traditional single-processor
systems; SIMD and MIMD are both (potentially) highly parallel, and are both
candidates consideration as scalable machines.

SIMD systems such as the Connection Machine[58] usually exhibit a massive
amount of parallelism – often over eight thousand simple processors are used, far
more than in any current MIMD machines. It is not usually possible to add either
memory or processing elements to such machines – although there is no theoretical
reason preventing this – and they will not be considered further.

Processors and Memory

Prior to the introduction of systems with multiple processors the only way to
increase the performance of a system was to purchase a new central processor: an
expensive and often frustrating business.

Multiple-processor systems allow an easier upgrade path: processors and
memory may be added incrementally to the system, without altering its essential
characteristics. For example, a multiprocessor having eight processors is
qualitatively the same as a system having four processors – but faster, with more
memory, and able to support more users, more complex problems, or both. Such
systems are therefore, by the preceding definitions, scalable with respect to their
processing capacity; they are not, however, scalable indefinitely, as contention for

- 9 -

the shared memory and shared buses place an upper-bound on the number of
processors which may be connected to the system (typically around twenty1).

Multicomputers tend to offer better processor scalability in this respect, since
they have no shared memory over which contention can occur. It is thus possible to
add processor-memory pairs without affecting the access behaviour of other nodes:
in many respects the nodes act as independent computers (hence the term
“multi(ple)computer”) with peripheral inter-node communications capabilities.

Interconnection

In a multiprocessor, nodes communicate via the shared memory;
multicomputers require some extra communications mechanism to connect nodes
together. Adding more processors introduces more communications traffic into the
system, and it is now well-recognised that it is communications bandwidth – and not
processing capacity – which is the limiting factor in building massively parallel
systems.

The processor interconnection may take the form of a shared communications
medium (such as a broadcast network), but such an architecture acts as a brake on
scalability: as the number of nodes on the network increases, so does the network
traffic, but the amount of communications bandwidth remains the same: hence
eventually the network will become saturated[87].

The alternative is to provide a “sparse” network and (possibly) software support
for complete connectivity using channels, capabilities et cetera. The usual approach
is to associate communications capabilities intimately with processing nodes, with
each node being a processor-memory-communications triple. This allows the
amount of communications in the system to scale alongside the increase in
processing elements.

Hypercubic networks are often presented as the epitome of scalable networks:
nodes are arranged to form the vertices of a hypercube (typically between a three-
and a nine-dimensional hypercube), with network links forming the edges. An n-
dimensional hypercubic network has the property that exactly n links are incident on
each node, and that the average distance between any two nodes (the communication
distance) is log2 n links. By comparison, a mesh-based network has a
communication distance of n , which is considerably more complex (and hence less
scalable).

However, this idealised view of routing is less than perfect when considering the
other aspect of scalability, incremental development. In a hypercube, the dimensions
of the network is directly visible at each node in terms of the number of links:
increasing the number of dimensions impacts upon every node in the system, since
more links will need to be added to maintain the topology. By contrast, a mesh-
based system is more scalable in this respect. Nodes may be added at the edges of
the mesh without affecting, in hardware terms, nodes in other parts of the network.

1Multiprocessors such as the Monarch[102] allow thousands of processors to be connected, but only at
the cost of greatly increased memory access times.

- 10 -

1.2.2. Operating Systems

Many parallel computers are run “naked,” without any operating system support.
The rationale behind this decision is that use of an operating system inevitably
introduces overheads which may be avoided by direct-access by applications to the
hardware. Frequently the only supporting software provided is a communications
harness such as Tiny[38].

Such approaches are acceptable only in limited circumstances: when only a
single application is running on the machine, and when the programmer is competent
to deal with low-level details. If wider access to parallel computers is to be achieved,
it is necessary that the parallel system presents a similar interface to that of a
“standard” machine: this implies allowing applications to co-exist on the platform,
the existence a filing system, a shell – in short, an operating system.

A distinction may be drawn here between distributed and parallel operating
systems, echoing the conventions of terminology from the introduction. A
distributed system tends to have the goal of increased reliability, increased
availability and the like; a parallel system's main rationale is to increase
performance. A scalable operating system is in many respects a fusion of the two: it
may use the availability of multiple processors to increase its reliability and to
improve performance for applications. Many of the techniques of distributed
systems – especially those involving failure management, filing systems and name
spaces – are also applicable to scalable parallel systems (see especially the work on
Plan 9[15][97][99]). A good overview may be found in [92][110].

Helios
Helios is a commercially-available operating system for networks of

Transputers. It is POSIX2-conformant, and supports load-balancing through the use
of specialised tools.

Helios is composed of six elements: a kernel, several libraries, a processor
manager and a loader. The system supports several advanced Unix ideas such as
shared libraries, mountable file systems et cetera.

Programming in Helios closely follows the Occam model of communication:
processes may declare a number of channels which are then attached to the channels
of other processes using a configuration script. The channel abstraction is fused with
the Unix notion of file streams, so applications may use the standard Unix notations
to access other processes via their channels.

Wisdom
Wisdom[8][10][90][91][92] is a micro-kernel operating system nucleus for

mesh-based systems, currently implemented on Transputers.
The Wisdom nucleus is composed of three modules: a load balancer, a namer

and a router. The same nucleus runs on every node in a Wisdom system.
Parallelism comes in two forms: tasks and processes. A task is the smallest unit

of true parallelism, and may be composed of several processes executing in a shared

2POSIX is the international standard definition of a Unix programming interface (IEEE 1003.1-1990
or ISO 9945-1).

- 11 -

address space. The load balancer allows tasks to be moved at their creation onto any
less-loaded neighbour of the process which creates the new task. This forms a load
balancing “ink blot” of tasks spreading out from the user's initial log-in task.

The router allows any pair of tasks to communicate using capabilities[88]. A
capability is a user-space object which may be passed freely between tasks: any task
holding a copy of a capability may use it to communicate with the task which created
the capability. Message routing is unreliable, with zero-or-once delivery.

The namer is analogous to the Unix file name space, but maps textual, user-
friendly names onto capabilities rather than onto files. Any task may “register” itself
with the namer by supplying a capability: any other task may then obtain this
capability by making a request to the namer.

The modules of all the nuclei in the system co-operate to present the illusion of a
single computer, but additional nodes may be added to the mesh to increase the
system's capabilities without changing any software.

A more complete description of Wisdom may be found in Appendix B.

1.3. Programming for Scalable Systems

We shall begin by defining the issues which set scalable programming systems
apart from other parallel or distributed environments, before addressing the issues
raised – memory, concurrency and configuration – by a survey of the literature.
Inevitably some systems fall into several categories: in this case, a system has been
placed in the category to which it makes the biggest contribution. Object-oriented
systems span categories to such an extent that discussion of them is contained to its
own section.

1.3.1. Issues in Scalable Programming

A scalable application is an application which is able to take advantage of
whatever computational resources are available at run-time, and is able to tailor its
resource utilisation and organisation according to the problem in hand. In other
words, a scalable application is extremely responsive to its environment when
dealing with a problem.

Such responsiveness implies that a very flexible approach is taken towards all
those features of the system which may be changed by scalability. In particular, a
scalable applications must deal with the fact that the amount and distribution of
memory and the amount of usable parallelism may change between runs.

Memory
Memory in a multicomputer is divided between the processing nodes. A

memory is private to the node to which it is connected, and only processes executing
on that node may access its memory directly.

This partitioning of the system's address space has several effects. The most
beneficial effect is that bottlenecks caused by several processors competing to access
memory are eliminated. The processing nodes of a multicomputer each behave like

- 12 -

independent computers – with the addition of communication links and the removal
of most or all peripheral devices.

The disadvantages, however, are severe. An application must constantly
consider the location of data items and processes, in terms of the node on which they
reside. This need for location-management adds considerable complexity to the
programming task and introduces overheads: since a process may only manipulate
data held in its node's memory, any data not residing there must be acquired from the
remote node where they reside.

Scalability means that an application cannot know, a priori, exactly what
memory resources will be available: additional nodes may be added, local memory
sizes may be increased, other applications may be running et cetera.

Concurrency
Parallelism is the sine qua non of scalable computing. Without parallel

execution, an application is limited in its performance and memory to what can be
accomplished on a single processor.

Concurrency may be seen in two lights: one the one hand, it may be used to
improve performance by allowing several parts of a computation in parallel; on the
other, it may be used to provide a degree of redundancy in processing, so as better to
tolerate partial failures. Both these aspects are important in a scalable system.

The fact that processors may be added – that is, the processing resources scaled
– means that applications must take a very flexible view of these resources if they are
to be scalable. It is unacceptable to define a priori the number of processes which
will be created by an application, as this limits the scalability of the system: less
processes than processors may result in less-than-optimal performance, whilst too
many processes may cause contention and time-slicing problems. There is a difficult
line to be walked between the programmer's involvement in generating concurrency
and the potential scalability of the system.

Configuration
Configuration is the arrangement of elements of a program in memory, and their

interconnection. In a system in which the number of processors and their topology
may vary, this is obviously a difficult task.

There are essentially three approaches to configuration:

• “hard-wiring” an application's configuration into it at compile-
time;

• separating an application's functionality from its configuration,
and specifying configuration using a separate tool; and

• allowing configuration to occur automatically at run-time.

The first approach means that changing an application's configuration requires a
complete re-compilation – not a viable option in a scalable system. The second
allows configurations to be changed with only minimal changes (possibly re-writing
the configuration description, but not the application itself). The third allows an
application to decide itself upon its configuration, relegating the programmer's

- 13 -

involvement to the specification of “hints” to help the mapping. This last is the most
appropriate to scalable systems, since the programmer is never called upon to specify
directly the resource utilisation of the application.

1.3.2. Memory Models

There are several ways in which memory may be presented to the programmer.
These range from the visible partitioning of the machine's address space to the
complete abstraction of all notions of data location.

Explicit Data Mapping

The most primitive form of memory model for a multicomputer system is one
which allows the partitioning of the system's address space to be seen by
applications. Another way of looking at this is that any system address is composed
of a pair (node, addr) which defines location addr on machine node (which may
itself be a structured name). This is rather reminiscent of the segmented address
space found in some processors, and has the same disadvantage: there is an arbitrary
upper limit to the size of the largest contiguous block of memory which may be
allocated. A further disadvantage is that the system's memory is not random access:
addresses on a different node are more expensive to access than local addresses.

The single advantage of this form of memory model is that it allows the most
precise control possible over the placement of data and code. In order to achieve the
best possible performance, some programmers are willing to accept the penalty of
increased application development and debugging times as a trade-off against better
speed of execution in the final application, which will not be incurring any penalties
from supporting a more high-level memory model.

The best-known explicit data mapping system is undoubtedly Occam[86], which
is covered in more detail in §1.3.3. Other systems, such as Concurrent C[51] and
Joyce[27], also use the same model.

Data Structure Mapping

As an alternative to such explicit mapping, some systems allow data structures
to be mapped automatically onto processors. This has the great advantage that many
applications – particularly in the engineering community – are based around
manipulating large arrays or other highly structured data collections, so the mapping
concerns the central constructs of an application.

 Different systems have differing degrees to the transparency with which they
perform their mappings: some perform it completely automatically, or with the
addition of annotations, whilst others allow the structure of the mapping to be visible
to (and exploited by) applications.

Parallel Fortran
Even after forty years, Fortran is still the lingua franca of the scientific

community. There is a vast amount of Fortran software in existence – both as

- 14 -

applications and as libraries of sub-routines for common calculations – much of
which is in the form of “dusty decks” of code which it is impossible (or impractical)
to translate into another language. For all these reasons, there is a great deal of
interest in running Fortran code without modification (or, more realistically, with
only trivial annotation) on parallel systems. Many of the common sub-routine
libraries have been ported to the new dialects[3].

There have been a great many attempts to create a parallel Fortran, mostly
concerned with introducing parallelism into nested loops. The usual mechanism is to
perform a data dependence analysis on the Fortran source code to determine how the
values of one loop iteration affect other iterations, and then to use this information to
construct a suitable parallel version of the loop and a suitable distribution for data
and processes.

The recent High Performance Fortran (HPF) proposal[57] contains directives to
specify application-defined topologies of processors coupled with mappings of arrays
(the only applicable data structure in Fortran) onto these processors. Parallelism
comes from “forall” statements and directives specifying that certain loop segments
are independent and may proceed in parallel. There is also the notion of a “pure”
function having no local state dependence, which may safely be applied in parallel.

Topologies
Topologies[104] are an operating system construct which allow a single object

to be distributed across the nodes of a network. Each topology is an object having a
well-defined interface, a list of “vertices” at which portions of the object (both code
and data) may reside, and a connection topology for the vertices.

A topology is instantiated by specifying a mapping of its vertices onto
processors. When communicating with the object, processes may specify a particular
vertex to which they wish to bind, and all their communication will be directed
directly to this vertex.

Each vertex must be equipped with a procedure which can determine whether
the portion of the object being accessed is located at that vertex, and must forward
the request if this is not the case. The internal organisation of the topology is visible
to its clients.

Kali
Kali[71] separates the description of a program into three parts: a description of

the processor topology, some data structures which may be distributed, and a
collection of parallel loops over the elements of those data structures. Programs are
written under a shared-memory model, but the distribution of slices of data structures
onto the processor topology is specified explicitly. The compiler than transforms the
program into a collection of message-passing processes. In essence, the system is a
forerunner of HPF.

Parallelism comes from “forall” constructs which allow a command to be
executed over all (or a sub-set of all) the elements of an array. The site at which
execution occurs may also be given, and may change with each iteration.

- 15 -

Distributed Shared Virtual Memory

Distributed shared virtual memory (DSVM) is an increasingly popular model of
memory3. It attempts to provide the abstraction of a single globally-shared memory
on a distributed-memory machine by using the techniques developed for virtual
memory[110], extended into a wider domain. In the following discussion, we shall
use the DSVM system described by Li[76] as representative of a wider class of such
systems: a comparison of various DSVM systems, with each other and with other
models of memory, may be found in [114].

Memory is represented by fixed-length virtual pages. Each page may be
resident in memory or may be temporarily paged-out onto disc. The physical
memories of the processing nodes are divided into page frames, each of which may
hold a single virtual page. Address translation is used to map the virtual addresses
generated by processes into physical addresses: different processes may have
independent virtual address spaces, just as with standard virtual memory systems.

The chief characteristic of DSVM is its ability to migrate and replicate pages in
different physical address spaces. Since there is no fixed mapping between virtual
pages and physical addresses or locations, it is possible to move a page between page
frames on different processors in response to requests for addresses on that page – a
page fault. If a process generates a page fault, the DSVM manager determines where
the required page is located and either moves or copies it into a page frame on the
processor which generated the fault. In order to do so a page frame may need to be
freed: this may be accomplished by (for example) discarding the least-recently-used
replica of any page.

There is a problem of memory consistency, however. The definition of DSVM
states that it will be strongly consistent: the value which a process reads from a
memory location will be the value last written by any process into that location. If
two processors were to be allowed write access to a single page, consistency
problems would arise.

DSVM solves this by associating an access permission with all pages. A page
may be marked as read-write or read-only. There may be many read-only replicas of
a page, but at most one read-write replica (known as the master copy). If any replica
of a page is written to, all the read-only replicas of that page are invalidated: nodes
holding these replicas throw them away, so the next attempt to read data from that
page causes a page fault which will acquire the updated data on that page from the
master copy. A typical sequence of accesses is shown in figure 1.

3Unfortunately known by a variety of names, another common one being virtual shared memory
(VSM).

- 16 -

Li investigated several strategies for managing pages and replication, and
derived a fully distributed scheme which ensured consistency between replicas of
pages[77]. He also investigated the overheads involved in implementing a DSVM
system practically on a hypercube architecture[78], drawing the conclusion that the
system was practical on networks with a high dimensionality: it is doubtful that his
methods would function as well in systems with a low-dimensional interconnection.

DSVM seems to be an ideal candidate for a scalable system: it successfully
allows applications to abstract-away from details of data location, since all pages are
accessible from all nodes. It has a number of shortcomings when examined more
closely, however.

Firstly, there is the question of allocation of data to pages. Consider a pair of
processes A and B which are communicating using a shared variable: A is a
producer and B a consumer. A writes values into the variable which B reads and
processes. The processes reside on different processors, with the variable being
mapped into a virtual page. Communication then occurs as follows. A owns a read-
write copy of the page, while B owns a read-only copy. When A writes a value to
the variable, B's replica of the page is destroyed; when B next attempts to read the
variable, it will cause a page fault and acquire the value from A's master copy.

Now consider another pair of processes, C and D, which are interacting with
each other in exactly the same way as A and B using another variable, and which are
located on another (different) pair of processors. C and D do not interact with A and

a b

c d

a b

c d

a b

c d

a b

c d

1

2

1

21

2

1

2

1 1

1. a and d own read-write
pages 1 and 2 respectively

2. b and c make read-only requests
for page 1, and receive copies
through page faults

3. c writes to its copy, causing
the other copies to be invalidated:
c becomes the new page owner

4. a writes to page 2, causing
it to be moved: a becomes the
new owner

Figure 1: Page faulting in distributed shared virtual memory

- 17 -

B in any way, as long as the shared variable used by A and B is located on a different
virtual page to that used by C and D: otherwise, when A writes to its copy of its
variable it will not only invalidate B's copy (as above) but also C's and D's as well;
the same applies when C writes to its variable. Each write by either pair causes the
other pair to cause a page fault at the next access to its variable – even though the
processes are unrelated!

This phenomenon, known as false sharing, mandates that the variables used by
unrelated processes are mapped onto different pages, using a very sparse allocation
of data to pages. This is quite acceptable using the assumptions of DSVM, which
(tacitly) assume that there is always a sufficient amount of memory available. This
assumption may be challenged in a scalable system.

If a DSVM system is to be scalable, it must be possible to increase the number
of virtual pages available along with the number of processing nodes, otherwise the
number of processors will eventually be left without enough virtual memory. This
implies that it must be possible to add new paging discs, and this in turn implies that
a page which is paged-out onto disc may be placed onto one of several paging discs.
There is an additional decision to be made as to exactly which disc a page is
swapped-out onto: it may always be the same disc, or the nearest, or the least loaded
et cetera. This introduces more complexity into an already complex algorithm.

This problem may be avoided by doing away with paging discs and always
holding all pages in memory. At least one copy of every page must always exist at
some node in the system (for example the master copy is always be preserved), and
discarding a page to free a page frame moves its data to some other node. This may
result in a page fault giving rise to a cascade of page movement, which is almost
certainly unacceptable. It may, however, be practical if the number of pages virtual
pages in the system is much smaller than the number of available page frames.

Munin
An interesting variation on DSVM is the Munin system[16]. Munin offers an

object-oriented form of virtual memory, performed on a per-object basis.
The basic observation is that the general case of access to objects – reads and

writes occurring with equal frequency – is only rarely encountered. Munin identifies
nine categories of access pattern:

• write-once – the object is written to only during initialisation,

and is read frequently thereafter;
• private – the object is accessed only by a single thread;
• write-many – writes occur frequently between reads;
• result – all writes are completed before any reads occur;
• migratory – the object is accessed by only one thread at a time,

although the thread changes with time;
• producer-consumer – the object is used as a channel between

two processes;
• read-mostly – the object is read frequently between writes;

and
• the general case of read-write.

- 18 -

No single virtual memory scheme can support all these patterns efficiently (Li

and Hudak recognise two of the above cases – write-many and producer-consumer –
which are inefficient under their DSVM[78]).

Munin addresses this problem by implementing virtual memory in software on a
per-object basis. The system uses a different memory management scheme for each
category, and can change the category of an object dynamically as patterns of access
change.

Munin applications are written using Presto (see later, §1.3.5), which is usually a
shared-memory system but which can function in a distributed-memory environment
when coupled with Munin.

The Kendall Square Research KSR1
A recent entrant into the DSVM arena is the KSR1[82]. The machine uses a

caching system called ALLCACHE[49], coupled with a very high-speed optical bus
to offer massive parallel performance using virtual shared memory.

The ALLCACHE scheme is closely related to that described above, but makes
good use of the speed of the machine's communications to update copies of data
items cached on other processors as changes occur. This reduces the number of page
faults. The bus system is hierarchical to avoid contention.

In programming terms, the KSR1 deliberately separates programming from the
machine's physical construction: as with other DSVM system, it is necessary for the
programmer to understand the sizes of caches et cetera in order to maximise locality
of reference and performance, but these vital figures are hidden. An approach of
“incremental parallelisation” is advocated, where parallelism is gradually added to
existing sequential code.

The major problem with the existing KSR1 is its susceptibility to failure. The
crash of a single memory board in the system is enough to bring the entire machine
down, since the operating system cannot sustain the loss of a piece of itself, and
mean times between failures of 24 hours have been reported[82]. This may be
contrasted with a more distributed multicomputer architecture where the operating
system nuclei on each node are separate, so the failure of one node – whilst it may
render data unobtainable – is not catastrophic to the other nodes. The machine is
also based on custom processor and communications technology, which makes it
vastly more expensive than systems constructed from “off the shelf” components.

Linda

Linda, also known as the generative communication paradigm[2][34][52], is
another shared-memory abstraction running on distributed-memory hardware.
Rather than use the traditional model of memory as a collection of untyped words,
Linda implements its shared memory in a novel, strongly-typed way.

The fundamental element of Linda is the tuple space, which is a bag of tuples.
Each tuple is a typed, ordered sequence of values: for example,

- 19 -

{ 1 }
{ "Hello", "World" }
{ "Hello", "World", 22 }
{ "World", "Hello" }
("Hello", 1.0 }
{ "Hello", 1 }

are all valid, distinct tuples. There may be many copies of a single tuple in tuple
space at any time.

Tuples may be inserted into tuple space using the out primitive, which places a
tuple into tuple space atomically. The statement

out("Hello", "World")

places a tuple composed of two strings into tuple space.
Once placed into tuple space, a tuple may be accessed by any other process in

the applications (or the system) using the in statement4, which removes a tuple from
tuple space. Tuples are retrieved using associative matching: a pattern, or template,
is provided which is unified against all tuples in tuple space. A template may contain
values and formal parameters, which are variables which will take on values from the
selected tuple. For example, the statement

string s
in ("Hello", ?s)

would match the tuple inserted above: after the statement, s would have the value
World. The associative matching algorithm respects the types and arities of tuples,
so the statement

int x
in ("Value", ?x)

would match the tuple ("Value", 10) but not the tuples ("Value",
10.1) or ("Value", 10, 1).

Linda provides two other operations. The rd statement acts exactly like in but
does not remove the tuple from tuple space. It also defines an eval statement which
generates “active” tuples – tuples which have functions as values. An active tuple is
the Linda abstraction for a process: when inserted into tuple space, the functions are
evaluated to turn the tuple into an “ordinary” passive tuple containing the results of
the functions. The functions may access tuple space in the course of their evaluation.

Linda is a sometimes described as a co-ordination language. It is not a language
in its own right, but shares something in common with DSVM or communication
models like CSP[59]. Linda is intended to be inserted into another, “host” language,

4Some people contend that this use of in and out is rather paradoxical, since in takes tuples out of
tuple space. The convention is to view all tuple activity from the process' point of view, so in brings
a tuple into the process.

- 20 -

which performs all computation but uses the Linda primitives for all shared data and
inter-process communication. This allows Linda to be implemented as a library and
linked into a program: indeed, the most common Linda system is an embedding of
the primitive operations into C[19][33].

In many respects, Linda suffers from the same deficiencies as DSVM: by hiding
distribution of data so completely, it makes it impossible to optimise applications
when a “good” data distribution is known.

There is a dual abstraction between the way in which data is structured internally
and the way in which it is communicated to other processes. process may hold data
as (for example) a tree internally, but must “flatten” this tree into tuples in order to
communicate it with another process – and the receiving process must reverse this
operation in order to manipulate the tree. This may be a complex procedure for
realistic data structures.

The semantics of the eval statement are stated only very vaguely, and it is
difficult to find a really satisfactory answer to the question: in an active tuple such as

eval ("squaring", f(10), g(20))

what are the semantics of the execution of f and g? One might interpret the
statement as either evaluating the functions in parallel, or sequentially. If the answer
is the former, then there may be strange and unpredictable interactions between the
functions if they both access tuple space in the course of evaluation; if the latter,
they may deadlock, and it becomes difficult to determine how much concurrent
activity occurs in a program.

There is also the question of matching an active tuple: is this possible, and if so,
what are the semantics? There are at least three possible semantic meanings for
removing an active tuple from tuple space – delete the process, suspend the process
or reverse all its actions up to the point at which it is removed – and without a proper
definition it is impossible to reason about a Linda system without knowing the details
of its implementation.

Some more recent Linda implementations include more comprehensive features,
such as multiple tuple spaces and languages well-integrated with Linda[30].

Strand

Strand[48] is a language based around the ideas found in Prolog[39] and the
concurrent logic languages[121].

The shared memory in a Strand application is a database of logical assertions.
An assertion may be a simple statement of fact or a rule of inference for processing
other assertions, in much the same way as in Prolog. A Strand clause may be
guarded by an expression which must be true for the clause to be evaluated.

A typical Strand program is the following set of clauses:

- 21 -

twice (X, Y, Status) :-
 integer(X), X>0 |
 Y is 2*X, Status := [].

twice (X, Y, Status) :-
 integer(X), X=<0 |
 Y := 0, Status := [].

twice (X, Y, Status) :-
 otherwise |
 Y := 0, Status := error.

(This and other examples are taken from [5].) These clauses evaluate Y to be 2*X
when X is an integer greater than zero; 0 if X is less than zero; and raise an error
otherwise. The guards on the clauses ensure that only the appropriate clause fires.

Parallelism comes from the evaluation of clauses concurrently in the satisfaction
of goals. For example consider the function:

quad (X, Y) :-
 twice(X, W, S1), twice(W, Y, S2).

This definition is read as two processes communicating through the shared unit
buffer W. Initially this variable is undefined. Both clauses begin execution
concurrently, but the second blocks on attempting to acquire the value of W (which
will be unified with X in the definition of twice). The first process will evaluate
2*X and place the result into W, unblocking the second process and allowing it to
proceed to evaluate 2*W and place the result into Y.

From this example, it may be seen that Strand's view of shared memory is as a
collection of clauses coupled with single-assignment variables. Two processes
accessing the same variable are essentially communicating using a unit buffer: for
more advanced communications, Strand provides lists: the clauses

par_twice ([N | LX1], LY) :-
 Temp is 2*N, LY := [Temp | LY1],
 par_twice(LX1, LY1).

par_twice ([], LY) :-
 LY := [].

map the function 2*X across a list in parallel.
Strand also allows multiple languages to be used in writing the functions which

appear in clauses. Thus functions may be written in any suitable language, but must
communicate using the Strand database. The Strand system handles the unification
of shared variables, the scheduling of clauses which may execute, and the assignment
of evaluating clauses to processors. Strand itself is designed to be highly portable
across a range of architectures and languages[31].

- 22 -

It is impossible to avoid comparisons between Strand and Linda. Both
implement shared memory using a novel memory model (Strand's being less novel
than Linda's) and deal with the problems of access, matching (using different
associative matching algorithms) and process creation and location. Strand also
handles process scheduling, in the manner of an OR-parallel logic language (e.g.
[83]), using single-assignment variables for communication, whereas the Linda
programmer defines the execution order; Linda is (potentially) strongly statically
typed, whilst Strand is weakly dynamically typed.

As a memory model for a scalable system, Strand suffers the same benefits –
and the same deficiencies – as Linda. The abstraction of execution order, however,
gives Strand a slight advantage in the management of concurrency, since there is no
explicit parallelism in a Strand program.

1.3.3. Concurrency

The concurrency found in applications is often very tightly tied to the intended
hardware architecture, although this is not always the case. For scalable systems, we
obviously require a scalable model of concurrency, in which the concurrency used in
an application may scale according to the number of processors which are available.

We shall consider concurrency in terms of whether it is extracted automatically
from a program's text or whether the program must express its concurrency explicitly
(a third method, using object interactions, will be deferred until later).

Implicit Parallelism

“Implicit” parallelism refers to the situation where the language compiler
extracts automatically any parallelism latent in a problem. The programmer writes
the program without any concern for its execution structure, and the compiler
automatically generates the necessary concurrency generation and synchronisation
primitives. There have been two main threads in automatic parallelisation:
extraction of parallelism from sequential languages, and the use of non-procedural
languages.

The most popular choice for automatic parallelisation is undoubtedly Fortran.
As mentioned above, §1.3.2., parallel Fortran dialects frequently use data structure
mapping to distributed elements of arrays and then perform operations on these
arrays in parallel. The Fortran program is still essentially a sequential one, but the
compiler is free to optimise array operations using parallelism: an SIMD approach
which may be implemented on either SIMD or MIMD hardware.

Parallelism extraction in imperative languages is constrained, however, by the
implicit flow-of-control information embedded into applications: the order of
statements, sub-routine calls and the like has a strong semantic meaning which
cannot be altered by program transformations. Non-procedural languages, which
(largely) remove the semantic importance of statement ordering, offer another, more
tractable route to automatic parallelism. The compiler is free to evaluate functions in
parallel at the granularity appropriate to the architecture being used. Hudak makes
the point that

- 23 -

“An often heralded advantage of functional languages is that
parallelism is implicit; it is manifested solely through data
dependencies and the semantics of operators[61]”

but harnessing this advantage has proved to be more difficult that might have been
expected: the same is true of logic languages.

At the risk of generalisation, it might be said that automatic extraction of
parallelism – both in imperative and declarative languages – without programmer-
supplied hints and annotations has largely been unsuccessful in the general case,
although certain important special cases (such as some parallel Prolog systems) have
exhibited interesting potential for the future.

Explicit Parallelism

Explicit parallelism is undoubtedly the most common form of code written for
parallel machines, and is also the easiest for the language implementor.

We may further sub-divide explicitly parallel systems into those in which
parallel structures exist within the language and those in which parallelism is added
to a purely sequential language.

In the first category fall languages such as Concurrent Pascal[26], Joyce[27],
Concurrent C[51] et cetera. All these languages have (for example) a
cobegin...coend construct, which allows statements to be specified for
concurrent execution, coupled with the ability to perform synchronisation. There
are, of course, variations in syntax and type security between these languages, but
they are overwhelming similar semantically.

Occasionally one encounters explicit statements of parallelism within functional
languages – a recognition of the difficulties encountered in extracting parallelism
from even the most tractable frameworks. A good example is Concurrent ML[101],
in which the spawn function (which is not referentially transparent) generates new
threads of control.

Embedding parallelism into a purely sequential language is accomplished by
creating libraries of functions which interact with the underlying operating system to
create and control parallel activity. The best-known examples are the fork and
wait system calls found within the Unix standard library[12], where each process
executes in its own address space. Systems such as Mach also provide “thread”
calls, where processes may share an address space[65]. Problems may occur with
this approach, however, as the introduction of concurrency subtly alters the
semantics of the host language, introducing the need for shared variables, protected
regions et alia. This is especially true with languages allowing global variables.

Occam
The Occam language[86] is derived closely from Hoare's CSP[59]. It models

concurrent systems as a collection of sequential processes which communicate via
bi-directional channels. It has had a major effect on thinking regarding parallel
languages, and deserves to be treated in detail.

- 24 -

Occam offers very fine-grained parallelism – processes may be created from
arbitrary statements or blocks of statements, so it is possible to express problems in a
maximally concurrent fashion. Processes do not share memory, at any level, so all
communication proceeds by passing data values along channels – there is no pass-
by-reference mechanism, and no pointers. The lack of shared memory in Occam
means that it encourages a pipelined approach to parallel processing[64].

Occam does suffer from some fundamental disadvantages, however. The
language has a very weak type system and almost no encapsulation facilities. The
weakness in the type system means that there are type- and syntactically-correct
programs which nevertheless cannot be compiled – or, worse, compile by generating
incorrect code. The language forces an application to have a completely static
structure in terms of the number of processes it contains and their interconnections.
Current implementations are also very flimsy: the most common use of Occam is in
programming Inmos Transputers, but the Transputer does not support some of the
Occam constructs and makes the configuration of Occam programs very difficult.
(For example, a single channel must be mapped onto a single hardware link, which is
a significant constraint: it is necessary for programmers to perform their own link
multiplexing in software.

From the point of view of scalability, the fixed number of processes and the
fixed channel network means that an Occam application cannot re-configure itself to
different hardware arrangements.

The Occam model of processing is also found in other systems, notably those
such as Concurrent C which are really embeddings of Occam-style constructs into a
sequential language. Occam's communications model is also found in some
rudimentary parallel processing toolkits, as procedure calls for sending data down
channels.

1.3.4. Configuration

Changing the processing elements in a system inevitably affects the optimal
configuration of applications running upon that system. The search for an “optimal”
configuration for particular programs is thus complicated by scalability..

Helios CDL
For the current purposes, the most important feature of Helios is its method of

load balancing and configuration of multi-process programs. The system implements
concurrency at the granularity of the Unix process (which is identified with a
Transputer process), and allows processes to be composed using a Component
Description Language (CDL). A CDL script defines the links between processes:
when executed, a compiled CDL program is passed to the Task Force Manager on
the node at which it is started, which attempts to map each process onto the system's
nodes in a near-optimal manner using various heuristics.

The Helios shell has been modified so that, for example, a request to connect
processes using “pipes” will result in a CDL object file to achieve the appropriate
load balance.

- 25 -

Conic and Darwin
Both Conic and Darwin share the view of CDL, that processes are described

using a sequential language augmented with the provision of ports which may be
connected together. They differ from CDL in the level at which configuration is
performed.

Darwin (the successor to Conic) is intended for use alongside the MP
language[84]. A Darwin program defines a set of components which in turn define a
collection of ports. The ports of each component may be linked together to construct
an application.

Darwin allows its components to be either executable modules or collections of
modules: a collection of modules may be made to behave as a single component for
configuration purposes.

The current MP/Darwin combination is targeted at Transputer systems. A
component may be assigned to a particular node; it is also possible to define the
connection topologies of the nodes by treating each Transputer as a Darwin
component having four channels (its links). This allows Darwin to configure both
the multicomputer network and the application running upon it.

Performing Configuration Automatically

It is perfectly possible, in principle at least, for an application to be written
without any information being supplied about its configuration. It is then the
system's responsibility to determine the best locations for elements of the application,
and to ensure that they can communicate.

Any system which completely removes notions of data and process locality
(such as Linda) is effectively performing automatic configuration. The evidence
suggests, however, that such systems are considerably less efficient than a skilled
programmer.

A compromise is to allow the programmer to provide “hints” to the automatic
algorithms. With care, the programmer may provide enough information for the
system to determine a near-optimal configuration. Such an approach is ideal for a
scalable system, since no hard-wiring of components occurs but the programmer still
retains a residue of control over configuration.

1.3.5. Object-oriented Systems

Object-oriented systems are currently very popular in computer science, offering
good encapsulation, typing and re-use. They offer a good abstraction for all the
facets of programming systems considered above, and may be used to implement a
distributed memory model, a concurrency model and a method of configuration, all
rolled into one.

Fundamentals of Object-oriented Programming

An object is a named, persistent instance of an abstract data type[6] which may
be manipulated only through an exported interface. The operations (called

- 26 -

methods[54] or member functions[108]) may manipulate the state of the object on
which they are called, and may initiate method calls to other objects.

The basic intention in creating a distributed object-oriented system is to utilise
the encapsulation properties of objects as a basis for controlling the location of data.
The underlying system is constructed so as to make object names valid throughout
the network, so that two objects may interact via method calls, no matter where they
are located. An object-management system deals with marshalling and transmitting
a method call to the appropriate processor and with returning any reply. Such
systems are often called virtual object spaces[81].

Objects may also be used as an encapsulation mechanism for concurrency,
introducing concurrency at either the object or the method level. Some systems
provide special “active” objects which have a thread of control, acting like a process
in a more traditional language. Others allow some (or all) methods to be executed
without blocking the caller, or to unblock the caller before they complete. If only a
single method can be executing within an object at any time, the objects present a
single-threaded concurrency model; if many methods may be executing
concurrently, then the object model is multi-threaded but requires some additional
concurrency control mechanism.

Configuration is a matter of deciding which objects reside on which processors.
This may be performed explicitly, by creating objects at a particular location, or
implicitly by allowing load balancing or migration.

Some Sample Distributed Object-oriented Systems

At the risk of generalisation, it might be said that most systems concentrate
either on managing concurrency or on managing distribution, but seldom both. We
shall examine some of the more important distributed object-oriented systems below.

A Gossip of Smalltalks
Smalltalk[54] is the archetypal object-oriented programming environment.

Everything in Smalltalk – integers, data items, data structures, class definitions,
method definitions, blocks of code, files et alia – is an object with the same
privileges and properties. This makes Smalltalk an exceptionally clean language.

A major criticism of Smalltalk in a concurrent environment is that processes are
not objects, but are created from blocks using the fork method. This leads to
programming occurring on two levels – objects and processes – which is a little at
odds with the Smalltalk philosophy[72]. ConcurrentSmalltalk[122] is an attempt to
solve this dual standard. It provides a small set of language extensions for creating
asynchronous methods (which do not block the caller), CBox objects (which behave
rather like futures[56][79]), acknowledgement replies (which reply to and unblock
the caller without terminating the method) and atomic classes (on which all method
calls are serialised).

A further extension to ConcurrentSmalltalk is provide by DistributedConcurrent-
Smalltalk[93], which provides “secretary” objects to manage concurrency constraints
more complex than the total seriality of atomic classes. Secretary objects allow
methods to be related so that they will only execute in mutual exclusion, and allow

- 27 -

guards to be placed on methods which must be true for the method to proceed. The
secretary is accessed through the meta-class hierarchy. The system also allows
objects to be distributed. Objects are collected into name spaces, and users may
select a hierarchy of name spaces (rather like the “path” variable[25] used to find
executable files in Unix).

These Smalltalk variants all suffer from the disadvantage that they scrupulously
maintain Smalltalk-80's semantics. Smalltalk was never designed as a parallel or
distributed language, and certain aspects of its semantics and built-in classes (which
must perforce be considered part of the language) are not amenable to extension into
the parallel domain.

Emerald
The Emerald language[20][21][63] is an object-based language (to use Wegner's

terminology[116]) which is chiefly concerned with the implementation of a virtual
object space in which objects may migrate between nodes.

An Emerald object is created using a prototype, rather than a class. An object
resides on a single node, but this node may change with time – a process called
migration[67][68].

The run-time system tracks the patterns of activity occurring to every object in
the system. If it notices that two objects are interacting heavily, then it will migrate
one of them towards the site of the other (usually it is the receiving object which
moves). This migration reduces the communications distance between the objects
and hence improves performance. Various heuristic methods may be used to decide
when to move an object.

Single method calls may also result in object migration. Usually values are
passed either by reference or by value: Emerald supports a third parameter type, by
move, which suggests that the object named be migrated to the site of the target of
the method call.

It is possible to get into pathological situations with migration, such as when two
widely-separated objects share the use of a third. The shared object may then be
migrated from one side of the network to the other, causing a decrease in
performance.

Object names must be maintained when objects are migrated, and Emerald
performs this by using forwarding. An object name contains the node on which the
object resides: if that object subsequently moves, the name will become invalid.
Emerald stores a forwarding address at the node from which an object moves, so that
any messages targeted to its old location may be forwarded. This may result in a
cascade of forwarded messages if the object migrates often, which can degrade
performance.

“Shared Objects”
The notion of “shared” objects comes from Tanenbaum et alia's work on the

Orca language[14][112], but is also found in other projects such as the work of
Mallon and Dew[85].

Shared object systems emphasise the use of objects for communication, at the
expense of their use as processes. In Orca, for example objects are completely

- 28 -

passive, and are complemented by active processes which perform computation. An
object cannot have an independent thread of control: processes provide the active
parts of the system, and may make method calls onto objects. All method calls are
completely synchronous, and objects are single-threaded.

Mallon uses a similar system, where passive data objects reside in an address
space common to all processors – not a DSVM despite the similarity in addressing.
Processes may use the objects to communicate, and a migration mechanism similar
to that in Emerald is used to reduce communication by migrating objects without
changing their addresses.

One could argue, with a certain degree of truth, that shared objects are not
object-oriented systems in the usual sense, as they separate processing from data
encapsulation. Processes and process descriptions are not first-class, and require
separate mechanisms for their implementation (processes are not first-class in
Smalltalk, either, but process descriptions – blocks of code – are).

Actor Languages
Actors[1] are a model of computation based loosely on object-oriented systems

– indeed, they have been described as a formal description of object-oriented
programming – but which also bear a resemblance to functional and other state-free
languages.

An actor is composed of a mailbox and a behaviour. Actors communicate with
each other using asynchronous messages sent to mailboxes and queued (the model
makes no guarantees of arrival times of messages, but does guarantee reliable
delivery). Each mailbox has an associated behaviour, which may change with time.

A behaviour is a procedure which accepts a single message from the mailbox It
processes this message and then dies: in dying, it nominates a replacement
behaviour which is to process the next message in the mailbox. Behaviours must
have a finite execution time, and no state information is maintained between
behaviours.

A little refection will show that actor systems are massively parallel. Since
behaviours must be finite, they cannot contain loops: all loops must be implemented
by sets of actors communicating using messages. Since there is no state information,
and no explicit ordering in the delivery of messages, it is possible for an actor to
nominate its replacement before it processes its own message, thus overlaying the
processing of the next message with its own actions. In general, a behaviour will
give rise to a number of messages to other actors and the creation of new actors – all
these actions are asynchronous and may occur in parallel.

This is both a strength and a weakness of the actor model. Parallelism is so
widespread and so fine-grained that it is can be difficult to contain, and this often
leads to actor systems being extremely slow on available processors.

Concurrent Aggregates
Concurrent Aggregates[36] (CA) is a language based loosely on Lisp, but which

also bears a significant resemblance to the actor formalism.
An aggregate is a collection of objects which may be manipulated using a single

name. The aggregate acts as a concurrent front-end to incoming messages, allowing

- 29 -

the aggregate to be internally concurrent. The aggregate delegates messages to the
appropriate objects as they are received.

Messages (which are first-class in CA) are targeted at aggregates, rather than
objects. The run-time system directs such messages to a particular member of the
aggregate (a representative) selected non-deterministically. The representative may
process the message itself or may delegate it to another object or aggregate.

The main claim for CA is that it allows hierarchies of abstractions to be created
without introducing unnecessary synchronisation – a problem with some other
object-oriented languages, in which the object is the unit of synchronisation.

Presto
The Presto tool kit[17], described as “a system for building custom concurrent

programming environments,” is a library of C++ classes targeted at shared-memory
multiprocessors.

Presto's basic mechanisms are built around objects providing threads and
synchronisation. The semantics of these classes are deliberately left quite weak: the
intention is that they be used as base classes which are then specialised to provide
application-specific objects. The justification for this approach is that Presto can be
used to implement any concurrent processing paradigm, and so can be used to
construct environments which are targeted closely at a particular domain.

The “openness” of the system means that adding new objects need not
compromise efficiency. The scheduler, processor, thread and synchronisation
objects may all be customised and may replace the default system objects (such as
the system scheduler) dynamically.

Arjuna
Arjuna[43] is a tool kit for creating reliable applications in a distributed

environment. However, a sizeable amount of work in the project concerned the
management of concurrency[96], and reliability is a major concern for scalable
systems.

The basic construct in Arjuna is the transaction: an atomic action performed on
an object which either completes successfully or fails completely – there is no
possibility of a partial failure and consequent inconsistencies. A successful
transaction commits itself, whereupon the state of the object is written to stable
storage[42]; a failed transaction causes the previous state of the object to be restored
from storage. Transactions may be nested when one transaction starts another as part
of its function, and Arjuna guarantees that such nested transactions also behave
correctly.

1.4. A Scalable Programming System

Scalability introduces into applications the need to be able to cope gracefully
with changes in the computing resources which underlie the application's definition.
This implies that the actual available resources used by an application are only
determined at run-time: to do otherwise, fixing the amount of parallelism and

- 30 -

distribution of data at compile-time, means that unnecessary constraints are placed
on the ability of the application to cope with resource changes.

The “ideal” scalable parallel application will make optimal use of the resources
which it finds available when it is executed, and will evolve its resource demands to
fit changing system conditions. Depending on the nature of the overall computing
environment, applications could optimise in such a way as to maximise their own
performance, or to maximise the throughput of the system as a whole. Hence adding
resources to the system will have a direct impact on the performance of all
applications.

Given this, we may see the form of a programming environment for creating
scalable applications. Such an environment has aims similar to those of the
environments encountered traditionally in the construction of highly parallel
applications, as surveyed in the preceding section. The needs of scalable systems
are, in many ways, identical to those of other distributed-memory parallel systems,
involving the regulation of concurrency and the distribution and control of data.

The main difference in a scalable system, however, is that there is no a priori
information available to guide the programmer in distributing data or regulating
concurrency: this information only becomes available at run-time. Therefore the
identifying characteristic of a scalable application is that it must defer until run-time
all decisions relating to the exact distribution of data and its concurrent processing.
That is not to say that a programmer cannot indicate which parts of an application
should execute in parallel, or how data should be distributed: merely that such
descriptions are “slack.”

The systems surveyed tend to take too rigid a view of their resource utilisation to
be completely suitable for scalable programming. Linda, Strand and the DSVM
systems offer an appropriate memory model, but at significant cost to performance –
there is often a need to involve the programmer, however peripherally, in the
assignment of elements to nodes. The model of parallelism presented by non-
procedural languages is similarly suitable, but again the programmer must become
involved if an application is to run efficiently. Both these factors reflect on the
approach taken to configuration, which essentially concerns the way in which
processors are assigned work in terms of storage and processing: none of the
systems offers a suitably flexible model.

1.5. Résumé

Any new course of study must first review and analyse the work which has gone
before. In this chapter, we have presented a review of the extant literature
appertaining to the construction of highly parallel machines and applications, with a
view to identifying important factors for scalable systems.

A definition and analysis of the term scalability was first presented. Scalability
was seen to be a phenomenon emerging from the interconnection of groups of
components in such a way that the power of the system thus created may grow in a
useful way. A scalable computing system was thus seen to be a computer whose
capabilities may grow incrementally and (effectively) without limit, to accommodate
the needs of changing application and user communities. The essential feature of a

- 31 -

scalable system is its ability to address problems, regardless of their size, in an
externally uniform way.

The creation of scalable machines was then discussed, from the point of view of
their hardware and operating system support. The “best” architecture was argued to
be an extensible, low-dimensional network of processor-memory pairs, coupled with
an operating system which abstracts-away (at the application and user levels) from
concerns about exactly what computing resources are available.

Systems for creating applications to make best use of scalable machines were
then analysed. The consensus was that applications need to take a very abstract view
of their computational requirements – the distribution of data onto processors and the
regulation of the concurrency used to process that data – in order to be free to take
advantage of scaling in the underlying machine. A form of “ideal” scalable
application was identified, along with the form of a programming environment
through which such applications may be created.

Chapter 2.

An Abstract Machine View of Scalable

Parallel Programming

When anything really new begins to germinate around us, we
cannot distinguish it – for the very good reason that it could
only be recognised in the light of what it is going to be. Yet if,
when it has reached full growth, we look back to find its
starting point, we only find that the starting point itself is now
hidden from our view, destroyed or forgotten ... Beginnings
have an irritating but essential fragiliy.

 Pierre Teilhard de Chardin, The phenomenon of Man

We shall begin our search for a scalable parallel programming system by
developing an abstract model of scalable programming as a whole, to form the basis
of a programming environment.

Firstly we shall describe the notion of an abstract machine, and draw a
generalised picture of computer systems as layers of abstraction, with each layer
being an abstract machine. We shall then focus on one particular aspect of
abstraction – that of memory representation – and consider the ways in which the
various layers of abstraction treat memory. From this we shall conclude that
conventional data structuring may be seen as an abstract memory model.

We shall then introduce the concepts of distribution and parallelism, and argue
that the data structuring notions are perfectly suited as a programming framework for
scalable parallel distributed systems. We shall draw all these ideas together into a

- 34 -

uniform model for a scalable abstract machine, to be used as the basis for a
programming environment for scalable systems.

2.1. Abstract Machines

Abstraction and abstract machine models are frequently seen as something of a
panacea within computing: if the view taken of a problem is sufficiently abstract (so
the argument runs) then its expression will be elegant and its solution simple. The
reverse of this argument is that abstraction is an expensive luxury in terms of
machine resources.

Viewed in its proper perspective abstraction is undoubtedly an extremely
powerful tool, allowing the programmer to focus on the task in hand whilst avoiding
uninteresting details. The use of abstraction often incurs a performance penalty,
however, as the “uninteresting” details may in fact have a major effect on a
program's run-time performance unless they are dealt with correctly.

There is thus a tension between the desire to abstract (and hence gain elegance)
and the desire to achieve maximum performance (by tweaking low-level details).
Nowhere is this tension more evident than in parallel programming, whose very
raison d'être is to increase the speed of execution of programs made complex by
parallelism and distribution.

Characteristics of an Abstract Machine

A physical machine is composed of three broad elements:

a) a set of processing elements to perform operations upon data;
b) a set of memory elements to store (and possibly manipulate)

programs and data; and
c) an interconnection network connecting (a) and (b) in some

manner.

The typical “Von Neumann” computer is an extremely pathological case: a
single processor connected to a single memory via two buses5. A more modern case
is the MIMD multicomputer, using processor-memory pairs connected by point-to-
point links.

An abstract machine may be seen to have a similar structure:

a) a set of processing structures defining data transformations;
b) a set of data constructs to hold data; and
c) a notion of communication between structures.

5The existence of modern computers, following this pattern in the main but having dedicated
peripheral buses, instruction and data caches and the like, does not invalidate the argument which
follows.

- 35 -

Thus each physical structure has an abstract analogue, although the latter are
likely to be more powerful than the former.

An abstract machine may hence be described as being an interesting
computational model having capabilities not necessarily reflected directly in any
particular physical realisation.

There are sequential and parallel abstract machine models, just as there are
sequential and parallel computers. At the risk of generalisation, whilst current
sequential models have sought to simplify tasks such as constructing type-correct
programs, parallel models have been concerned with increasing efficiency and co-
ordinating the actions of parallel threads of control6.

Some Parallel Abstract Machine Models

The most famous model of parallel computation is undoubtedly Hoare's
Communicating Sequential Processes (CSP)[59], which served as the basis for the
Occam language. This views computation as being performed by a (large) number
of simple sequential processes which communicate with each other using named uni-
directional channels. Processes and channels form a fixed topology when the
program is defined – it is not possible to reconfigure a set of processes while the
system is running, since channel names are not first-class and cannot be passed
between processes.

Functional programming has often been hailed as the perfect candidate for
parallel computing, as functional languages may be seen to be inherently parallel.
Church's λ-calculus[37] is the theoretical basis for functional languages, and may be
viewed as an abstract computational model holding the same position as does CSP
with respect to Occam. The chief distinguishing feature of λ-calculus is its lack of an
explicit memory system. Programs are composed from collections of (side-effect
free) functions which return a value based solely on their parameters, and the values
within functions (and indeed the functions themselves) are identified by bindings of
names to values rather than by named storage locations. The “memory” for such a
system is provided implicitly by the nesting of function evaluations rather than by
variables.

Closely related to functional programming is logic programming, where
programs are expressed as logical predicates working on a database of known logical
assertions. The most common example of this style is Prolog[39]. A program
unifies assertions and sub-goals within the clause database, which may grow to be
extremely large as the program progresses. The abstract model for this style of
programming is the first-order predicate calculus.

A final category of abstract machine are the object-oriented and actor models.
Both regard programs as being built from collections of objects, which are named
entities encapsulating state information and a set of operations which may
manipulate that state. Such systems are often seen as being a hybrid between
message-passing and shared-memory models: although objects may be seen as the

6There is evidence that this difference is being eliminated – witness parts of the current work, and that
of Bruce[28].

- 36 -

unit of (visible) memory within a system, all operations are invoked by sending
messages to target objects. Parallelism in such models comes by allowing several
objects to have active threads of control (sometimes abetted by allowing multiple
threads concurrently within a single object). Actor models generalise even further by
making all communication asynchronous and encouraging the construction of
extremely parallel systems of communicating agents.

2.2. Programming Environments as Abstract Machines

Consider the case of the simple Von Neumann computer, such as a typical
personal computer. The Von Neumann model specifies a single processor accessing
a single block of memory composed of a number of named locations of equal size.
The processor itself implements a small set of instructions which may be used to
perform computation by accessing memory and control registers. Call this the level
0 or physical machine layer.

The level 0 machine is hardly ever encountered by programmers: it is a “bare”
machine in every sense. The vast majority of programmers will work with some
form of operating system, which will provide extra services over and above those
provided by the bare machine. A typical example would be Unix, which provides
notions of processes and file storage. Indeed, Unix' process abstraction seeks to
provide the illusion of a number of independent processors dedicated to particular
tasks, and implements this abstraction using a single real processor. Such an
operating system also aids portability across hardware platforms. Call this the level
1 or operating system layer.

2.2.1. Programming Languages as Abstract Machines

Portability and re-usability are aided if programs are written in a high-level
language rather than in the machine code of a particular platform. Some high-level
languages also support generalised views of services such as filing systems so that
the language view may be ported between several different operating system views –
take as an example the FILE construct of Pascal. However a high-level language
will also usually define its own data and processing models. This may be neatly
summed-up as “algorithms + data structures = programs”[120] – the language
provides a set of computational structures together with a set of data structures, and
the two interact to perform processing. Neither element need correspond too closely
with the related elements at levels 0 or 1, although a close correspondence may lead
to superior performance.

This leads to the following question: if the programming language is seen as
providing structures (both computational and storage) which are superior to those of
the naked and operating system machines, is the programming language also an
abstract machine model in its own right? The answer to this is a tentative “yes.”

It is easy to see that a very high-level language – such as Prolog or Haskell – is
in some sense “more abstract” than an operating system; it may be more difficult to

- 37 -

justify a systems language such as Ada or C as being so. However there are grounds
for this supposition.

Pascal, for example, views memory in a manner completely different to that
provided by the bare hardware – as variably-sized and strongly-typed. Similarly
Pascal allows procedures to be written at a high level and to manipulate these large
structures en bloc – a clear departure from the simple instructions and addressing of
the processor. The “machine” being programmed is clearly different from that at
level 0. What is more, Pascal's (and more especially C's) interface to operating
system services is through a standardised procedural interface which may be ported
between operating systems, so these languages are also different to the level 1
machines. It seems quite appropriate, therefore, to suggest that any programming
language is ipso facto providing an abstract machine model: call this the level 2 or
language layer.

Beyond Programming Languages

An abstract machine allows interesting computational structures to be easily
expressed, without overburdening the user with too much detail. By their very
nature, abstract machines are minimalist creations – they provide the "bare bones”
functionality needed for their purposes. Good programming languages are no
exception to this rule: they allow programmers to write a wide variety of
applications without providing syntactic support for every possible contingency. On
the other hand, there is sometimes a need for syntactic support to avoid an
uncomfortable proliferation of unstructured procedure calls – try supporting
exception handling without additional syntax!

Minimalism is undoubtedly a virtue, in that a simple system is far easier to learn
and reason about than a larger one. However, in writing realistically complex
applications, a simple language inevitably requires a great deal of functionality to be
layered on top of the its basic structures in order to solve the problem. An ideal
example of this problem is the Turing machine: powerful, but so minimal as to be
unusable for any but the most trivial of tasks.

Our discussion so far has illustrated the important point that abstractions may be
layered: each new layer of abstraction uses the layer(s) below it to present a new
abstraction to the user. The advantage of layering is that layers may be done away
with if necessary – the additional layers are optional, and the programmer may still
use the lower layers – and different layers may be adopted as appropriate for
different applications.

Taking Occam as an example: Occam allows users to write a wide variety of
parallel applications, and does not mandate any particular coding style. This has not
stopped the emergence of a number of programming “idioms”, such as multiple-
worker, process farm, pipelines et cetera, and several libraries and support
environments exist to provide support for structuring applications around one of
these idioms.

The layers added to languages are frequently termed toolkits, as they provide
programming tools beyond those provided by the base language. A toolkit may be
used, for example, to provide graphics capabilities within a language. It is usually

- 38 -

presented to the programmer as a collection of data structures and procedures,
together with a run-time library to be linked into the finished program; it may also
include auxiliary tools such as pre-processors, code generators et alia. By using the
features of procedural and data abstraction provided in the host language, the toolkit
can produce a more-or-less seamless abstraction over its chosen domain.

A well-thought-out toolkit shares many features in common with a programming
language. It provides computation and data structures not found in the basic
language, together with compositional mechanisms. It should be fairly minimalist,
so that the programmer can easily assimilate its basic ideas and use them
productively. In many ways, a toolkit should also be closely married to the language
in which it is implemented, to reduce the intellectual effort needed to learn it. The
creation of toolkits also places some demands upon the host language, in terms of its
abstraction and encapsulation features.

Returning to the definition of an abstract machine, it should be clear that a
toolkit is also an abstract machine: a level 3 toolkit abstract machine layered onto the
level 2 programming language and making use of all the layers below. Toolkits may
also communicate with other toolkits, or with applications running independently.
Using the graphics toolkit as an example: it adds structures for the creation and
display of graphic images which are not present in the base language. Many toolkits
are extremely sophisticated, providing large amounts of extra functionality without in
any way restricting the use of the host language. In a similar vein, many parts of the
C standard library are level 3 entities: the FILE structure and its associated
functions allow files to manipulated at a far higher level than is possible using the
Unix system calls.

2.2.2. Toolkits in Scalable Programming

There are clear advantages to be had by taking the ideas of toolkit design and
using them to construct a toolkit for parallel applications. The host language may be
kept minimal whilst common idioms may be supported by the layered toolkit abstract
machine.

The major complexity in parallel programming, over and above sequential
programming, comes from the introduction of large amounts of concurrent activity.
The task of the language designer, therefore, is to help programmers to master this
additional complexity. As mentioned above, there are a number of programming
“idioms” which have been developed to address this task. These idioms tend to
focus on the large-scale structuring of processes – into pipelines, farms, collections
of workers et cetera – allowing them to be viewed abstractly as a single entity.

In scalable systems, of course, the concerns of “normal” parallel processing are
still present: in addition to them, there are issues of regulating concurrency in the
face of uncertainty about the processing resources available, and of managing data
location in the face of uncertain distribution. It is this uncertainty – not present in
other fully-configured, ready-to-run parallel systems – which sits at the crux of the
problem of managing and exploiting scalability.

- 39 -

2.3. Memory as an Abstract Structure

We shall now focus our attentions more closely on a single facet of scalable
programming – the way in which memory is represented – and explore the ways of
dealing with its challenges using layered abstraction. In doing so, we shall develop a
framework for constructing scalable applications using memory as the central
structuring theme.

Memory in General

The most pervasive programming tool is the chosen programming language. As
a rule, imperative languages enforce a strict delineation between program and data;
in other languages this separation blurs to the point of invisibility. In general a
language defines a model of memory which it both presents to the programmer and
(more or less) transparently maps onto the underlying storage architecture. Thus it is
vital to realise that memory in a programming language sense differs markedly from
memory as seen in hardware. This is a result of the view of programming languages
as abstract machines, and it has important consequences.

Bruce[28] has argued that all elements of a program – its data, code, working
storage, source code, execution information et alia – are conceptually stored in some
memory unit. Different categories of program element are stored in different sorts of
memory: procedures, for example, are accessed from an associative memory keyed
on their name (at least at source code level); data is stored in variables as real
numbers, records, objects, lists, enumerated types and the like, which are accessed
associatively but manipulated using their own interface. All these categories are a
far cry from the traditional (hardware-supplied) Von Neumann view of memory:
elements are variably-sized, can be arbitrarily large, are scoped, and are accessed
using different protocols. This last is the key feature.

The use of different access protocols to access different elements essentially
means that memory is typed, since the memory defines both its contents'
arrangements and the operations through which they may be accessed. From the
programmer's viewpoint it is normally irrelevant that all these types are mapped onto
the same physical architecture: it is the application-level abstraction which is
important.

2.3.1. Object-oriented Memory

Of particular interest are object-oriented systems, since objects encapsulate both
data and procedural interfaces. Distributed object systems are particularly
fascinating, as they allow the features of object-oriented memory to be deployed
against the problems of distributed parallel computing.

Systems in which objects form the sole unit of programming are sometimes
referred to as object spaces. Objects form the unit of storage, with object names
being equated to storage addresses. These names are then the unit of data naming, as
communicated between objects. Objects may maintain a small amount of local state,
consisting of name-value pairs: these may be communicated by value but not by

- 40 -

name, since such a pair is a binding, not an object, and hence has no name to
communicate. An application's shared storage is then represented solely by objects.

An Overview of Object-oriented Memory

A basic object-oriented computer consists of some physical memory and
processing elements: it may be a simple personal workstation, a shared-memory
multiprocessor or a distributed multicomputer. The operating system on this
machine implements a distributed object space in which all operations take the form
of method calls to objects using a capability to name and access the object. There is
no semantic notion of an object's location – all objects may freely interact through
method calls, providing the caller holds a capability to identify the callee.

All elements of a program are notionally represented as objects. Hence all
storage is represented by the creation and deletion of objects, whilst computation
occurs through communication between objects using method calls. Possession of an
object's capability may be equated with possession of the object, so that the
acquisition of a capability effectively retrieves the object from object space

Variations

Consider the case where a fixed number of objects reside in the object space,
none of them possessing a capability to any other object. Each object is then
essentially independent of all the others. This situation cannot be called memory.
Although the objects are retained within a single object space, and may be added and
removed, they cannot communicate: moreover, they cannot retrieve data from the
space as they do not have the necessary capabilities and have no mechanism by
which they can acquire them since they can have no communication with any other
object.

Now consider the case where objects do possess capabilities to other objects,
either fixedly or via the creation of new objects. They can now communicate using
method calls, as defined by their interfaces.

If we impose the restriction that capabilities cannot be communicated in method
calls, we have essentially defined a special form of CSP – for object read process and
for capability read channel. The objects in the system are in a fixed topology,
defined by the possession of capabilities: since capabilities cannot be exchanged, the
communication topology cannot change. Objects can only exchange data values.
What we have effectively done is introduce the notion of data streams, which brings
with it the idea of stream-parallel processing as found in Occam.

If we relax the restriction on communicating capabilities, we allow objects to
pass data (represented in other objects) by reference. Doing so involves the caller
passing the capability to the data object in a method call to the callee: the callee can
then interact with the named shared object. A piece of storage known to the caller is
made known to the callee via an explicit exchange of names, in the manner of
Milner's π-calculus[115].

- 41 -

This scheme could be regarded as object-oriented memory: objects share data
by exchanging the names of storage locations. This is the type of memory found in,
for instance, the Sloop[81] and Orca[14] languages. Objects are created private,
essentially as new pieces of storage known only to their creator: permission to share
them must be given explicitly by passing the shared object's capability. Retrieval of
information is represented by the passing of a capability, either as a parameter to a
method call or as the result of one.

This may be shown more clearly in figure 2. Initially, object B may interact
with object A by making method calls, but nor vice versa as A does not hold a
capability to B. If B now creates an object C, B can interact with both C and A as it
holds capabilities to both: A, however, can interact with neither B nor C. If,
however, B passes to A the capability of C through a method call, then A can interact
freely with C independently of B: in effect, the storage represented by C is shared
between A and B.

Data Structuring and Memory

Although this scheme is workable, it seems a little too restrictive. There is a
single level of naming – capabilities – with all exchange of data being explicit. This

A

B C

A

B

C

A

B C

A

B

A

A,C

A,C

C

A,C

C

(a) B holds a capability to A (b) B creates C and receives
a capability to it

(c) B passes C's capability
to A in a method call

(d) A can now interact with C

Figure 2: The workings of object-oriented memory

- 42 -

means that if an object wishes to create and then share many objects it must
explicitly pass the capabilities to the shared objects to all objects with whom it would
share them.

In Pascal – to choose an example language – there is the notion of structured
data, where a number of primitive data items are coalesced to form a larger item
which may then be manipulated as a unit. Although Pascal is not object-oriented,
this idea is an important one. In one sense, objects provide exactly this form of data
aggregation, as an object collects together its local state under a single name; in
another sense, there is still something missing.

Pascal allows arrays of data items to be built. These arrays may then be passed
en bloc to a procedure. In our current object-oriented memory there is no equivalent
of the array.

The common solution to this problem is to view an array as abstract data type
and encapsulate its behaviour into a class, which may then be instantiated as required
to build arrays of objects. An array object's internal state is then the elements
composing the array, and as an object it may be communicated and shared by passing
its capability. An array may be accessed using whatever (programmer-defined)
interface is seen to be desirable.

There are two important ramifications of this approach. Firstly, the array
keyword in Pascal acts as a (privileged) type constructor, generating array types from
other, more basic types: in the current system, the array class is simply a generic or
polymorphic class defined within the host language's framework, which thus has the
same flexibility as any other class – specifically, it may be sub-classed to provide
specialised interfaces and encapsulation. Secondly, the approach can be used to
generate many different forms of data aggregate which may not be present in the host
language – if the host were ML, for example, there would be no in-built notion of an
array. Hence aggregation sits firmly at the application level.

The same argument holds for any language-defined structuring mechanism:
pairs, lists, records et cetera. This is a great benefit of object-oriented programming,
as it allows many features which were previously hard-wired into a language to be
moved to the application level, with a corresponding increase in their flexibility.

This solution is completely workable as far as it goes, and raises an interesting
point about the nature of memory. To recap: we have argued that in object-oriented
systems memory is represented solely by the object population, and data sharing
occurs by the exchange of capabilities to shared objects. Thus the only way to access
memory is to be passed their capability explicitly. However, in creating an array
object another form of memory has been introduced.

The sole purpose of the array is to act as a single name for an aggregate of other
objects. The component objects may be accessed via method calls to the array,
which will return (or assign to, or whatever) the various elements. We thus have a
new mechanism by which objects can be addressed: they may be placed into an
array and accessed by element name (presumably a small tuple of numbers). The
object has acquired another name: it still has its capability, through which all
interaction must eventually occur; but it also has another name reflecting its position
in some programmer-defined space. Given that another object knows the name of
the abstract space (the array) it may access the object using a meaningful protocol.

- 43 -

We have thus introduced a new notion of what it means to retrieve an item from
memory. The array object acts purely as a “namer,” in the sense that it maps
meaningful names onto capabilities. Although acquisition of a capability still occurs
via method calls, there is now a special form of object whose sole task is to supply
these capabilities.

In order to share a new object, it has only to be placed into a data structure in
order to be accessed by all other objects who share that structure. Thus the array is a
form of shared memory: and since it is simply an object, it is a memory which is
typed and instantiable.

The essential difference between this approach and the encapsulation of arrays
within objects (rather than as objects) is one of information hiding. An object may
use an array internally and not present an array-like interface; conversely an array
interface need not actually be stored as an array. Using the explicit approach makes
the storage architecture being used more explicit: by weakening the level of
abstraction, we gain the ability to reason about the storage structure being used.

The abstract nature of such structures is obvious – they present very high-level
characteristics to the programmer, being (in principle) of infinite size and having
tailorable interfaces. On the other hand, they are evidently realisable as they are
simply generalised versions of well-understood data structures, albeit in an
uncommon guise.

We have introduced nothing essentially new in postulating collections of data as
the aggregates of memory, but we have certainly made explicit some features of
memory and data structuring which were hidden beforehand. In doing so we have
altered the regular Von Neumann notion of what memory is, replacing it by a more
flexible and larger-scale abstraction7.

Typed memory allows the direct expression of patterns which may be hidden by
a less flexible memory model. By regarding such structures as memory themselves,
rather than as entities built on top of memory, it is possible to simplify a
programmer's conceptual view of the machine being programmed. Since the
memory interface is typed, it is possible to build intelligent memories tailored to
specific applications.

2.3.2. Distributing Abstract Memory

The basic object-oriented computer described above was discussed without
reference to its hardware architecture, and the view of memory just propounded
similarly makes no reference to hardware issues. We shall now discuss a more
restricted target machine – and object-oriented multicomputer – and consider the
effects which distribution has on the memories discussed. Having illustrated the

7This whole argument is rather reminiscent of part of John Backus' Turing Award lecture from
1977[13], in which he argues that the “Von Neumann bottleneck” comes largely from the treatment of
data as small units – a view prescribed more by the underlying architecture than by any high-level
goal. In using large structures as memory, we are effectively advocating the processing of data in
large blocks and the utilisation of certain application-level scoping constraints – the effects of which
will become more apparent when we come to consider the effects of distribution and parallelism.

- 44 -

principles, we may now show how these ideas may be used to provide a
programming environment for a highly parallel distributed system.

The main effect of distribution is to introduce data partitioning and parallelism.
Since nodes do not share a common address space, an object in one address space is
not directly visible to objects in other spaces. The virtual object space technique
effectively implements a virtual shared memory, using complex network-valid object
names and a parameter marshalling system in order to allow remote objects to
communicate.

Having more that one processor allows one to obtain true parallelism, providing
an application is written with this in mind. Distributing data onto a number of
processors allows these processors to access the data in parallel, providing no global
bottlenecks to access exist, and this in turn introduces the possibility for large
performance gains.

The partitioning of a system's address space between component processors is
probably the most noticeable effect of distribution. This disadvantage is an
immediate departure from the more familiar flat shared memory model.

The advantage of our proposal comes from the fact that such a memory has no
direct correspondence to any architectural feature in a system. There is no notion of
object location and objects may be co-ordinated into meaningful structures of any
size. In advocating the use of abstract typed memory modules (AMM's), we must
address the effects which distribution has on these memories and vice versa.

The first case presents an obvious problem: we place no size constraints on our
memories, so how can a memory larger than a single address space be implemented?
Stated differently: if objects are the unit of memory, and abstract memories are
simply special-purpose objects, is it not the case that the largest memory is limited to
the size of the largest physical memory in the system in which a single object might
be represented? The second case is a juxtaposition of the normal problems: can we
use our new memory model to harness distribution in order to achieve a benefit?

2.3.3. Concurrency Regulation and Memory

Ideally it should be possible to solve both the distribution and concurrency
regulation problems within the same framework, using the distribution management
ideas to solve the concurrency problems.

Concurrency paradigms essentially fall into two categories: data-based and
stream-based. In the former, a set of elements are accessed and processed in parallel;
in the latter, a set of values is passed between processes. The difference is evident
from figure 3: processes in a data-based system access a shared pool of elements,
whilst processes in a stream-based system pass values between themselves.

Let us consider again the basic structure of our abstract memory modules. A
collection of data, structured according to application- rather than machine-level
concerns, is composed of a number of component objects which act as a single
resource from the programmer's view. Each component holds a small amount of the
collection's data locally, but has some mechanism for accessing transparently any
elements which are held in other components of the collection.

- 45 -

The population of the AMM – in terms of elements and components – may vary
with time. Presumably adding elements will produce more components: an AMM
with more elements will have more components. Therefore the number of
components is, to a large extent, a measure of the number of elements within the
collection.

Furthermore, each component is a single object – the unit of memory – and so
may be distributed. The components of an AMM may reside on different nodes in
the multicomputer, co-ordinated through the virtual object space. Therefore a large
collection, having more components, can potentially be more distributed than a
smaller collection.

Let us now consider what is meant by processing. In general, a “process”
accesses “memory” in order to obtain and store values upon which it works,
transforming values according to its function. In our model, memory is represented
by AMM's, so a process is simply an entity which accesses a data structure: a data-
rather than a stream-based view of structuring concurrency.

For the data-based case, the concurrency regulation problem now reduces to
how many processes should be deployed to access a memory, and where should they
be located. Our model gives us a way to answer these questions. One may create
one process per component of an AMM, and co-locate the process with the
component which it is to access. The number of components is related to the size of
the collection, so a larger collection will generate more concurrency; but equally a
large collection is more widely distributed, occupying more processing nodes and
providing scope for more true concurrency.

The stream-based case may use memory modules as sources and sinks for data
(as in figure 3) but cannot use the size of the source as a guide to the number of
stages in the pipeline: this is determined by functional decomposition, not by the
amount of data to be processed. Although the model discussed above cannot directly
aid this decomposition process, it can be used to construct such process structures:
since processes are object, they may be placed into an AMM. It may also be used
where replicated pipelines are applicable: each “process” accessing the shared data
set may be a pipeline, with the number of replicas being governed by the size of the
source collection.

2.4. The Scalable Abstract Machine

We have now arrived at a point from which we can see the shape of our scalable
abstract machine. We shall attempt to draw together the threads sketched above –
abstract machines and memory architectures – to create an abstract description of a
programming environment for scalable computing.

- 46 -

Scalable Memory

The central features of a scalable system is its resource utilisation: scalability
implies that processing, memory and communications resources may be added to a
system as required.

Our abstract model is built on top of the object-oriented approach to computing.
A system is composed of objects, each of which resides at exactly one node. Objects
are the unit of memory, with all shared storage being represented as one or more
objects. An object is a “black box” whose internal state may only be accessed
through its exported procedural interface. Objects exist independently, and an object
may only communicate with those objects whose name (capabilities) it knows. This
scheme is essentially that found in the common object-oriented languages.

We now introduce the notion of AMM's, which are objects which represent what
are normally described as data structures. A single AMM is composed of a number
of objects acting so as to present the abstraction of a single large resource. The
objects forming an AMM may reside on different nodes in the system. Each object
holds a part of the AMM's elements, and can access any other element: it is
irrelevant where an element of a collection is stored, as it may be accessed from any
component object.

The scalability of this solution is obvious: there is no explicit statement of the
number or distribution of the components which form an AMM, and so an
application cannot be written to rely upon any particular arrangement. This leaves
“the system” (or, more precisely, some underlying theorem of the abstract machine)
to determine the exact configuration of an AMM – fixed or variable – according to
run-time conditions. For any AMM there will exist some policy for deciding which
elements are assigned to which component of the collection, and this mapping may
change with time as conditions warrant.

(a) collection accessed by several worker tasks

(b) pipeline with replicated stage

source sink

Figure 3: Two paradigms for concurrent processing

- 47 -

Scalable Processing

Concurrency in the scalable abstract machine comes in two flavours. The first
comes from the basic definition of the object model: any object may give rise to a
thread of control, and there may be several threads running concurrently within a
single object. This makes task parallelism – where threads perform logically
separate tasks – easy to express. Moreover, since activities are simply objects, they
may be placed into memory: this implies that the structuring features provided by
scalable memory may be used to build and interact with “active” objects.

The second form of concurrency comes from the attachment of activity objects
to components of an AMM. Since the AMM is distributed, there is scope for true
parallelism when processing it's elements using a multiple worker, data-based and -
regulated style. Each activity is responsible for processing the elements held by the
component to which it is attached. This relationship is shown in figure 4.

Therefore the policy by which AMM's are created – especially the policy by
which the number, size and location of components is decided – is used as a metric
for concurrency regulation. There is no notion of exactly how many components
will exist, or where, and hence no notion of exactly how many processes will be
deployed to process a particular AMM. From the point of view of scalability, this
architecture has the desirable feature that applications must be written so as to be
able to use an unknown number of activities in the processing of a memory. The
processes themselves may be simple objects or more complex structures of
processes, themselves constructed using the AMM tools.

(a) an abstract collection (b) concurrency regulation in a collection

component of a collection activity or process

Figure 4: Collections and concurrency in the scalable abstract machine

- 48 -

Programming Practice

An abstract machine inevitably has an impact on programming practice, and it is
natural to wonder how applications written under the scalable abstract machine
would be written.

The basic architecture of such an application is as a set of AMM's to which are
attached activities running in parallel. The distribution and internal structure of each
AMM is managed by the underlying compiler and/or run-time system, and it is this
distribution which is used to regulate and locate concurrent activities. The model
might be described as one of indeterminate parallelism: an application determines
when parallel activities are to be created, and which AMM's they are to access, but
has no control over exactly how many activities are created. This indeterminism
allows the system to scale itself according to the available resources.

In order to see the form of an application built around scalable memory8,
consider the case of a logic programming interpreter using a dictionary-associative
AMM. The clause database itself may be created and clauses added, with the exact
distribution of clauses and the database being hidden:

type database = ... ;;
val newDatabase : unit -> database ;;
val assert : database -> string -> unit ;;
val retract : database -> string -> unit ;;

let cd = newDatabase () ;;
assert(cd, "man(simon)") ;;
...
retract(cd, "lives(simon, York)") ;;
...

The distribution of the database may change as clauses are added, and might be
affected by external control factors such as suggestions about the decomposition
used. Each component of the database is a database object in its own right,
related to the other components of the AMM in a manner not apparent to clients.
The population of components may be fixed, or may vary with time.

A query of the database consists of generating a set of unifications of variables
against clauses in the database.

type 'a binding = { var : string ;
 val : 'a } ;;

Queries may occur in parallel by creating a “query processor” activity and attaching
it to the database. Each query processor performs the actions involved in the query
on a part of the database to which it is attached, with the results of the complete
query being the amalgamation of the results of all the query processors.

8In this example we shall use a pseudo-code notation modelled on ML. More concrete examples are
deferred until we introduce the Phœnix prototype, chapter 5 et sequitur.

- 49 -

Functions are needed to attach activities, synchronise on them and retrieve their
results:

type 'a activity = Activity of
 (database -> 'a) ;;
val attach : database -> activity ->
 activity list ;;
val waitFor : activity list -> unit ;;
val resultsOf : activity list -> 'a list ;;

The query may run in parallel, with the creating thread either continuing execution or
blocking until the results of the query are obtained

val unify : string -> database ->
 binding list list ;;

let s = "man(?x)" in
 let q = Activity ((fn c cd = unify cd c) s) in
 let al = attach cd q in
 waitFor al ; (* block *)
 flatten (resultsOf al) ;;

resulting in a list of all the possible sets of bindings which satsfy the query.
Notice that nowhere is there any reference to the number of activities created

(although it might be obtained by the length of the list returned by attach): the
application has no need of this information. Similarly any activity (or any other
piece of code) may access any element of the database: the application has no need
to be aware of the element's location within the distributed structure.

We shall return to this example in §6.4.3.

2.5. Résumé

We began this chapter by considering the nature of abstract machine models as
applied to programming systems. We developed a view of a programming
environment as a layered abstract machine, with each layer building upon the layer
below. This approach led to the contention that both programming languages and
toolkits implemented within them constitute abstract machines, as they provide
important, well-defined computational and storage structures which are not
encountered in lower layers.

We considered one important feature of languages and toolkits: the way in
which they allow data to be stored and manipulated. We argued that any system
which provides data aggregates – data structures such as arrays, lists and the like – is
essentially providing a memory model, as these structures alter the way in which
programs treat their data. The analogy was drawn between accesses to memory and
accesses to data structures, with the result that a data structure was seen to be an
abstract typed memory whose elements could be accessed using meaningful names.

- 50 -

We introduced the notion of distribution, and considered the effects which a
data-structure-oriented view of memory would have on scalable programming for
multicomputers. We showed that the use of abstract memory, if it can be
implemented, hides certain important facets of the underlying machine – notably its
local memory sizes and parallelism. It is possible to create applications which can
utilise the scalable platform – rather than be hindered by it – by writing programs
around the framework of scalable memory modules. This allows the application to
defer until run-time – when the memory modules are actually instantiated – those
features of its execution which are affected by scalability: its distribution and use of
parallelism being the two main variables.

Chapter 3.

Implementing Scalable Typed Memory

Knowledge is simply a kind of fuel; it needs the motor of
understanding to convert it into power.

 John Wyndham, The Midwich Cuckoos

Having derived an abstract model of scalable memory, it is now necessary to
consider the ways in which it might be implemented. In this chapter we shall
consider some methods for implementing scalable storage architectures in an object-
oriented fashion, while deferring the exact details of such an implementation until a
later chapter.

We shall first determine the requirements of any implementation, derived from
the abstract model, and discuss some possible implementations. We shall then
present the partitioned object model as a particularly suitable architecture for
representing memory in scalable systems. Using this model, we shall present some
storage architectures representing a kernel of basic memory types. The architectures
derived are the most general for the structures being considered, and alternatives are
described which may be useful in particular cases. From these architectures, the
process of deriving user-level data structures will be illustrated.

3.1. Requirements

The previous chapter presented a form of scalable abstract memory modules
composed of object communities, with each member of the AMM residing in a
single address space. The AMM implements the abstraction of a single, scalable
resource: the membership of the community, its size and distribution may change

- 52 -

across its lifetime, but each component may at any time be used to access any
element of the AMM to which it belongs. The task of implementing such a model of
memory may therefore be summarised as follows: an implementation must provide

• a single-object abstraction so that collections appear to clients

as a single entity whilst being implemented as a community;
• transparent distribution of elements, so elements may be

accessed from any member of the collection;
• unbounded size to allow collections up to the size of the

globally-available memory to be represented;
• variable size, so a collection only occupies the storage

necessary at any time;
• concurrent access avoiding bottlenecks which would mitigate

against highly parallel access;
• strong typing to avoid the abuse of data and structures; and

finally
• extensibility, to allow application-specific intelligent memories

and distributions to be constructed.

The implementation of transparently-distributed, unbounded and variably-sized
strongly-typed structures is the subject of this chapter; concurrency will be deferred
until chapter 4, whilst extensibility will be addressed in chapter 5.

3.2. Partitioning: Representing Scalable Memories

Implementing AMM's requires the development of a technique for co-ordinating
all components of the AMM into behaving as a single resource. The technique has
been termed partitioning, as it involves the (largely) automatic partitioning of an
AMM's elements amongst a number of nodes.

3.2.1. Overview of Partitioning

Scalable memory is represented by partitioned collections, which presents
AMM's as high-level, strongly-typed data structures. These structures may be treated
as single resources, regardless of any internal distribution. They are implemented as
communities of objects which co-operate to support the single-resource abstraction.

Given that distribution of elements in a partitioned collection is essentially
invisible to clients, control of data manipulation and data distribution within the
collection may be separated. This separation allows these tasks to be specialised
independently of one another, with a corresponding (beneficial) effect on re-use.
The partitioned object model provides this separation in the form of two parallel
class hierarchies: one provides an access protocol through which client tasks access
the collection; the other controls the manner in which elements are distributed and
new storage created. The interface between these two hierarchies is well-defined,
allowing easy modification of either party.

- 53 -

The details of the strategy for implementing collections in this way will now be
discussed, together with the trade-offs and important parameters which affect the
method's efficiency.

3.2.2. Managing Data Access

A data access protocol must allow clients to access a collection's elements in the
appropriate manner – using a key for associative memories, for example. The exact
details of the protocol are obviously specific to the particular class of collection
being implemented – this is especially true of the user-level protocol – but a few
features are common across categories.

The partitioned model calls classes providing data manipulation collection or
component classes. A component class has three duties within the model: it must

• provide local storage for some elements of the partitioned

collection to which it belongs;
• provide an interface through which elements of the collection

may be accessed; and
• implement functions to perform data manipulation on any

elements which it holds locally.

The management of local storage means that it is the components which control
all local memory accesses and allocations, hiding “real” memory from client tasks.
The provision of an interface means that the components define exactly what
operations may be performed upon data within the collection. The interface will (for
the abstract base classes) be quite minimal, but it may be specialised in sub-classes to
provide arbitrary functionality. The manipulations need only be defined on locally-
held elements, however, as remote elements will require the intervention of the
partitioned collection's distribution management objects: this implies that there
exists some way of determining whether a particular request may be serviced locally.

3.2.3. Managing Distribution

Since partitioned collections are composed of object communities, some way
must be found to co-ordinate components of the collection into behaving as a single
resource. This is the function of distribution management objects, which the
partitioned model terms partition objects.

Like the component classes, partition classes serve a well-defined function. In
fact they have better external independence, as they do not have to deal with user-
defined access protocols. A partition serves three functions: it

• defines what elements of the collection are held by which

component;
• creates and destroys components as required; and
• resolves requests for data onto the component which holds that

data locally.

- 54 -

Although components create and manage local storage, the contents of that

storage, relative to the complete collection, is defined by the partition objects.
Components may have their storage responsibilities re-defined as new components
are created or old components destroyed. The extent to which a partition is involved
in data manipulation is restricted to its ability to locate components which hold data:
what is performed to that data is irrelevant; the partition is only concerned with
where the action takes place.

Component and partition classes interact, then, through a very narrow interface,
limited to the following:

• the ability of partitions to assign and re-assign local storage to

components; and
• the ability of components to forward requests referring to

remote data via the partition to the appropriate component.

This narrowness means that it is relatively straightforward to use a novel
distribution manager with an existing data class. However, the exact interface used
varies depending upon the type of collection which is being distributed, and this also
affects the way in which elements are retrieved from the components of the
collection.

3.2.4. Resolution

Resolution is the name given to the process of locating an arbitrary element of a
partitioned structure from a particular component. Since, as mentioned above, all
components of the structure allow all elements to be accessed – they all act as first-
class pseudonyms for the entire collection – resolution occurs whenever a component
receives a request which it cannot service locally.

The basic process is as follows. A component (the receiving component)
receives a request from a client object for some data. If this data is held locally, then
the request is serviced locally; otherwise a request for resolution is made to the
receiving component's partition. The request for resolution will contain the name of
the element(s) required and the service to be performed, and the partition maps the
element name onto the component which holds the requested element (the servicing
component). It then forwards the request which was made of the receiving
component in toto to the servicing component, which will perform the request and
return the result to the client.

- 55 -

The method by which resolution is performed is defined internally by the
partition classes. It may involve intermediate steps through other partitions as the
request percolates through the partition tree.

3.2.5. Parameters Affecting the Distribution Architecture

The partitioned model effectively hides from clients the exact inner workings of
scalable memory, and implementors of new (or derivative) memory structures and
distributions may use the architecture provided for their new, application-specific
tasks. However, there are several important trade-offs and parameters which must be
understood if the partitioned model is to function effectively:

• the arrangement of the partition tree;
• the sizes of components;
• the degree of automation in the management of a collection's

distribution; and
• the manner in which applications are configured for execution.

It is important to realise that the parameters to be discussed affect the efficiency,
not the semantics, of applications. An application is shielded from the details of
distribution: although some distributions are more efficient than others in particular
cases, all distributions are equal in terms of correctly accessing elements of a
memory.

The Partition Tree
Several trade-offs occur in the organisation of the partition tree. Its major

parameters are its degree – how many child components and partitions a particular
partition has – and depth.

In a flat distribution, all components of a collection are managed by a single
partition. This is shown in figure 5.

This architecture has the advantage of simplicity. Knowledge of the structure
resides in the partition object. Resolution of any element from any component can

partition object

component objects

Figure 5: Flat distribution management

- 56 -

occur in a single step – from the receiving component, through the partition, to the
servicing component.

However there are disadvantages, as might be expected from so simple a
solution. The prime problem is exactly the centralisation mentioned above: since all
resolution requests pass through a single partition, that object is a hot-spot in
computational and communication terms. Distribution of components may also be a
problem, depending upon the load balancing scheme used: in some schemes objects
may tend to cluster around the partition which created them. If this problem is
overcome, and components are more widely distributed, then the communications
costs implied by making resolution requests will increase due to the distance. The
single partition is also a single point of failure – a point to which we shall return in
§3.5.

In a hierarchical distribution, management of components is performed using a
tree of partitions, as shown in figure 6. The major difference apparent between this
figure and figure 5 is the existence of partition objects as intermediate nodes of the
tree – the tree has a depth greater than one.

Since no single partition object has a complete view of the structure, resolution
is complicated. Several steps through several intermediate partition objects may be
needed to resolve a request, and the complexity of a request varies depending upon
the relative positions of the requesting and servicing components.

However, this very complexity allows us to introduce desirable features.
Although resolution is now a distributed algorithm, several concurrent resolution
requests may progress without interference and without generation of hot-spots: the
computation and communication are distributed throughout the structure.
Furthermore the architecture lends itself to better control of distribution of
components, since the partitions (which perform the creation of new components) are
themselves distributed. The single point of failure in the flat partitioning scheme has
also been removed, which may allow better tolerance of faults in the network.

Routing through the partition tree has logarithmic complexity. On average, one
might expect 50% of all requests for data to be resolved through the root of the tree:
however, one goal of the partitioned model is to exploit locality of reference, which
should significantly reduce the possibility of such pathological circumstances arising.

root partition object

component objects

sub-partitions
root component

Figure 6: Hierarchical distribution management

- 57 -

Component Sizes
The unit of distribution for a partitioned collection is the component. The size

of components – and therefore the number of components, and hence their
distribution – is the major factor controlling the manner in which partitioned
collections are represented in memory.

The size of components is not, a priori, important to a collection, in that exactly
which component holds a particular element is semantically irrelevant. However,
there are a number of lower-level pragmatic issues which do constrain the size of a
component.

The first constraint is local memory size: a component cannot be larger than the
physical memory in which it resides. This places a hard upper-bound on component
size: in a non-partitioned object-oriented system, this limit fixes the maximum size
of a collection.

It may not be desirable, however, to make use of all the available physical
memory: there may be advantages to making components smaller than they actually
have to be. Using the entire memory of a node means that no other objects may
reside on that node. If the component contains (the names of) other objects these
objects must be placed on different nodes, which introduces a communications
overhead. Equally importantly, the component's partition object may be farther away
than is desirable, and this means that extra communications delays may be incurred
at every resolution step. Indeed, it may be advantageous to have more than a single
component per node, for reasons discussed in the next chapter.

Load Balancing
Load balancing is a well-studied field (a good overview may be found in [92]),

and the current work does not attempt to expand upon it. What is assumed is the
existence of a load balancing component within the underlying operating system
which chooses the site for a new object at its creation.

Load balancing has several aims, amongst which are to achieve:

• low overhead, to avoid the load balancing process impacting
on performance;

• low remote communications, so that the gains in improved
processing speeds are not offset by increased remote
communications overheads;

• high processor utilisation, to avoid wasting available
processing capacity; and

• even load distribution, so that all processors have roughly the
same amount of “work” to perform.

We may examine the partitioned model to determine how it interacts with these

aims. The first, third and fourth goals are essentially operating system concerns of
general impact to any programming system; the second, however, is a major
concern. Object-oriented systems by their very nature are communications-intensive,
so it is vital that objects are not placed too far away from the other objects with
which they interact.

- 58 -

It may be noted that there is a location structure implicit within the partitioning
process: components are assumed to reside close to their partitions, and sub-
partitions to their parents. Notionally there is a “one hop” communication between
these pairs of objects, and it is desirable to make this logical distance the physical
distance also.

If this assumption is not respected – if, for example, a component is placed a
long way from its partition – then a resolution request may involve far more
communications that is apparent from the logical structure of the collection. In the
worst case, such a request might be sent great distance only to be resolved back to a
node close to that which originated the request!

The partitioned model will function best in situations in which the logical
distance between two objects is related closely to their communications distance in
the network. A good example of this is the “ink blot” style of load balancing, where
objects are load-balanced onto nodes neighbouring that of their creator. A collection
occupies a number of neighbouring nodes (initially a single node); as it grows, new
components and partitions load balance onto nodes along the periphery of this
neighbourhood. A larger collection thus occupies a larger neighbourhood, with
components which are farthest from the root logically being distributed furthest
physically.

A topic closely related to load balancing is object migration (or adaptive load
balancing), which can result in substantial gains in performance over statically load-
balanced systems[68]. It would be difficult to respect the assumptions given above
in a system providing general object migration; moreover, resolution may
exacerbate the pathological cases possible under migration (§1.3.5).

The other aims of load balancing may be aided by the partitioned model's fin-
grained decomposition of large structures. Since objects are the unit of distribution
(and hence of load balancing), ensuring high utilisation and even load is much
simplified A consequence of this decomposition is that the load balancing system
must have an extremely low overhead, since more entities will need load balancing
than in coarser-grained systems.

Automatic versus Manual Distribution
It must be recognised, however, that in many cases a knowledgeable

programmer may achieve better load balancing for his application than can an
automatic system. Thus there is often a need – or at least a desire – to circumvent
load balancing and place elements of an application manually. Scalability makes this
aim almost an impossible one, however.

On the one hand, a programmer would like to be able to specify the distribution
of program items according to knowledge which are not readily available from the
program's code (often termed meta-knowledge, although Wilson[119] prefers the
term clichés) in order to improve its performance; on the other, a highly parallel
application, unless it has a very regular structure, may prove beyond a programmer's
capacity to manage effectively, and even regular applications may change their
computational requirements dynamically. The partitioned model takes the view that
the actual distribution management policy should be encapsulated into a class, which
may then be changed and customised if required. This has several advantages, the

- 59 -

primary one being that the method used for distribution is completely separated from
the methods used to access data.

In the general case, it is desirable to allow placement to occur through the load
balancer, since this module may make use of information to optimise the load across
the entire system rather than across a single application.

 Configuration in the Partitioned Model
It should be obvious by now that determining the optimal configuration for a

partitioned collection involves balancing several, possibly contradictory factors, and
this may only be performed at run-time. This implies that factors such as component
size, tree depth and other parameters which have no real semantic importance should
be set only at run-time: they should not be hard-wired into the compiler or into an
application. It should be possible for the programmer (or indeed the end-user) to
“play” with the values to achieve best performance. This has the additional
advantage that tools might be employed to modify the exact configurations of
partitioned-model applications.

Fortunately an obvious method exists for supplying these values: the use of a
mechanism such as Unix' shell variables, which may be set per-user at run-time and
accessed by running applications. Even more flexible are the property sheets
encountered in systems such as X Windows[103] which provide a more structured
name space.

The exact properties used may vary per structure, and indeed may be varied
according to what distribution policy – e.g. which partition class – a collection is
using. At the risk of getting ahead of ourselves, the arrayed collections of the
Phœnix prototype (as described in chapter 5) allow properties such as the maximum
and minimum number of elements in a component, the minimum dimension of a
component, the depth and composition of the partition tree et cetera to be set at run-
time from the property sheet. There is no reason why these values should be
provided directly by the user: they may be generated by some form of automatic
configuration tool whose results are stored in a suitable format. This means that the
partitioned model has potentially the same levels of efficiency as other, less flexible
and lower-level systems.

3.2.6. Generic Structure of Partitioned Collections

For clarity, we shall summarise the structure and features of the partitioned
collection architecture. The generic form of collections is shown in figure 79.

9The symbols for component, partition, activity et cetera in the key will be used consistently for the
rest of this thesis, and will not appear in future diagrams.

- 60 -

The community of objects form a tree structure, the branches being formed by
partition objects and the leaves by component objects. Note that, in this diagram,
there is no indication of the location of objects: the objects may be created and
located by the system, not necessarily by the programmer.

The process (or activity) creating the collection (marked P in the diagram) holds
a handle to one component (called its root component), through which it may access
all elements of the collection, held in any component, without exact knowledge of
the component with which it interacts. Other activities may be passed either the
handle of the root component, or some other component, and may similarly access
any element without knowledge of distribution. The resolution process ensures that
such accesses occur correctly.

There are two general cases for resolution. In the first (shown occurring from
activity P in figure 8), the item being requested is held locally by the receiving
component and may be returned directly. In the second case (initiated by activity Q)
the data is held remotely and must be resolved by one of more resolution steps.

All algorithms used within the partitioned collection must be distributed, using
only local knowledge. This prevents bottlenecks occurring in the face of highly
parallel access: only those activities which access the same part of the partition tree
will interfere with each other. Similarly, concurrency control should – as far as
possible – occur on a per-component basis.

The generic architecture, and the properties required of the algorithms used, is
presented formally in Appendix A.

Component object

Partition object

Element

Activity

Figure 7: A generic partitioned collection

- 61 -

3.3. A Kernel of Partitioned Storage Architectures

No programming environment can hope – or, indeed, should hope – to provide
all the computational objects which might possibly be required in applications. The
essence of programming language design is to select a small number of common,
powerful structures together with mechanisms for composing them into new
structures.

In proposing a programming environment based around the partitioned model,
this principle manifests itself in the following question: what memory structures
should be provided “as standard” within the environment, and how should
programmers be able to extend these structures?

A survey of the literature – especially Knuth's seminal work[70] – indicates that
three basic storage architectures predominate:

• arrayed storage, where elements are stored at points in a

discrete high-dimensional space;
• associative storage, where elements are accessed using

complex keys or partial matching; and
• directed storage, where elements are stored relative to one

another.

These three architectures may be used to form the kernel of a partitioned object
programming environment. Other architectures are also possible, as described in
§3.3.4.

As an aside, it should be mentioned that in this section we shall only deal with
the architecture of memory, not the programmer's interface. It is perfectly possible,
for example, to implement an array using an associative memory architecture rather

Figure 8: The general case of resolution

- 62 -

than an arrayed architecture. From the programmer's viewpoint, it is the interface,
not the implementation, which determines the properties of a structure; internally,
the high-level programming interface is largely irrelevant for the efficient
implementation of the memory. We defer discussion of the programmer's interface
and the ways in which it may be developed until §3.4.

For each architecture, we shall first describe the properties of the architecture
and a basic approach to its implementation. A prime factor in assessing any such
approach is the manner in which locality of reference may be exploited within the
structure to reduce communications. We shall then discuss the manner in which the
elements of the architecture may be decomposed for partitioning purposes, and
finally give an overview of the structure and algorithms used in its implementation.

3.3.1. Arrayed Storage

Arrays are one of the most common structures in parallel computing, although
this is largely attributable to the current engineering bias in parallel applications.
Consequently it is important to provide a usable arrayed storage architecture.

An array is a dense collection of elements, each being uniquely identified by an
indexing n-tuple (usually of integers or some other discrete type). The degree of the
tuples also defines the number of dimensions in the array, and reflects the fact that an
array may be viewed as a discrete n-space: in fact, representing areas of space (such
as wind tunnels) is a common application of arrays.

The space represented by an array is a metric space, as there is a relationship
between the various possible index tuples. This relationship defines a distance
between two tuples, and allows one to speak of two elements of an array as being
“close together” or “far apart.” This may be best seen by considering an array with a
small number of dimensions, say two: such an array defines a part of a plane, and
the distance function may then be seen as the usual straight-line distance between
two points on the plane (or may be taken to be the Manhattan distance). This notion
of distance is shown in figure 9.

Basic Approach

The basic approach to decomposing arrays is to observe that any single array
may be seen as a collection of smaller arrays whose origins are displaced. By
suitable computation it is possible to map any element in the original array onto an
element of one of the smaller component arrays.

This observation allows us to suggest how arrays should be distributed within
the partitioned model: first determine the origins and bounds of the small arrays and
then distribute them, performing the appropriate mapping whenever an element is
accessed.

It is a matter of policy, determined mostly by application-specific
considerations, how the origins and extents of the small arrays are determined. Many
policies might be used, some if which are explored further below. There are two
important aspects to any chosen policy:

- 63 -

• how does the policy chosen interact with the principle of
locality? and

• can the policy deal with arrays of arbitrary size and
dimensions in a scalable manner?

A third, lower-level concern must also be addressed:

• how does the policy lend itself to distribution on a large scale?

Since we are considering scalable structures, this is a very real concern: one
may reasonably expect a scalable system to make good use of its available resources.

Resolution must occur through the indexing tuple of the element being sought:
there must exist some means of mapping an arbitrary tuple onto the component
which stores it. Different decomposition strategies will require different resolution
strategies, having different timing properties.

Locality of Reference

The principle of locality, as it applies to arrayed memories, may be stated as
follows: given that a task accesses a point (x, y) at time t, it is likely that the same
task will access a point (,)x x y y+ +δ δ at some time ()t t+ δ . In other words: if a
point is accessed, other points which are close to it in space will be likely to be
accessed in the near future. Exploitation of the principle requires that accesses
following this pattern are made as cheap as possible, on the assumption that they will
predominate over accesses which do not conform.

Within arrays it seems to be relatively easy to define “close together:” we may
use the metric space view of arrays described above. By storing elements in clusters,
or locales, the principle of locality may be exploited: if any point in a locale is
accessed, most of the other points close to it are available directly from the same

Manhattan distance = a + b = 7 units
Straight-line distance = c = 5 units

a

bc

Figure 9: Arrays as metric spaces

- 64 -

locale. Although edge effects will occur – when neighbouring points lie in different
locales – these effects may be minimised by careful choice of locale size. This
optimal size is very much an application-dependent quantity, so it is vital that it be
easily alterable to achieve best results.

Decomposition Strategies

The key factor affecting the representation of an array is the way in which its
elements are decomposed into sub-regions, which will then be used to form
components. The strategy chosen will be used internally by the partition class in
order to create and organise the components: the code of the components themselves
is independent of the strategy chosen.

Dimensional Decomposition
Dimensional decomposition divides an array according to its dimensions, acting

so as to reduce the dimensionality of locales. An n-dimensional array may be seen as
a one-dimensional array of (n-1)-dimensional arrays, which may in turn be seen as a
one-dimensional array of one-dimensional arrays of (n-2)-dimensional arrays, and so
forth. Alternatively, the same array might be seen as a two-dimensional array of (n-
2)-dimensional arrays: there are many possibilities.

The great advantage of dimensional decomposition is that it essentially reduces
all arrays to one of a number of simple forms having a low dimensionality. This
means that the base-level storage management and access routines may be written for
simple cases, as more complex cases are automatically built up from these simpler
units.

a = array (0..2, 0..2, 0..1) of T
each component = array (0..2) of T

0,?,? 1,?,?

0,0,? 1,2,?

0,0,0 - 0,0,2

Figure 10: Distribution and resolution in dimensional decomposition

- 65 -

Furthermore, a structure thus decomposed has a simple resolution strategy
associated with it. The first level of storage is simply a set of pointers to other
arrays, and form the first level of distribution. This is shown, for example, in figure
10, where a two-dimensional array is represented in exactly this way. Resolution can
occur simply by stripping-off the first element of the addressing tuple and
descending to the corresponding sub-array, until an array containing data elements
(rather than further pointers) is encountered. For a d-dimensional array, such an

approach has a complexity o d
dstep

F
HG

I
KJ, where dstep represents the number of dimensions

stripped at each step until a component is reached.
There are three disadvantages, however. First and foremost, reducing an array

in this manner alters its essential spatial properties: two points which are close
together in the original array may not be close together in the decomposed structure
if the decomposition takes place across the dimension in which they are close. This
makes the principle of locality break down in the general case, as a locale of points
may be separated.

The second problem is one of the size of the intermediate storage. It may be that
an intermediate array is generated which is too large for a single node memory – or,
at least, is too large for comfort. There is no recourse within the strategy to deal with
this case.

The final disadvantage is that this strategy does not make good use of the
available resources. The intermediate arrays are simply pointers to “real” storage.
All the storage will occur on the fringes of the structure's distribution, with the effect
that remote requests will be very expensive.

Regional Decomposition
To counter these disadvantages, we may take the view that an array should be

decomposed regionally: that is to say, each component should hold a small part of
the array having the same dimensionality as the original. This preserves locality of
reference within the metric space of the original array.

Two points may be made about this approach. Firstly the dimensionality of the
original array is preserved by the decomposition, so any locality properties are also
preserved. Secondly, the distribution is “flat” rather than progressive as in the
dimensional decomposition. This has the advantage that all the resulting component
are available from the first and may be distributed evenly throughout the resources
used by the structure.

The disadvantage is that, as the decomposed components of the structure may
have arbitrary dimensionality, the component classes must be able to store data in
this form.

Resolution takes the form of locality tests performed in each partition. Every
partition must contain references to all components held below it – with the result
that the root partition holds a reference to all the components of the structure, which
may make it very large. From each stage a single resolution step is performed
according to which region the requested point lies. The step will result in either a
sub-partition or the holding component. This resolution strategy is evidently o(n) for
an array with n elements.

- 66 -

Hierarchical Decomposition
Hierarchical decomposition is the most “geometric” of the resolution strategies,

taking its cue from the idea of oct-trees[47]. The space of the array is divided into a
number of smaller arrays – usually eight in a three-space, hence the name oct-tree –
which are then recursively sub-divided until a suitably-sized region is created.

Such a strategy has much to recommend it: in particular, the access complexity
of a structure distributed in this way in o n(log) , which is perfect for a scalable
system. A disadvantage, however, is that correctly-sized regions only appear at the
leaves of the distribution process. If implemented naïvely this would mean that data
is only stored at the fringes of the data structure, which would be rather unacceptable
from the point of view of load balancing. This problem may be solved by using a
slightly more complex creation algorithm, re-broadcasting some of the final regions
back up the tree.

N-fold Decomposition
One further important decomposition method should be mentioned: dividing the

array into a particular number of sub-arrays. In fact, this method may be
successfully applied to both hierarchical and regional decompositions, rather than
being a completely new distribution method, but is particularly suited to regional
decomposition when the programmer wishes to control accurately the distribution of
data onto processors.

a = array (0..7, 0..7, 0..1) of T
each component = array (0..3, 0..3, 0..1) of T

(0,0,0) - (3,3,1)

(0,4,0) - (3,7,1)

(4,0,0) - (7,3,1)

(4,4,0) - (7,7,1)

Figure 11: Distribution and resolution in regional decomposition

- 67 -

Consider the case of an application wishing to create an array, where the
programmer knows that the applications exhibits a certain pattern of access which
makes it especially suited to being distributed onto a rectangular grid of processors.
The programmer may wish to control very precisely the way in which the elements
are mapped onto the processor mesh. A partition may be created which divides the
array into a number of smaller regions – where the number is the same as the number
of processors onto which the array is to be mapped – and map them onto the
processors.

It may be difficult to divide an arbitrary array into exactly a given number of
sub-regions, to the number required may be taken as a hint, a lower bound or some
other suggestion rather than as a “hard” number.

Structure

The creation of an arrayed storage module involves three stages: the
decomposition of the array space into manageable units, the distribution of these
regions, and the creation of storage for their elements.

Decomposition may proceed according to any of the strategies mentioned above.
For convenience we shall use regional decomposition.

The root component creates a partition of the appropriate type and passes it the
region representing the entire array's space. The partition decomposes this into
smaller regions. One of these regions will be assigned back to the root component;
others will have components created for them; others will be passed to additional
partitions which are created for them. The exact numbers used to determine how
many components and how many sub-partitions are created may be varied to alter the
exact structure of the collection. The process of creating components and sub-
partitions proceeds until a stage is reached when all the sub-regions have been
assigned to components. At this point the collection is ready for use.

(Usually, arrays are created “eagerly:” storage is allocated for them at their
creation. However, this may be very expensive in the case of a large array, and
especially so if the array is destined to be sparse. Rather than perform eager creation,
the partitioned model allows storage to be created “lazily,” as it is demanded. The
advantage is that any region which is never accessed will never consume storage;
the disadvantage is that accesses to element may cause storage allocation, which will
introduce an overhead.)

The basic action of the array components in use is to accept requests from client
objects for an element and return this point's value (or assign it, or some other
operation). Since each component knows its own bounds – the elements which it is
responsible for holding – it may quickly determine whether an element requested is
held locally and, of so, may perform the requested operation. If the element is not
local, the request is forwarded to the partition for resolution. The partition will
accept the request, resolve it onto the component holding the requested point, and
forward the request to that component. The component can then return the result (if
any) to the originating client. Hence a component only performs significant
processing on requests which it can service: its involvement in remote-request
processing is limited to a locality test and a forwarding operation.

- 68 -

Within the partition tree, resolution proceeds as follows. A partition examines
the regions which it knows about: depending on the decomposition strategy used, a
different matching mechanism must be used. For regional decomposition, the
regions will map either to components or to sub-partitions. In the former case, the
resolution process has succeeded, and it may be passed the processing request; in the
latter, a request for further resolution is passed to the selected sub-partition. If a
suitably-matching region cannot be found, a request for further resolution is passed
to the parent of the partition, on the assumption that eventually a partition will be
encountered (the root in the worst case) which will be able to perform a resolution
downwards.

3.3.2. Associative Storage

Associative memories, though less common in practice than arrays, are in many
respects more powerful. Such a memory holds a collection of objects having no
explicit relationships between them. An object is simply held within the store, where
it may be accessed or removed: there is no notion that any object is related to any
other in any way. This may be contrasted with the metric space conception of arrays.

Unlike arrays, associative memories have no fixed size: elements may be added
and removed as required.

The principle use of associative memories is in storing objects which must be
accessed through partial matching. An application may construct a template of the
object which it wishes to retrieve and present this to the memory, which will then
match the template against its elements to find one or more matching objects.

Basic Approach

The basic approach to constructing an associative memory is through the use of
a hashing algorithm.

Hashing is a technique whereby an indexing key is used to access a large set of
records. The key need not be unique, so a given key value will be shared by many of
the structure's records. The keys are used as indexes into a table, each entry of which
contains those records sharing the given key. Thus a simple look-up operation may
be used to reduce quickly and dramatically the number of records which need to be
searched.

“Standard” hashing algorithms require a set of keys C c c cn= { , ,..., }1 2 which are
mapped onto a set S s s sm= { , ,..., }1 2 of buckets holding records. The records in each
bucket each share a common key, and a hash function h C S: → maps each key onto a
single bucket. In general, m n<< , with S and h being fixed before the algorithm
begins executing.

This means that a hashing algorithm can, given a key for a record, locate the
bucket containing the record in o(1) time by applying the hashing function. The
records in the bucket thus selected may then be searched using linear search, binary
split et cetera, depending on the internal structure of a bucket, so that the exact
record being sought is located. The complexity of these intra-bucket searches may
be o(b), o b(log) , or some other function of bucket size b: if this intra-bucket

- 69 -

complexity is represented by the function j(b), then the overall search complexity of
the hashing is o(1+j). For best results, the hashing system should attempt to make
the j component negligible so that the system tends towards o(1) searching.

Since buckets are usually of a finite size, there may come a time when a bucket
overflows. In this case some overflow method is required to re-hash the record
which caused the overflow onto a new bucket, together with a corresponding
modification of the search algorithm to search for overflowed records if necessary.
In order to avoid these complications, buckets are sometimes implemented as linked
lists or some other dynamic structure.

The main problems with hashing, for the current purposes, is that it is non-
scalable. The set S is fixed at the creation of h, so it is not possible to vary the
number of buckets to accommodate dynamic changes. The use of unbounded
buckets is unacceptable: for one thing, it can require a large amount of local storage
and may thus cause distribution problems; for another, the time taken to search such
a bucket degenerates towards the complexity of the intra-bucket search, as the j term
become dominant.

What is required is a structured, scalable hashing system which retains the
desirable ≈ o()1 search complexity. Fortunately a number of methods have been
proposed for extensible hashing system[45][73][80], and these have been examined
for suitability in the current context. The “ideal” scalable hashing algorithm would
have the following characteristics:

• unbounded size;
• a simple distribution strategy
• regularity, in the sense of using the same algorithm under all

circumstances;
• decentralised control; and
• scalability, so the distribution of a structure reflects its size.

It was found that no completely suitable algorithm was described in the
literature, but the existing systems were found to be suitable as a rubric for creating a
distributed extensible hashing algorithm.

A Guide to Extensible Hashings

All the extensible hashing considered here were developed in the 1970's to
manage secondary storage in large database systems. A particularly pertinent
comment is made by Fagin et alia in discussing their hashing:

“Over the past two decades, schemes for structuring large files
have evolved by merging concepts and techniques from two
areas that were initially perceived as requiring distinct
approaches: data structures appropriate for central memory,
and access methods appropriate for slow, high-capacity
secondary storage. The distinction is becoming more and
more blurred[45].”

- 70 -

We have examined three of the most promising extensible hashing methods: the
virtual, dynamic and extendible hashings.

Virtual Hashing
Virtual hashing[80] works by altering the hash function whenever an overflow

occurs. The definition given for virtual hashing – as any hashing which may change
its hash function over its lifetime – is very vague, but a concrete example may be
found by considering hash-by-division.

The hash function in this case may be defined as h c c S0 () mod= , which defines
a ”classical” hashing with a fixed number of buckets each of which is identified by
the remainder of dividing the key c by S . When a bucket overflows (assuming
buckets of a fixed size, rather than chained buckets) the collision is usually resolved
by calculating a new key value for that record and re-inserting it into another bucket.
In virtual hashing, a new hash function is generated which re-maps all the records in
the full bucket, leaving them in the existing bucket or mapping them into newly-
created buckets (rather than onto existing buckets as was the case before). A
definition of the virtual hashing is given by h c c Sj

j() mod= 2 where hj is the
function applied to resolve the j'th collision. Initially j will be zero. When a bucket
is full and is split, any hash keys which, when transformed under h0 target that
bucket will be re-hashed using h#1. If further buckets become full they will be re-
hashed using h1, and so forth.

This particular hashing doubles the number of (potential) buckets at each split,
and has the additional property that the “new” buckets are always empty (which
avoids a possible cascade of splits). Its disadvantages are that there are constraints
on the forms of hi+1 compared to hi which must be guaranteed, and a new function
(satisfying these constraints) must be supplied at each level. This leads to a lot of
functions.

Dynamic Hashing
Dynamic hashing[73] uses a hash function h to identify a tree which is used to

contain records. Instead of a single structure, a collection is represented by a forest
of binary trees T t t tq= { , ,..., }1 2 with the hash function being defined as h C T: → .
Once the correct tree has been identified, it is searched. Navigation of the tree uses a
secondary function b C: {(,) }→ +0 1 from this key to an infinite series of bits. This
sequence is used to traverse the tree by using each bit to indicate a left/right branch.
Traversal continues until a leaf node is encountered, which contains records.

If a bucket overflows, it is split and re-arranged according to the values of b.
This is illustrated in figure 12.

- 71 -

Dynamic hashing may be especially efficient if indexing data is held locally
The secondary hash function b may seem complicated, but may be implemented very
simply using a pseudo-random number generator seeded from the key. The initial
hashing – from key to tree – suffers from the usual disadvantage of hashings that the
size of the forest is fixed at creation-time, so essentially the scheme is a mechanism
for structuring buckets internally in an efficient manner. The algorithm is distributed
in the sense that intermediate nodes are used for navigation.

Extendible Hashing
The most promising candidate is extendible hashing[45], which builds on

Fredkin's work on tries[50]. In trie10 memory, a search tree is constructed from a set
of records whose keys are sentences in some alphabet Σ. For some (possibly
complete) prefix of a key, a tree is constructed: from the root node, a branch exists
for every σ ∈Σ, and so on recursively until the key has been completely parsed. The
result is a tree having a path corresponding to every possible key prefix within the
alphabet.

For each leaf node a bucket is constructed to contain records whose keys have
the leaf's identifying path as prefix. Such a system is naturally scalable: if a bucket
overflows, the leaf node is split into a new branch node which consumes the next
symbol of the key (extending the prefix by a single letter of Σ), with new buckets
being created at the end of each new edge and the values within the original bucket
being re-distributed according to the new trie.

Special cases are the binary trie using the alphabet Σ = +{(,) }0 1 and the n-
dimensional binary trie using the alphabet Σ = +{((,)) }0 1 n .

A trie may easily be seen to be wasteful of memory, as a path is created for
every possible prefix of a given length. To improve this, branches may be created
“lazily” when a symbol is encountered. Levels may also be compressed so that
several symbols are consumed at each branch in the manner of the n-dimensional
binary trie. It is this latter observation which is used to create extendible hashing.

10The name rhymes with try.

(a) tree from the initial forest (b) splitting a bucket

Figure 12: Dynamic hashing: splitting a bucket

- 72 -

Several alternative extendible hashing schemes may be considered in which an
additional level of dictionary look-up is provided between the hash function and the
buckets – the hash function maps onto a set of dictionaries, which themselves map
onto a set of buckets (if D d d dr= { , ,..., }1 2 is the set of dictionaries, then h is defined
by h C D S: → →). A specific extendible hashing may be defined using a pseudo-key
c h r' ()= where c' is large and of fixed length (say sixty-four bits). A certain prefix
of c' (of, say, three bits) is used in the first hash routine, with each combination
mapping onto a bucket. Thus all records whose pseudo-keys have the same prefix
will hash into the same bucket. The buckets themselves may have an internal
structure as required.

When a bucket overflows, another bit is added to the pseudo-key in the primary
table – splitting a prefix causes all prefixes to be split. Most of the new prefixes will
be redundant, mapping onto “overloaded” buckets: the bucket which caused the
overflow, however, will be re-arranged so that a new bucket is created. This is
shown in figure 13.

Extendible hashing hence requires that the splitting of a bucket is recorded in the
master hash table: it is not a distributed algorithm, in the sense that all information is
concentrated within a single table. However, it guarantees that the bucket containing
a record may be acquired using a single probe, as with standard hashing.

Distributed Extensible Hashing

None of the schemes discussed was designed with distribution in mind, so they
have an essentially centralised nature. It is common practice, for example, to assume
that the entire index is held centrally – not a viable proposition in the current context,

h = 00...

h = 010...

h = 011...

h = 10...

h = 11...

000

111

0000

1111

(a) initial hashing (b) splitting the 010,,, prefix

Figure 13: Extendible hashing: splitting a bucket

- 73 -

where it would constitute a bottleneck, a limit on the maximum size of the structure
and a single point of failure all rolled into one.

The table in figure 14 summarises the properties of the methods reviewed. All
the systems satisfy the constraint that the structure be able to vary its size in response
to changing membership. Regularity is a feature of extendible hashing, so the code
used to implement the structure need not change for varying depth. Distribution
control is aided by the use of intermediate points, such as those of dynamic hashing,
rather than the use of a logically centralised table.

Thus, while none of the systems exhibit all the desired characteristics, together
they satisfy the needs of a scalable parallel implementation. It would be attractive,
therefore, to synthesise the required algorithm from a combination of the three
systems.

The dynamic hashing of Larson uses index tables at intermediate branch nodes,
which is reminiscent of the generic partition tree in figure 7Error! Bookmark not
defined.; Fagin's extendible hashing uses a variation on the trie concept without
such intermediate look-up. These two schemes may be amalgamated to form a new
algorithm in which intermediate nodes are based around tries. This means that the
same search algorithm may be used throughout the structure. The new scheme is
completely regular, scalable and distributed.

A basic table is first built using a prefix of the key value c. Call this prefix c', of
(say) three bits in length. This table will initially point to buckets – eight for a three-
bit prefix. When a bucket overflows, it is replaced by an intermediate node which

 “Standard"

hashing
Virtual
hashing

Dynamic
hashing

Extendible
hashing

number of
buckets

fixed variable variable variable

keys fixed fixed fixed fixed
(prefix)

secondary
keys

none none infinite
binary
sequence

none

additional
functions

none one per
level

tree
traversal

none

bucket
access
method

single-step recursive
hashing

hash, then
tree search

single-step

extension none new hash
function

extend tree alter master
table

number of
hash
calculations

one one per
level

one one

Figure 14: A comparison of extensible hashing schemes

- 74 -

uses a prefix of the remaining key (say c'') in the same manner as the initial table.
The contents of the split bucket are re-distributed between the new buckets (and the
original bucket may be re-used as a bucket at the deeper level). Thus each lookup
descends one level of the tree by stripping a prefix from the key being sought and
forwarding the rest to the object identified by the stripped prefix. Eventually a leaf
node – bucket – will be encountered, which will hold all records containing the given
key. This structure is shown in figure 15.

The splitting of a bucket generates an intermediate node, rather than adjusting a
master table. Indeed, there exists no master table: the information needed to
maintain the structure is distributed between the branch nodes of the tree. Each split
has only a local effect, so no information need be propagated to the rest of the
structure. Each intermediate node uses a prefix of the key to cascade the search, and
may do so using purely local information. The fan-out from a branch node may be
arbitrarily large.

A similar approach may be taken if the membership of the structure should
shrink. If, for example, all the child buckets of an intermediate node become (nearly)
empty, they may be joined to form a single bucket and the unnecessary intermediate
node removed: an exact reversal of the procedure used to split a bucket.

In the current context, the most important feature of the algorithm is its
regularity. The same function is used at each branch – master or intermediate – as
was the case in the basic trie. In addition, however, hashing may proceed from any
intermediate node to the correct bucket, by the following argument: if an
intermediate node knows its own prefix (the prefix which is common to all its
descendents, then it can determine for a given key whether the bucket for values with
that key occurs below it in the hashing (i.e. if the key is prefixed by the node's prefix)
or whether it must lie above it, down some other branch (if the key has a different

h = 000...

h = 011...

h = 100...

h = 101...

h = 110...

000

111

(a) initial hashing (b) splitting the 100... prefix by one bit

h = 001...

h = 010...

h = 111...

h = 000...

h = 011...
h = 1000...

h = 101...

h = 110...

000

111

h = 001...

h = 010...

h = 111...

h = 1001...

Figure 15: Distributed extensible hashing: splitting a bucket

- 75 -

prefix). In the limiting case, a key will pass through the master table, which has no
prefix.

However, access to a record may require many sub-hashes, rather than the
guaranteed one of the original extendible hashing. This is less of a problem that it
might appear since, in the current system, all items will be in memory (albeit on
different nodes) so it is more important to emphasise distributed control and
scalability. There is a one-to-one correspondence between intermediate nodes and
partitions.

Locality of Reference

The bucket in which an element is stored within a hashing algorithm is defined
by its hash key (or a prefix thereof): it is not implicitly defined by semantic
considerations, as was the case in arrayed storage, but by a hidden (and rather
complex) value generator – the hash function. We must therefore consider the effect
which extensible hashing has on applications wishing to exploit locality of reference.

There are two alternative approaches to this question. The first would allow an
application to define, at some high level, that objects inserted into associative storage
should be stored together; the second forces applications to work within the locality
framework imposed by the memory architecture itself.

In the first case, an application might define that (for example) all Linda tuples
with a particular type signature will be hashed to the same (or very similar) values
and will hence be stored in the same or closely-neighbouring buckets. An
application wishing to process all tuples of this type would then be able to assert that
they are stored together, and would be able to locate its processing activity so as to
minimise the access overheads (by accessing the correct bucket(s) directly). The
disadvantage here is that the amount of parallelism may be reduced, as only a small
number of buckets will be used in processing.

Using the same example, the second case would distribute tuples according to
some hidden mechanism. Processing all tuples with a given type signature would
involve potentially accessing all the buckets in the structure, but each activity need
only access the tuples held locally by the bucket to which it is assigned: in other
words, each activity would iterate through a single bucket of tuples, filtering-out
those in which it was interested. This scheme is maximally parallel (within the
partitioned object framework), but may result is activity to no purpose if there are
buckets with no suitable tuples within them.

We have here another example of a trade-off, between increasing parallelism
and increasing the programmer's knowledge of and control over the associative
structure. The partitioned model allows applications to be constructed at either
extreme, and at any point in-between.

Structure

We shall briefly make clear the mapping between distributed extensible hashing
and the partitioned model.

- 76 -

Referring back to the generic partition diagram (figure 7Error! Bookmark not
defined.), the correspondence is as follows: each component represents a bucket in
the hashing algorithm, whilst every partition represents an intermediate trie node. A
bucket holds records having a certain key prefix: the partitions holds mapping tables
which can strip a prefix from a key and either return the bucket matching the prefix
or forward the remainder of the key to the appropriate sub-partition. Partitions must
also know the prefix which identifies them from above.

Hash keys are composed of long unsigned numbers. In principle, of course, a
limit on scalability is imposed by the length chosen for hash keys; in practice a
number of (for example) 64 or 128 bits will be sufficient for all but the most
demanding applications. It is possible, in any case, to generate infinite keys by using
a smaller number as a seed to a pseudo-random number generator.

On receiving a request for a particular key, a bucket compares it against its own
local prefix: if they match, then the record sought may be acquired locally. (Of
course there may not be such a record – the bucket may be empty, or later matching
may fail. This is unlike the arrayed case, where an element will always be present.
An associative store must provide a failure case.)

If the prefix does not match, it may be forwarded to the receiver's partition for
resolution. The partition performs an action depending upon the key value.

If the key has a prefix which matches that of the receiving partition, then the
sought-for record must lie below the partition in the tree. It may therefore strip the
next part of the key, match it within its table of descendents, and forward it
appropriately.

If the key has a prefix different to that of the receiving partition, or is shorter
than it, then the sought-for record must lie either in another branch or above the
current partition: in either case, it must be resolved up the tree by passing it to the
partition's parent.

Adding an element to a component may cause it to split. The split operation
generates a new partition object and a set of additional components: the new sub-
partition tree is linked-in to the partition tree in place of the split component. The
contents of the split component are re-injected into the structure to distribute them
into the new buckets. (There is a slight danger that all the elements might be re-
hashed into the same bucket, causing a ”split cascade." Allowing buckets to expand
more than usual deals with this case.)

3.3.3. Directed Storage

Graphs – directed and undirected – seem to be the most ubiquitous structures in
computer science. It is common, for example, to see a problem which may be treated
simply as a problem in graph theory (most search problems fall into this category),
and many applications have data structures which are based around the notion of a
graph or tree.

A graph is a set N of nodes and a set E of edges. A node represents a “place” in
the graph, whilst an edge represents a “route” between two nodes. Hence an edge
may be represented by a pair (,)n n1 2 where n n N1 2, ∈ . If the order of the pair is
irrelevant, i.e. if (,) (,)n n n n1 2 2 1= , then the graph is said to be undirected; if order is

- 77 -

significant, the graph is said to be directed. Edges may be traversed from one of
their nodes to the other: in a directed graph, traversal is only allowed in the direction
of the edge, whilst edges in an undirected graph may be traversed in either direction.
Variations on the basic theme allow nodes and edges to be labelled to identify them.

There is a sizeable body of knowledge on the mathematics of graphs, including
algorithms for traversing all nodes and detecting cycles of edges. In particular, it is
common for an edge's label to be interpreted as a weight designating the “cost” of
traversing the edge, and an important class of problems involves minimising the cost
of moving between a pair of nodes.

An important special case of the graph is the tree, which is an acyclic graph in
which there is a single node, called the root, which is not the target of any edge.

Basic Approach

The basic approach to creating a graph is to store a node and its label (if any)
alongside the set of edges which leave it: thus a node A would be stored with the
edges (A, B), (A, D) et cetera, but not with the edge (B, A) (for which A is the target)
nor the node (B, D) (which does not affect A in any way).

A graph may be seen as being composed of a number of smaller sub-graphs, in
much the same way that an array is a collection of smaller arrays. In the graph's
case, the edges leading out of one sub-graph will be related directly to the edges
leading into another sub-graph. This means that the sub-graph may be used as the
unit of distribution, with a single sub-graph being stored in a single component.

From the point of view of navigation, a graph is the simplest of the partitioned
architectures. All navigation between nodes must proceed on the basis of local
information – the set of edges leading out of the current node. Therefore
“resolution” – it can hardly be termed this in so simple a case – is simply a matter of
looking-up the name of the target node of the edge to be traversed.

However, there are a number of complexities in representing graph structures.
The first is the sub-division of a graph into sub-graphs. Since there may be no
general rule as to where new nodes are added, a sub-graph may grow unpredictably:
like an associative memory, but unlike an array, the bounds of a component cannot
be fixed at creation-time. This means that identifying a sub-graph, and deciding
when to create a new one, may be complicated. Furthermore, there is the issue of
naming and deleting items from a graph.

Fortunately there are a number of special cases for which simple solutions exist.
The most important is the tree, in which sub-graphs are actually sub-trees, which
have well-defined properties.

Locality of Reference

A graph has a very well-defined notion of locality of reference. If an edge is
seen as representing a single “step,” then two nodes are close together if the number
of edges which need to be traversed in order to move between the nodes is small.

The problem is complicated for the general case of graphs, however, as there
may be many distinct paths between two nodes. This makes the problem of deciding

- 78 -

whether two nodes are metrically close together a difficult task: in the limit, it is one
which can only be solved by an exhaustive search. The case is somewhat simpler for
trees, however. In a tree, one may count the number of levels by which two nodes
differ as a metric of the distance between them.

The locality of reference in a graph is vitally important. Any application
manipulating a graph can only move between nodes by traversing edges: if such
traversal results in a remote reference – as the target node of the edge is located in
another component – then applications will incur a severe performance penalty. In
spite of the complexity it is important that components contain sub-graphs as far as
possible. There is a trade-off to be made between the penalty in finding sub-graphs
against the penalty of remote accesses if applications make remote references out of
a sub-graph which could be avoided.

Distributing Nodes

Distributing a graph, as mentioned above, may be seen as simply being a matter
of dividing-up the nodes into a number of sub-graphs – not necessarily connected –
which are then used as the basis for decomposition. This scheme is complicated by
the fact that the node population of a graph may vary with time, with nodes being
created and (possibly) deleted. This could lead to some convoluted distributions.

Consider a graph consisting of a single node, held in a single component. As
new nodes are added as children11 of this node, the contents of the component may
grow until it is necessary for it to be split. This split then generates one or more new
components, possibly re-injecting the existing nodes in order to balance the load.
Unless care is taken, the nodes will end up being split in such a way as to destroy any
possibility of locality of reference within the graph.

The first option would be to split nodes temporally: all new nodes are placed
into a new component. For example, ten nodes are created in a component, but the
eleventh causes a split to be made and is placed into a new component. A moment's
reflection indicates that this will be unsatisfactory, as the distribution is completely
unrelated to the topology of the graph.

Locality may be maintained, however, by ensuring that nodes which are
metrically close – are centred around a common node, for example – remain in a
single component. This would imply, for example that all immediate children of a
node A would be located in the same component.

It is possible that in an arbitrary graph there are edges between arbitrary nodes,
without any respect for the creation order. However, there is no simple solution for
the arbitrary case short of exhaustive search, and creation-respecting distribution is a
good solution for many of the special cases of graphs (trees and some commonly-
encountered types of directed graphs in particular). If required, the exhaustive search
technique could be used by re-defining the partition being used.

11The term child is, of course, rather inappropriate for a general graph, as all nodes are in some senses
at the same level in such a heterarchy. The terms is apposite only for graphs like trees, with a well-
defined sense of hierarchy. It is used here for convenience.

- 79 -

Naming Nodes

The most obvious naming scheme is to use the name of the object representing a
node as the node's name. This is a direct translation of the traditional scheme for
creating graphs into the partitioned environment: an edge is essentially a pointer to
the target node. Such a solution has two main problems.

The first is the problem that, as objects in their own right, nodes can exist apart
from directed collections. Related to this is the fact that, by giving clients handles
onto objects which are part of the internal arrangement of the collection, it might be
possible for clients to induce state changes pathologically. Allowing access to
internal objects also weakens the collection's encapsulation.

In addition to these, passing out handles to nodes means that the collection is
severely restricted in the ways in which it can re-arrange its internal structure. This
is because the collection cannot safely destroy an object to which another, external
client may hold a handle: to do this would result in a “dangling” pointer12.

The alternative approach is to create some other form of naming for nodes which
does not suffer from the above difficulties. In effect, this involves creating a naming
scheme is which nodes are named by indexing values, in the same way as associative
memories and arrays. For our current purposes, there is a restriction that such names
lend themselves to simple distribution and resolution (since the names will be an
integral part of the resolution process).

There are several possible naming schemes, but the most attractive is to name a
node according to its position in the graph; or, alternatively, to name a node
according to a path between it and some other node. In a general graph, there may be
a number of paths between two nodes, but what can be guaranteed to be unique is the
nodes' order of creation.

We shall make the assertion that all nodes except one (the first) are created as
children of some other node which already exists in the structure. That is to say: a
node may only be created by connecting it to an existing node using an edge. This
has the corollary that a directed structure must always be connected. A node may
then be named by taking the name of its immediate parent and affixing a unique
identifier for it: for example, a sequence number in the creation of children for that
node. A simple recursive argument shows that such names will always be unique.
Essentially a tree structure built from the order of node creation is superimposed onto
an arbitrary graph structure, as shown in figure 16.

12In most systems, anyway. There is no reason for not having objects which are garbage collected
rather than explicitly destroyed, but few curent object-oriented systems take this approach, which is
particularly tricky in distributed systems.

- 80 -

There are obvious similarities between this naming scheme and the distributed
extensible hashing. Node names are prefixed by the names of their parents, and
occasionally the mapping of prefixes to components changes in order to re-order the
collection. The differences are mainly at a higher level: node names are generated
by node creation, not intrinsically from their value, and several “prefixes” may be
held by a single collection.

Creation and Management

The creation of a directed structure is superficially closely related to the
techniques described for associative memories above, §3.3.2.

Each component contains a particular set of nodes in the graph which have a
small set of common parent nodes (the size of this set may vary). Nodes are created
by providing them with an explicit parent node, and are identified by an abstract
value. Internally, this value describes the creation path of the node – its parent, its
parent's parent et cetera back to the root.

As nodes are created, the population of a component will increase. If the
component's population grows too large, it may be split to form a set of new
components, and its nodes may be re-arranged. The criterion controlling this is that
all the direct descendents of a particular node will always reside in the same
component: this imposes the restriction that there is a maximum fan-out within a
graph which is governed by the maximum number of nodes which may be held
within a single component.

Navigation in such structures is trivially easy. A node contains a set of edges
leading from it (which may be interpreted as being directed or undirected as

root node

0

0-1

0-2

0-1-1

0-1-2

0-1-3

Other edges
Edges used in creation

Figure 16: A strategy for naming graph nodes

- 81 -

required). The target of an edge is the name of its terminal node. The set of edges
defines the set of possible resolution requests which may be made, and the node
names contain enough information to perform resolution.

The actual resolution process is closely related to that of the associative memory.
A nodes name to be resolved is compared with the set of node parents held by the
current component and, if it does not match them, is forwarded to the partition. The
partition then maps a prefix onto a component or sub-partition, or forwards it to its
parent. Since the nodes names form a tree, the tree structure of the naming scheme
may be matched by the partition tree structure, in much the same way as the
distributed extensible hash space (but without the necessity of a hash function
initially: put another way, the hash function for graphs is based on node creation
placement and ordering rather than on a node's value).

3.3.4. Mathematical Structures

There is a temptation, when discussing data storage architectures, to provide
some the “standard” mathematical objects such as sets, bags, mappings and the like.
There is, however, a danger of embedding such structures into a programming
language. Computing systems are not purely mathematical evaluators, and their
needs sometimes conflict with those of the mathematics which they attempt to
follow. Providing an object calling itself a set which does not behave exactly like its
theoretical counterpart of far worse than not providing a set at all.

Some languages, notably Smalltalk, provide sets and bags as basic data types.
There is, however, a subtle and (to our knowledge) previously unremarked problem
with the Smalltalk implementation of these objects. It may be illustrated with the
following example. Consider a Smalltalk set built from three Point objects:

s ← Set new.
s add: (1 @ 1) ; add: (2 @ 2) ; add: (3 @ 3).

where (1 @ 1) creates a Point object representing the point (1, 1). The set may
be queried to see whether a given point is contained within it:

s includes: (1 @ 1).
--> true

Let us now insert a fourth point into the set whilst retaining its name outside:

p ← (3 @ 4).
s add: p.

Since we have retained the name of the object, we may still interact with it, and
one of the possible operations is to induce a state change by altering one of its
ordinates:

p y: 3.

- 82 -

changing the point to represent (3, 3) instead of (3, 4). The result of this is that the
set s now contains two points with the same value, which violates the invariant of
sets – but the set has no way of knowing this. Enumerating the contents of the set
will result in two values the same: if, for example, we sum all the points in the set

s inject: (0 @ 0) into:
 [:acc :elem | acc + elem].
--> (9 @ 9)

the result is incorrect – it should be (6, 6). By covertly changing the state of an object
we can subvert the properties of the set. The same is true for a bag. The point is that
it is difficult to import value-based abstractions into a state-based computational
framework.

The problem may be overcome, but not easily: three possible remedies are
sending “value changed” calls to all collections containing an object whenever its
state changes, using copy-in semantics for objects in collections, or using invariant
semantics. The first solution incurs a large overhead, and requires that all objects in
the system (both built-in and user-defined) follow this convention; the second may
be undesirable if it is actually a particular object, rather than a value, which is to be
stored; the third restricts the objects which may be placed into such collections to
those which do not change their state.

In choosing the array, associative and directed storage architectures for the
partitioned model, we side-step these problems. These architectures make no
unworkable guarantees, but may be used to create any desired structure in a scalable
and distributed manner. A set, for example, can be implemented as an associative
memory. It is then the programmer's task to devise a suitable semantics for cases
such as the one described.

3.4. Creating User-level Data Structures

Having discussed the infrastructures of scalable memory, the questions arise:
how may these frameworks be used to construct “real” applications? To what extent
may users customise the memory access protocols and distributions whilst still being
shielded from the low-level details of implementation? This section addresses these
issues.

3.4.1. Customisation and Refinement

For a programming environment, customisation is important: the ability to
extend or adjust features of the supplied software so that it better matches the task in
hand.

Refinement is the process by which something is “made better” in some sense.
In computing, the term often denotes a method by which an abstract description of a
program is converted, by successive steps, into a more concrete version of the same
program. In other words, refinement is a semantics-preserving program
transformation. An example of refinement is top-down design, where a program in

- 83 -

developed in terms of high-level structural components, each of which is
decomposed recursively until an “atomic” stage is reached.

The architectures discussed above provide a framework for particular kinds of
storage, but will only provide a rudimentary interface to the programmer. The great
advantage of object-oriented programming, however, is the ability to encapsulate the
functions of one class within the interface of another, using the sub-classing
mechanism. This allows the programmer to create data structures offering high-level
interfaces whilst using the basic architectural implementations.

Scalable memory, as observed before, essentially abstracts away from four low-
level details:

a) where an individual datum is stored;
b) which data are allocated to which local memory;
c) how data values are accessed by clients; and
d) how data values are retrieved when requested (internally).

The basic approach when creating a user-level structure is to provide an

interface which is useful to the programmer in performing some task, masking the
features of the selected storage architecture which are not relevant to its use.

We shall here consider the reasons why customisation might be performed, and
the sorts of things which might reasonably be customised in an environment based
around the partitioned model. We shall leave until later the issues of exactly how
this customisation occurs, when we discuss a prototype implementation of a
partitioned-model environment (chapter 5).

Custom Access

The partitioned model implements storage architectures, not data structures per
se. The programmer's interface to an architecture is derived from the architecture but
is not intrinsically a part of it, so different interfaces to essentially the same
architecture are perfectly possible.

Why would different interfaces be needed? The obvious answers concern
functionality and grain size.

Functional Interfaces
A storage architecture provides only the most basic operations: retrieve an

element, store an element, remove an element, move an element et alia, depending
upon the exact architecture being used. An application might conceivably use such
an interface, but only at the cost of a large amount of readability.

An application in general builds structures to hold values of a given type, and a
data structure will usually be constructed so as to hold values of only a single type.
The exact type system used is a feature of the host language: object-oriented systems
usually provide inclusion-polymorphic type systems, but one might also consider
type systems based around a more (or less) powerful base. The storage architectures
themselves make no explicit reference to the type of values which they store,
although they may place a small constraint upon its type (such as the existence of a

- 84 -

hash function or an equality operator). The same architecture may be used to store
values of any type representable within the host language: an application may
require that a structure has its type (i.e. as an array of integers) fixed before its use.
Thus there is an immediate need for a functional interface: to restrict the types of
object which may be manipulated by the basic access operations.

A second need is when the memory performs more complex operations than
simple accesses. An example would be a database (represented as an associative
memory with customised add and retrieve operations). The database may need to
perform (for example) a “project” operation, placing additional constraints on the
elements' types.

Grain Size
Although we have tried to avoid discussion of effects which are purely caused

by distribution, eventually these effects must be considered. Since all requests for
data may in principle cause communications to occur, it is desirable from a
performance point of view to reduce the amount of communication incurred. This
may occur in two ways: by transferring more data per communication, or by
exploiting the principle of locality. The latter will be dealt with later; the former is
the issue of grain size.

In discussing their application which won the Karp prize (awarded for an
application for exhibiting a large parallel speed-up), Gustafson et alia[55] identify
several aspects of their application which contribute most to its success. One of the
most important is that the application transfers data in the largest “chunks” possible –
tens of elements rather than single elements. In terms of programming interface, this
implies that the interface would allow access to several records simultaneously,
through a single call, rather than forcing an application to perform the accesses
individually.

The grain size of accesses may be altered in two ways. The first is to add a
function to the architecture's interface which repeatedly calls the single-element-
access functions invisibly; the other is to implement a function which accesses the
inner storage mechanism of the structure directly, in the manner of the single-
element functions, to acquire several elements. Both alternatives have their
attractions in different circumstances. The first method, by using the provided access
methods, acts essentially as a client object: it adds to the interface of the base class
without subverting that which exists already. The second method uses the same
internal information used by the base class, and may be more efficient than the first
method but only at the cost of weakening the abstraction of the basic memory
module.

In suitable circumstances, one might also consider the use of techniques such as
pre-fetch caching of data without altering the external interface. Internally all
requests would be performed in large chunks, with those elements which are not
immediately required being cached for later use. This opens up a whole new area of
problems in terms of cache consistency, but illustrates the fact that a partitioned
memory may be very flexible in its internal organisation; moreover, it illustrates that
the memory interface may become very intelligent without affecting the interface
resented to client objects.

- 85 -

Custom Distribution

Providing a custom distribution may involve changing several factors in a
memory: the way in which storage is decomposed, the way in which resolution
occurs, et cetera; alternatively it may require quite trivial modifications. This means
that the distribution management routines must be decomposed to a very fine grain,
to avoid the need to re-implement what is essentially common functionality.

Parallel applications often have a distribution pattern which, in some sense, they
“prefer:” the application is highly efficient when its elements are arranged in a
particular topology and is less efficient in other configurations. If – as seems likely –
this distribution cannot be inferred from the application's source code, it is necessary
for the programmer to take a hand. The two means of approaching this problem are
to place elements explicitly, or to create an automatic distribution manager which is
specialised towards the application's needs.

Placed Distribution
It is quite a simple task to create a distribution manager class in which it is

possible to specify exactly the distribution of components. The most obvious is a
manager specialised towards distributing two-dimensional arrays which places
components in a regular grid on a mesh-based machine. This ensures that
neighbouring locales of the array are on neighbouring processors. The programmer
has specified that a particular placement of data on processors is the most efficient
for the application.

This new distribution – whilst having no semantic effect on the application's
behaviour – may have a profound effect on its performance. It may be used to
minimise the overhead incurred in the expected sort of resolution, that which is
needed to acquire a value from a neighbouring locale.

Indeed, it is possible to go a stage farther and inform components of the
locations (i.e. component names) of the other elements of the array. Essentially this
involves using the partitioning infrastructure as a decomposition and configuration
tool which is disposed of after setting up the structure. Evidently this only works for
structures which have a fixed size and distribution which may be determined
“statically:” the quotation marks here emphasise that the distribution may be fixed
during the lifetime of the structure and may not vary afterwards, but does not
necessarily have to be determinable when the structure is first created.

All these approaches are completely scalable. Using the example of the mesh-
based array distribution manager, it is possible for the manager to determine the
maximum size of mesh which may be created at run-time, and to create a mesh of
this size. A further stage of placed distribution is when the programmer actually
specifies the processors which will contain the various components, but this then
restricts the application to execute on a system with (at least) the specified number of
processors.

Adding Factors
Another approach is to create a more “intelligent” distribution manager by

including new factors which affect the algorithm. This is a slightly different

- 86 -

proposition to the above: the system is still completely free to choose whatever
distribution it determines would be best, but has more information available to make
this decision.

Such a system is particularly attractive in the presence of object migration, when
components (and their elements) may be moved at run-time. This would allow the
distribution manager to observe the actual access patterns which occur at run-time on
a particular run and alter the distribution of data dynamically in order to improve the
locality of reference, communication overheads et cetera. This is in many ways a
generalisation of the traditional object-migration approaches which collect statistics
on single object interactions: a distribution manager may collect statistics on a
multiple-object structure and re-distribute it.

At its most comprehensive, it would be possible for a distribution manager to
achieve a near-optimal distribution of the data in a structure, and to vary this
distribution to maintain its optimality across different patterns of access.

Caching

Another possible refinement involves the use of caches.
It may be observed that, when an application exhibits locality of reference, most

of its requests will be sent to a small number of components in the collection – the
ideal case being where all requests go to a single component with which the client is
co-located. In a less-than-ideal case, however, it may be advantageous if the
resolution required to access remote components is avoided.

A possible method is to cache the components which resulted from the last few
resolutions. If a request for the same component occurs again, then the request may
be forwarded directly to the correct component without the need for resolution.

There are obviously some additional requirements to this use of caching. Firstly,
the cache must be able to recognise requests for the same component, and this
implies that the cache has access to the same information as the resolution algorithm
as regards the component names which are cached. In an array, for example, the
cache must store the region held by a cached component alongside the component's
name so that the necessary test for locality may be performed. Secondly, the cache
must be advised of the component which was the end result of each request. Thirdly,
the cache must be updated whenever a request is resolved to a different component
(in associative and directed structures, this would occur when a component is split or
joined). For all these reasons, it is best to perform this form of caching within the
partition class, rather than in the components.

An important point about this form of caching is that cache entries are only
hints. To illustrate this, suppose that a cache entry is held to a component in an
associative memory which has been split without the cache having been updated. A
request which is resolved using the cache will then possibly be forwarded to the
wrong component. However, the definition of partitioned collections states that any
component may resolve any request, so this mistaken forwarding will at worst result
in another, subsequent resolution of the request: the use of an out-of-date cache
entry is not disastrous, but will simply alter the time taken to service the request.

- 87 -

One might also suggest that recently-accessed values of requests are cached,
although this introduces problems with cache consistency which cannot be addressed
well in any general way: they are of necessity application-specific.

3.5. The Semantics of Failure

One of the most common claims made for multicomputer systems is that they
offer increased possibilities for the construction of reliable, fault-tolerant computers,
since they have no single points of failure. In a scalable system, with potentially a
very large number of processors, the probability that some node will fail grows along
with the system itself. A point which we have not as yet addressed is the possibility
of failure in a partitioned system, either from faults in implementation or faults in the
underlying hardware. Although the partitioned model – in common with most other
systems for parallel programming – assumes that no failures occur, there are many
features of the model and of scalable systems generally which make it well-suited to
extensions to deal with such failures.

The toleration of software faults is a commonly-occurring theme in dependable
systems research, and is discussed extensively in (for example) [4][107]. It is usually
addressed by techniques such as multiple-version programming, coupled with
extensive testing before execution.

Hardware faults can take two forms: link failures and node failures. A link
failure results in the destruction of a communication path between two processors,
while several concurrent failures may “partition” the network into two or more parts
which have no communication paths to each other. A node failure will result in the
loss of any data stored and processes running on the node, and may also exhibit all
the features of a link failure on all links to the failed node.

In general an application has no control over the routing of messages: hence
link failures are essentially the domain of the operating system kernel. The solution
is to detect the fact that a message has not been delivered (using time-outs, sliding
window protocols et cetera) and to re-transmit the message using a different route to
bypass the failed link. This may be implemented transparently by the kernel's
routing module.

Node failures present a more thorny problem. There are many issues to be
considered: whether failure should be handled transparently or should be visible to
client objects, whether data should be automatically or manually committed to stable
storage, whether replication is worth the additional consistency overhead, and so
forth. Within the partitioned model, the problem is essentially concerned with
maintaining both the contents of the memory and the structure of the storage
architecture.

Tolerating Faults

Consider the case of a partitioned collection executing on a set of nodes. If one
of the nodes crashes – we shall assume that nodes are fail-silent – the result will be

- 88 -

the loss of one or more component and partition objects. There may also be
activities running in conjunction with the components.

If a component is lost then all the data in that component will disappear and will
need to be re-created somehow. We shall defer this issue briefly. Similarly, node
crashes which affect activities will also require that the activity (including its
context) is re-created and re-synchronised with the rest of the application. Neither of
these faults may be “tolerated.”

If a partition node is lost, the result will be the isolation of part of the partition
tree from the rest – the usual term for this is “partitioning,” a usage which we shall
avoid here! This is shown in figure 17: the part of the tree below the crash site is
isolated. In the figure, the request from process P succeeds as it does not intersect
with the crashed node; the request from Q fails. Local requests for components
below the crashed partition – or remote requests for any sub-trees below it – would
also be able to function providing that their resolution path did not intersect with the
crashed node.

However, it may be highly desirable to tolerate failure by allowing the disjointed
trees to interact – allowing, for example, process P to access elements below the
crashed partition. Here a feature of the partitioned model comes to our aid: the fact
that any request may be resolved from any partition. Conventionally a component
makes a request for resolution to its own parent, which in turn interacts with its own
parent and direct descendents. Another possibility, in the case of a partial failure,
would be to choose a partition node at random and forward a request through it.

An algorithm for this form of fault-tolerance is as follows. A partition, on
receiving a request, attempts to resolve it in the normal way. If, in the course of
resolution, a partition tries to interact with a crashed node, it detects this and takes
remedial action. It chooses another node from the tree at random and forwards the
resolution request to that node. There is a chance that this node will be able to
resolve the request without hitting the crash site, and will then be able to service the
request; if it does hit the crash site, it make take the same steps.

(request
succeeds)

(request
fails)

Extent of failure

Figure 17: The effects of a node failure on resolution

- 89 -

Such a Monte Carlo algorithm always has the possibility of never terminating –
if, for example, the request being resolved is targeted at a crash site itself, or through
a unfortunate sequence of random selections. One might take the view that such
behaviour is acceptable; alternatively, a request may have a built-in threshold on the
number of stochastic resolutions in which it may be involved, after which the request
fails.

The algorithm, it will be noted, is implemented purely within the partition
classes, and so is simply a refinement within the partitioned model for a particular
distribution strategy. The only effect on component classes is that there must be
some error-handling mechanism which is triggered if a request cannot be satisfied –
an exception or an “empty” return value.

It should also be noted, however, that the algorithm is incomplete: it cannot by
any means access components which are direct descendents of a crashed partition, as
the necessary routing information is missing. One might modify the algorithm so
that it randomly interrogates components to see whether they can satisfy the
outstanding request, but this seems a little too stochastic. We shall content ourselves
with the observation that a partitioned memory can tolerate a certain amount of node
failure to the extent of degrading gracefully, but cannot completely hide the effects
of the destruction of its internal structures.

Recovering from Faults

Fault recovery requires three linked steps:

• the re-creation of any lost objects;
• their re-integration into the remnants of the structure; and
• the re-creation or re-acquisition of information (including

contextual information) which was lost.

Although a partitioned collection can tolerate (at least partially) the loss of some
of its distribution managers, it cannot re-generate a structure automatically; nor is
the tolerance of faults fully satisfactory.

A partition object holds sufficient information to allow it at least partially to re-
generate any objects below it. In an associative memory, for example it can identify
the prefix of a sub-partition which has been lost, and then re-create this partition
using the same mechanism as that by which the partition was originally created. The
difference is that the re-generated partition must be able to link in the partitions
below it into its own routing tables, and must re-create the components (and their
data) which were held by it.

Although it is simple to create and assign storage for components, it is
impossible to re-create their data: for this, it is necessary that components have
periodically persisted their data onto stable storage.

The basic idea behind the use of stable stores is that data is placed onto a disc or
other non-volatile storage medium and retrieved whenever it is necessary to recover
from a failure. Arjuna[43] is a good example: all data manipulations are
implemented as transactions which must “commit” before any permanent change is

- 90 -

made to an object's data. This also means that, if an Arjuna object is lost, a
consistent image of it may be recovered from disc.

The partitioned architectures discussed in this chapter have not used transactions
as their basic modus operandi: there is, however, no reason why a transaction-based
interface modelled on Arjuna might not be implemented. This would then yield a
scalable memory model which was highly resilient to failure: it would continue to
function in a degraded manner if a node failed, and could re-create itself from an
image persisted onto disc in order to avoid loss of data.

Replication

An alternative to the reconstruction of data from disc is the storage of data at
several points concurrently, in the hope that at least one replica will survive a failure.

One could certainly implement some form of data replication within the
partitioned model by replicating the components (and possibly the partitions)
composing a partitioned memory. A failure of a node containing one of the replicas
could then be tolerated by activating one of the others.

A possible amendment to the standard generic collection architecture is shown in
figure 18. All the elements of the structure are replicated by “shadow” copies. There
is always a single primary copy to which commands are sent, but the partition also
forwards requests which alter the targeted object to all shadows. For example, a
request to add a node to a tree should be made to both the main and shadow copies,
whilst a request to traverse a link need not be forwarded. The result is that all the
shadows remain up to date.

Concurrent processing is not affected by this organisation: if an activity is
attached to the collection, replicas are generated solely at the primary components,
not on the replicas.

Suppose that the node containing the primary copy fails. The partition will
detect the failure when it attempts to resolve an element in the failed component, and
will then select a shadow to become the new primary copy. For this to make sense it

Figure 18: Generic collection with replicas

- 91 -

is essential that shadows reside on widely separated nodes to avoid a node failure
destroying the shadows too. Once a shadow has been selected, the interrupted
request may continue.

A similar argument holds for crashes involving partitions: the partition's parent
or one of its immediate children will detect the failure and activate a shadow.

There is a considerable increase in the complexity of the partitioned structure to
accommodate replication – it should be noted, however, that almost all of this
complexity is encapsulated within the partition classes. Some small changes are also
needed in the handling of requests to local data: these requests must also be
forwarded to the component's partition for forwarding to the shadows.

These are comparatively trivial changes, however: the result is a partitioned
collection containing a set of “hot” stand-by memory modules whose consistency is
maintained automatically and which are activated when necessary to replace failed
objects.

3.6. Résumé

This chapter has presented a set of techniques for implementing scalable
strongly-typed memory modules of the type required for the scalable abstract
machine. The requirements of such an implementation were first discussed, along
with some possible implementation strategies. The most practical solution was
determined to be the co-ordination of several objects to form a multiple-object entity
which behaves as a single logical resource.

An overview of the technique, called partitioning, was presented. For the three
most common memory architectures – arrayed, associative and directed – appropriate
special techniques were derived based on the partitioned view of memory. This
involved a discussion of the ways in which such memory architectures can be
decomposed, and the ways in which the internal details of the decomposition can be
masked. As part of this, a new hashing algorithm was developed which is
completely distributed and scalable, in order to implement large associative
memories.

The storage architectures provide only the most rudimentary storage facilities,
akin to the basic read/write operations of hardware memory. In a programming
environment, it is essential that higher-level interfaces are provided. The issues
involved in customising the data interfaces to partitioned memories were considered.

In terms of performance, a tension was recognised between the needs of
generality (for a programming environment) and the needs of efficiency (for
particular applications) in terms of the distribution of components of a collection.
The partitioned model allows distributions to be customised apart from the data
manipulation classes, using either manual placement or an extended automatic
approach to distribution.

Some consideration was given to the effects which failures of nodes and links
might have on a partitioned collection. In general it was argued that a partitioned
memory can tolerate failures and continue to operate in a degraded manner. An
algorithm was presented which, when failure occurs, attempts to route-around failed
parts of the structure. The loss of data implicit in node failure was recognised, but it

- 92 -

was suggested that this might be tolerated by importing some of the techniques used
in distributed fault-tolerant systems. The shadowing of components and partitions
was argued to be particularly well-suited to the model: such replication causes only
small changes overall, although it implies the use of a suitable access mechanism
such as one based around transactions.

Chapter 4.

Concurrency in Scalable Systems

Obviousnes is always the enemy of correctness.

 Bertrand Russell

In the previous chapter we developed a collection of techniques for
implementing scalable memory modules, as required by the abstract model of
chapter 2. We shall now consider the ways in which concurrency affects the
construction of applications in this fashion, and the ways in which concurrency may
be expressed.

Concurrency confronts the programmer with two issues: concurrency control
and concurrency regulation. The former deals with ensuring that processes do not
malignly affect one another's operation by simultaneous (or interleaved) accesses to
shared data, which may result in inconsistencies. The latter addresses the manner in
which the number and location of processes in an application are determined. These
issues are closely related, and are both complicated by scalability.

We shall begin by discussing the nature of concurrency in object-oriented
systems, and then go on to discuss concurrency control. We shall consider the
effects which various forms of concurrency control may have on systems constructed
using the partitioned model, and hence decide upon a suitable concurrency control
model.

We shall then discuss concurrency regulation, and consider the ways in which
scalability complicates it. It will be seen, however, that the partitioned model allows
one particular form of concurrency – multiple workers accessing a shared data set –
to be regulated very easily. Furthermore, the model may be used to create process
structures by creating scalable collections which are composed of processes.

- 94 -

4.1. Concurrency in Object-oriented Systems

We shall first consider the nature of a “process” within an object-oriented
system.

Computation in object-oriented systems occurs through sequences of method
calls. Method calls behave like traditional procedure calls: the caller blocks until the
called method completes, whereupon it resumes computation. In a distributed object
system, method calls resemble remote procedure calls[94] and the analogy still holds,
although the method call may be executed by different threads if the caller and callee
are on different processors.

A single logical locus of control, therefore, may be seen to animate several
objects in the course of a computation: when a method is called, the site of the locus
shifts from the calling method (which blocks) to the called method (which executes).
When the called method terminates, the locus shifts back to the caller to unblock it.
By all conventional definitions, this locus is a process: a single logical activity
performing computation, albeit moving between processors in the course of its
activities13.

If we assume that there exists a single locus of control when an application is
created, there is no way, in this scheme, to introduce new processes – a method call
being simply a shifting of the focus of the same thread. In order to generate
concurrency, a mechanism for creating new loci of control is required.

Some languages (such as Orca[14]) take the view that processes may be created
only by creating a new object. When created, some objects execute a method whilst
still unblocking their creator: the new method is thus a locus of control independent
of the creating thread. Whilst workable, this strategy seems a little at odds with the
ideas of object-oriented programming: rather than restrict the introduction of
concurrency to specific methods, called in an object's constructor, it would seem
more appropriate to allow concurrency to be generated by any method.

Method-level concurrency may be obtained via two routes: asynchronous calls
or asynchronous returns. In the former, certain methods are designated as being
called asynchronously: the caller does not block when the method is called, and both
methods proceed concurrently. In the latter, a method is called synchronously but is
allowed to return a value (thus unblocking its caller) without terminating its own
execution. The difference between these two approaches is shown in figure 19.

Problems arise when asynchronous methods are allowed to return values to their
caller in the manner of a conventional function call, since the returned value will be
undefined for the period before the called method returns. This may be tackled in
two ways: by using a mechanism such as futures[56][79] to control access to the
value prior to its resolution, or by disallowing asynchronous methods from returning
a value. The former is more flexible, the latter simpler. In any case, the
functionality of futures may be implemented using objects without the need for extra
syntax.

13We are speaking here of logical processes, of course. At the lowest level, calling a method on
another processor will almost certainly utilise a different physical process to the caller.

- 95 -

A process is created whenever another process makes a call to an asynchronous
or asynchronously-returning method. The new process then executes independently
of its creator.

4.2. Concurrency Control

Concurrency control – also known as ensuring sequentiality – is one of the
classic problems of computer science, dating back to some of the first high-level
languages. The problem is to eliminate the danger that two or more processes, while
accessing a single shared data structure, will interfere with each others' behaviours;
at the same time, the overheads which this protection introduces must be minimised.

Concurrency control began on the first shared-memory machines that
implemented either lightweight processes (or threads) or co-routines. In both cases,
the logically separate activities composing an application share a common address
space: lightweight processes are scheduled pre-emptively, so that a process may be
interrupted at unpredictable intervals, whilst co-routines are scheduled co-operatively
and must voluntarily yield control to another co-routine.

Co-routines avoid most problems of concurrency control, as they can ensure – at
least in the absence of interrupts or other unexpectedly pre-emptive events – that any
shared data structures are left in a consistent state whenever they yield control. The
price of this safety is that the programmer must explicitly place yield statements into
algorithms to ensure that other activities are not locked out, and must ensure that
these changes of control occur only at “safe” points.

synchronous call

asynchronous call

synchronous call with asynchronous return

caller

callee

loci of control

communication

caller

caller

callee

callee

Figure 19: Different styles of asynchronous method call

- 96 -

For threads, changes in control flow are caused by the underlying scheduler.
They may occur when a thread becomes blocked on some event, exceeds its
allocated time-slice, or when an interrupt occurs: in other words, the scheduling of
threads follows the familiar scheduling model adopted in most operating systems for
“heavyweight” processes running in separate address spaces. The use of pre-emption
frees the programmer from placing explicit yields into code, at the price of having to
ensure that shared data structures are protected from corruption if a context switch
occurs in the middle of an update operation.

The two most popular – and most studied – approaches to concurrency control
are Dijkstra's semaphores[41] and Hoare's monitors[60]. Variations on these themes
include path expressions, critical regions, protected records et alia[106]. These
methods are all pessimistic concurrency control protocols, as they attempt to prevent
interference from occurring: an alternative is the optimistic or roll-back strategy
which endeavours to repair any interference after it has happened by restoring a
consistent state. (These schemes are most commonly encountered in simulation and
database systems.)

4.2.1. Concurrency Control in Object-oriented Systems

Object-oriented systems differ somewhat from traditional shared-memory
systems in that they follow different rules of encapsulation. Concurrency control's
main effect is on the manner (if any) in which several methods may execute
simultaneously within one object.

Threading in Object Models

Objects provide an obvious unit for concurrency control: one must ensure that
the internal state of an object remains consistent. This means that there may be
sequentiality constraints between the possible methods.

Single-threaded Object Models
The simplest concurrency controller imposes the restriction that at most one

method may be invoked on a single object at any time. This ensures that at most a
single thread of control is accessing the object's state at any time: provided that
methods always leave the object's state consistent across their operation, there can be
no interference. All concurrency control is implicit, so the programmer need not
provide any additional information. This strategy is adopted by the Orca language,
amongst others: it essentially imports monitor-like semantics into the object-oriented
domain.

Although perfectly acceptable as a solution to prevent interference, problems
arise when single-threaded objects attempt to interact with each other. Suppose that
an object A calls a method on object B. Objects A and B are now locked to method
calls from other objects. If, in the course of the call, object B calls a method on
another object C, there are three objects which are locked as far as the rest of the
system is concerned – none of the objects may be unlocked whilst a method call is in

- 97 -

progress, as there is no guarantee that their internal states are consistent. What is
more, it may not be possible for object C to make a recursive call to one of its own
methods: even if this case is recognised and allowed, it will not be possible for
object C to make a mutually recursive call to objects A or B.

In a parallel system, the progressive locking of many objects during method
interchanges will inevitably cause bottlenecks. Although single-threaded objects
ensure intra-object consistency, they can be rather awkward to use when inter-object
interactions occur – which, of course, is the norm in a well-decomposed system.

Multi-threaded Object Models
By allowing several method calls to be in progress within a single object at any

time, we effectively re-introduce the “classic” problems of concurrency control
encountered in the case of shared-memory systems: in this case, the data being
shared is the local state of an object. The situation is somewhat improved, however,
in that the number of operations which may be performed on an object is strictly
defined by its interface.

Given that the constraints upon the methods are defined correctly, multi-
threading solves the problem of recursive calls mentioned above. Moreover, in many
cases the progressive locking of whole chains of objects will not occur: the fact that
an object is engaged in some operation does not preclude another operation from
executing, providing that the operations are compatible in terms of the object's
sequentiality constraints.

If multi-threaded objects are used, a means must be provided by which object
designers may specify intra-object concurrency control constraints.

Specifying Intra-object Concurrency Constraints

The simplest solution for the language designer is to force programmers to
implement their own concurrency control strategies, using semaphores or some
similar primitive. This solution is adopted in Smalltalk, where it imposes a
particularly heavy burden as the standard classes are not safe for use in a concurrent
environment. In systems where concurrency is the norm rather than the exception,
such approaches are unacceptable.

 A slightly better approach allows a distinction to be drawn between read-only
and read-write methods, where a read-only method does not alter the object's state.
Several read-only methods may progress concurrently in complete safety, but read-
write methods must execute alone. The programmer need only supply a single piece
of information – the category to which each method belongs – and the system may
implement the necessary controls automatically. This is the scheme adopted in
Emerald[63]: depending upon the language's structure, however, it may not be
possible for the compiler to check that a method designated read-only is indeed read-
only. The Emerald compiler assumes that the programmer correctly designates all
methods.

An even more flexible approach is used by the DRAGOON language[7].
DRAGOON provides syntactic structures for creating descriptions of permissible
method interactions according to a deontic logic. It is possible, for example, to

- 98 -

control the number of instances of a method which may be executing concurrently;
to force methods to execute only in a particular sequence; and to specify whether
methods may execute concurrently. From these descriptions, the compiler can
generate appropriate concurrency control protocols transparently.

An important problem with DRAGOON's concurrency controllers is that they
cannot be inherited: once a class is assigned a concurrency controller, no sub-classes
may be derived from it.

Arjuna's concurrency controllers[96] are simply objects in their own right, with
each object possessing a concurrency controller as part of its local state. Each
method, when it begins executing, registers with the concurrency controller via a
method call which only returns when the concurrency controller will allow the
method to proceed. At the end of execution, the method informs the controller that it
has terminated. The basic concurrency controllers in Arjuna are specialised towards
transaction-based distributed processing, but there is no reason why other forms of
control – optimistic or pessimistic – cannot be implemented.

4.2.2. Concurrency Control and Scalability

We must now consider the effects which the various schemes for concurrency
control would have on a scalable system, in which the amount of concurrency is very
large and unpredictable. In particular, we must consider what concurrency control
strategies are most appropriate for use within partitioned collections.

Components
Components perform all the data-access operations for collections. Although

these operations may be very complex, due to sub-classing, there are five main
primitive tasks which a component must perform and from which other operations
may be built:

a) create or delete its local storage
b) read from local storage
c) write to local storage
d) resolve a request for a (possibly remote) element onto a

component, which may be itself or some other component
e) (for some architectures) re-arrange its local elements between

other components, or amalgamate more elements into its own
storage

Task (a) occurs only when a component is created or deleted. It may be

assumed that at this point no user-generated actions may reasonably be serviced, so
the component should be locked to all actions except those directly related to the
creation or deletion operation.

The other four tasks may occur at any point during the component's lifetime.
Task (b) is a read-only operation, which may occur in parallel with other such
operations. Task (c), on the other hand, must have exclusive access to the local

- 99 -

storage – we are assuming here that locking for read-write operations occurs on a
component-wide basis.

Task (d) will occur as a necessary prelude to tasks (b) and (c), identifying which
component is to receive the local access task. Many instances is task (d) may
proceed in parallel.

Task (e) – which is not applicable to all storage architectures (for example fixed-
size arrays) – is similar in its scope to task (a): no other operation may sensibly
proceed while the component's storage is being re-assigned.

A component's primitive tasks therefore fall naturally into three categories for
concurrency control purposes:

• tasks which involve the local storage of the component – (b)

and (c);
• tasks which are concerned only with forwarding – (d); and
• tasks which affect the mapping of elements to the component

and its fundamental structure – (a) and (e)

The first category may be further sub-divided into tasks which access local
storage in read-only mode, and those which require read-write access.

Partitions
Partitions perform the creation of components and the resolution of element

requests. Like components, there are a small number of primitive tasks which they
may perform:

a) divide a set of elements into a partition tree
b) (for some architectures) re-map descendent elements, creating

or deleting components and sub-partitions
c) resolve requests for elements

Task (a) occurs whenever a partition is created – either at the collection's
creation or as a result of its growth. Until the division of elements has occurred, it is
impossible to perform resolution: therefore no resolution requests may be accepted
until the process is complete.

Task (b) – which only occurs in some architectures – is similar to task (a) in that
it involves the mutation of the structures necessary to perform resolution.

Task (c) uses the partition's internal tables to perform resolution. It is a read-
only operation, and may proceed with other resolution requests; it must be blocked
when one of the other tasks is in progress.

There are only two categories of task within partitions, then: those which affect
the integrity of the tables used for resolution, and those which simply uses these
tables.

- 100 -

Concurrency Controllers

We shall now use the foregoing analysis to derive a suitable concurrency control
regime for use in partitioned collections.

The division of components' and partitions' primitive tasks into categories
mitigates against the use of the single-threaded objects; similarly, it would be
unacceptable to use a simple read-only/read-write distinction for partitions as there
are three categories of method. Moreover, we should like if possible to avoid
embedding concurrency control information into the syntax of the language, as this
means that sub-classes cannot provide other, more sophisticated protocols if
required.

Deontic Logic Concurrency Control Objects
The auxiliary concurrency controllers of Arjuna are very attractive: they allow

concurrency control to use the full facilities of the underlying host language to
perform its task, rather than using a restricted (and possibly restrictive) sub-set. The
mechanism used, however – transactions coupled with support for highly reliable
programming – is rather unsuited to the needs of highly parallel processing. We
might suggest, therefore, that the idea of concurrency control objects be used without
using Arjuna's control policy.

We shall instead adopt the deontic logic of DRAGOON to specify constraints.
The reasons for this choice are quite simple: firstly, the constraints being expressed
within partitioned collections may be captured very succinctly using this
representation; secondly, the use of a deontic logic removes implementation details
from the specification. Since constraints are expressed as logical statements, rather
than in terms of locks, they are more easily analysable.

DRAGOON's Deontic Logic
In order to specify the sequentiality constraints required by partitioned

collections, we must first review the deontic logic developed for DRAGOON. We
shall then use this logic to provide the specification.

The logic consists of a single predicate function per. A specification is
composed of a number of clauses of the form

per op e t() ()⇔

where op is an operation and e(t) is a time-variant Boolean-valued expression. This
statement may be interpreted to mean that op has permission to execute if and only if
e is true. The logic may be easily extended to deal with multiple sets of operations
having a common constraint: if OPS is a set of operations then

per OPS op OPS per op() ()≡ ∀ ∈ •

which divides the available methods into a set of equivalence classes.

- 101 -

In order to define e three monotonically-increasing functions are maintained for
each object. These functions record the number of events which have occurred since
the controller was started:

req(OPS) – the number of requests for execution by an operation in

OPS;
act(OPS) – the number of operations from OPS which have been

given permission to start; and
fin(OPS) – the number of operations from OPS which have

terminated.

The nature of these functions requires that req OPS act OPS fin OPS() () ()≥ ≥ .
There are some functions which are so common that they are best provided as

standard:

• active(OPS) – the number of operations from OPS currently
executing, defined as act(OPS) - fin(OPS)

• requested(OPS) – the number of currently outstanding
requests for operations in OPS, defined as req(OPS) -
act(OPS)

Using these functions, it is possible to specify a number of important

concurrency control constraints. Some examples may make this clearer. Given two
sets of methods A and B:

a) at most one operation from each of A and B may be executing at any time:

per A active A
per B active B
() ()
() ()

⇔ =

⇔ =

0
0

b) any number of operations from A may execute concurrently, but at most two
operations from B may be in progress at any time:

per A true
pre B active B
()
() ()

⇔

⇔ < 2

One may define another condition which commonly occurs: where an operation

must execute exclusively. This is represented in the logic by the symbol exclusive14:
for any O1 to On of sets of operations,

per O j j n active Oi j() ()⇔∀ ≤ ≤ • =1 0

14In DRAGOON this property is represented by ><, but the use of the word exclusive seems clearer.

- 102 -

i.e. for the exclusive operation to begin, no other operation may be in progress; no
other operation may start whilst an exclusive operation is active.

We may now use this logic to specify the constraints encountered in partitioned
collections.

A Logical Specification of Component and Partition Constraints
Consider first the categories of operation encountered in component objects. We

shall represent these operations by the following sets:

• sets LSro and LSrw of operations manipulating local storage in
read-only and read-write modes respectively;

• set F of operations performing resolution and forwarding; and
• set ST which are concerned with the fundamental structure of

the component object, its creation and deletion.

For a particular component, we may give the constraints on these categories as
follows:

per LS active LS active ST
per LS active LS active LS active ST
per F active ST
per ST exclusive

ro rw

rw rw ro

() () ()
() () () ()
() ()
()

⇔ = =

⇔ = = =

⇔ =

⇔

0
0

0

For a partition object, there need only be two categories of method:

• set R of operations performing resolution; and
• set RA of operations performing (re-)arrangement of elements.

The constraints of these categories are as follows:

per R active RA
per RA exclusive
() ()
()

⇔ =

⇔

0

It should be noted that these constraints are free from the possibility of deadlock

within a single object. Since permissions apply only to operation's activating, not to
their termination, an operation cannot become blocked waiting to finish. Moreover
the constraints on start-up have no cycles, so an operation cannot become blocked in
a cycle awaiting another operation to start. Therefore, providing that every operation
in every set is guaranteed to terminate, deadlock cannot occur.

Since objects and partitions interact, it is also necessary to eliminate the
possibility of deadlocks between cycles of objects. This is simple: there is no
interaction whatsoever, in terms of concurrency control, between methods in
components and in partitions, so deadlock cannot occur between objects. The same
is true of operations which pass between partition objects during resolution.

- 103 -

Overview of the Implementation of Concurrency Control
Within the partitioned model, concurrency control is implemented using Arjuna-

style auxiliary objects. Any object may create a concurrency controller and use it to
ensure synchronisation between its methods.

The concurrency control class implements an interpreter for the deontic logic
given above. This allows synchronisation constraints to be expressed directly in the
logic, with little or no translation.

Every method in an object having a concurrency controller may be classified
into a particular concurrency control class, such as LSro in components. When
called, the method interacts with the concurrency control object to determine whether
it may execute. This is a blocking interaction: the method is only unlocked when the
controller, after solving the deontic equations, determines the method may be safely
started.

Each method also registers its completion with the concurrency controller, which
may unblock other methods which are waiting permission to start.

The Implications of Sub-classing

An important facet of the partitioned object model, when used as the basis for a
programming environment, is its ability to create novel memory architectures by sub-
classing existing collections. Before leaving the topic of concurrency control, we
must therefore consider the effects which sub-classing has upon concurrency control.

In creating a sub-class, the programmer may add new state, add new operations,
and re-define the meanings of existing operations. This introduces a problem with
concurrency control, as any new operations may affect the concurrency control
constraints of the existing operations. In DRAGOON, this problem is tackled by
outlawing the sub-classing of classes which have a concurrency controller attached
(the so-called behavioured classes). The effect of this is to completely separate
functionality from concurrency control: a class' functionality is first written –
possibly by sub-classing an existing class – and a concurrency controller is then
written for it.

By placing concurrency control into an instance variable – as in Arjuna, and the
current system – this problem is side-stepped. A sub-class will have a concurrency
controller created for it by its parent. It may then either use this controller “as-is” or
may delete it and substitute another which better fits its needs. The only constraint is
that all the sets of operations provided by the original controller are provided in the
new controller: presumably the new controller will also maintain the semantics of
the original object, but may extend them as required. Care must be taken if multiple
inheritance is used, as a new controller must them mimic the behaviours of all parent
classes – a task which may be impossible if the parents have conflicting
requirements.

Another important facet of the partitioned model is the decoupling of user-
defined functionality from the basic functions which manage the components'
internal storage structures. It is possible in many circumstances that a sub-classed
collection will provide new operations built from the primitive functions: but if the
sub-class provides no new state, it will require no additional concurrency control

- 104 -

since it utilises the functions which are provided in the basic architectures, and these
are fully protected.

4.3. Concurrency Regulation

Concurrency regulation is a problem addressed must less frequently than
concurrency control. The reason for this is simply that it is a more recent problem:
it is only with the rise of highly parallel systems that concurrency regulation has
become a major problem.

 4.3.1. Approaches to Concurrency Regulation

The most common approaches to concurrency regulation are tightly integrated
with the common programming practices for parallel systems. A program is
typically written to solve a particular problem as quickly as possible, using a
particular target machine. The program will be given complete control of the
machine, possibly with a rudimentary operating system harness. The configuration
of the machine – the number of processors, their topology and local memory sizes –
are known in advance.

Concurrency regulation in these cases involves creating the optimal number and
distribution of processes on the target machine: usually one process per processor,
with processes distributed so as to minimise communication delays. Since the
application has sole use of the machine, it may place processes according to its own
best interests.

The allocation of processes to processors is known as configuration. It usually
occurs after the application has been compiled but prior to link-time.

The PLACED PAR construct of Occam is probably the most basic configuration
system. It allows the elements of a PAR statement to be placed on a particular
processor. Occam channels may then be mapped onto particular Transputer links. In
principle, processes may be placed on whatever processor is most suitable: in
practice (with current Occam implementations on current Transputers) configuration
is complicated by the fact that only a single channel may be mapped onto any one
link, so programmers must manually multiplex the use of links. This makes
configuration a very difficult task.

A further problem with this form of configuration is that it is not really separate
from the code of the application. A PLACED PAR may only place a PAR which has
already been written and is known to the application: it may not be used to control
the replication of processes (for example) independently of the text of the
application, which must explicitly create all processes. Therefore configuration and
design are tightly coupled, one affecting the other15.

A better solution is to adopt a “building block” approach in which a set of “black
box” processes are connected to form an application. The processes themselves

15There is a “replicated PLACED PAR” construct in Occam, but there are restrictions on it to force
the amount of replication always to be constant and defined at compile-time. In general it is not
possible to create processes “on the fly” in Occam.

- 105 -

present an abstract interface – a set of input and a set of output channels, for example
– and the channels are connected by the configuration language. One great
advantage is that it allows a library of useful processes to be created and included
into any suitable applications. Constructing a new application involves constructing
new “black boxes” for processes which are not in the library, and then linking them
together to form a network. The use of configuration languages still leads to largely
static configurations of processes, although the processes' locations may be
dynamically determined.

The Helios shell uses this form of configuration. As mentioned in chapter 1,
Helios is a Unix look-alike running on Transputer systems. Each command – ls,
grep, and the rest of the Unix tools – is treated as a process having (usually) one
input and one output channel, corresponding to the stdin and stdout file streams. A
shell command of the form

cat file.txt | grep "Helios" | less

is configured so that (if possible) each element of the pipe executes on a different,
though neighbouring, processor. This allows the pipeline to execute in true
concurrency. There is also an external configuration language, CDL, allows more
complex (though static) networks of processes to be created.

In a more sophisticated form, this style of configuration is also adopted by the
Darwin configuration language (§1.3.4).

4.3.2. Regulating Concurrency in a Scalable Environment

Configuration suffers from a crippling handicap for the current purposes: an
application is always configured prior to run-time, and so is in a static configuration
when it is actually run on the machine. In a scalable system, this presents two
problems.

Firstly, the number, topology and size of processors may be unknown prior to
run-time. A scalable application must be written in such a way that it may take
advantage of whatever resources are available, without intervention, re-compilation
or re-configuration. This means that decisions on how processes are mapped to
processors must be deferred until the program begins execution. In systems where
similar processes are replicated to obtain parallelism – process farms and multiple-
worker systems being the most common – it is impossible a priori to determine the
optimal number of processes to create.

Secondly, the assumption that an application has sole use of the machine is
breached when multi-user systems are introduced. On start-up an applications is
competing for resources with all other applications in the system. This makes the
selection of an “optimal” process distribution impossible ahead of time.

A tightly-coupled configuration system forces all decisions on distribution and
replication to be taken when the code of the application is written; configuration
languages allow them to be deferred until just prior to run-time. For a scalable
system, we require that the decisions are taken during the program's execution, for
greatest flexibility.

- 106 -

4.3.3. Concurrency Regulation in the Partitioned Model

In §2.4 it was observed that concurrency paradigms may be divided into two
categories: data-based and stream-based. It was further noted that scalable memory
allows data-based algorithms to be constructed and regulated automatically, as the
size of a memory may be used to determine the amount of concurrency used to
process it. We shall now expand on these ideas, and consider the ways in which the
regulation of concurrency interacts with the creation and management of scalable
memories.

Multiple-worker Concurrency

The use of scalable memory suggests the use of concurrency structures which
are based around access to a large shared memory. Such access might occur in two
ways:

• by a number of functionally specialised processes accessing a

memory; or
• by a number of replicas of the same process accessing

memory, each performing the same function on different
elements.

In some senses the second case is subsumed by the first: a single logical process

might be composed of a number of replicas, so several functionally distinct process
groups might access a single memory concurrently.

The use of replicated processes in this way is often called the multiple worker
paradigm. Each process is a “worker” performing part of a larger task. Each worker
is assigned a part of the data to be processed, with workers taking disjoint data sets
which together cover the complete data set. The workers are run concurrently, with
the activity finishing when all its workers have finished processing their part of the
data set.

In order for this paradigm to function correctly, there must be some means of
determining how many worker processes to use, and of dividing up the data between
them. There are hence two complementary aims: assisting the programmer in
constructing suitable processes (which may process correctly data sets whose exact
bounds are unknown) and allowing the system to replicate and locate them correctly.

Activities and Attachment

The general form of a scalable memory (or partitioned collection) was shown in
figure 7. The collection is by its very nature divided into a number of smaller parts –
the components – and such sub-division is exactly what is required for multiple
worker concurrency. If an activity is assigned to process each component, then
together the activities will process the entire collection. Moreover, they will access
data through the distribution-transparent interface of the component: this means that

- 107 -

they may access any data item within the collection regardless of its location if
required to perform their task.

Specifying Activities
Concurrency in object-oriented systems occurs at the granularity of the method

call (§4.1). This level is, however, wholly unsuitable for constructing parallel
applications, being to parallel programs what the goto statement is to sequential
programs: powerful, but completely unstructured. Just as “structured programming”
evolved to meet the demands of large-scale sequential systems, it is essential to
provide support for the introduction of parallelism in a controlled way.

Although it would in principle be possible to use any object as a worker in a
multiple worker system, a better solution is to provide some support, in the form of a
suitable protocol, for the construction of worker processes. Such worker objects may
be sub-classed to provide the necessary specific functionality while still being
guaranteed to provide the functions needed by the system. We shall term this
category of objects activities.

An activity has four important attributes, providing

• a method of replication;
• a way of “attaching” it to a component;
• a way of obtaining the elements which it is to process; and
• a means of supplying task-specific functions in a manner well-

integrated with the preceding two points.

The replication method is used to create as many replicas of the process as
required. Attachment involves informing each replicated activity exactly which
component of a partitioned collection it is to process (with which it will be closely
co-located). Once attached, the activity must be able to obtain the elements assigned
to it – the locally-held elements of the component – either by knowing their names or
by iteration. Finally, there must be a well-defined method for adding the task-
specific functions required.

Attaching Activities
From the programmer's view, attaching activities to a memory is a simple task:

the operation may be encapsulated into a method call. An application can call the
method, supplying the activity to be run as a parameter. This activity is then
replicated near each component of the collection, with each replica being attached to
its assigned component. They may then execute concurrently: the method which
initiates this activity may wish to await the termination of all the activities, or may
continue without waiting.

Internally, attachment involves traversing the partition tree. At each leaf
(component) of the tree, a copy of the supplied activity should be created. This
process is shown in figure 20.

- 108 -

The attaching algorithm is simply a traverse of the partition tree. One might
write this algorithm as a parallel process: in practice, except for extremely large
collections, the sequential version of the algorithm is sufficient. The only constraint
on the algorithm is that replicas of activities should be created as close as possible to
the component to which they are to be attached: this minimises communication
delays, and may be performed transparently of the programmer according to the
distribution of the collection.

Processing-Memory Interactions

On the surface, the interaction between activities and memory is simple:
activities are attached according to the distribution of the partitioned memory, and
run on the processors over which the collection is distributed. There is a more subtle
issues however, in deciding the optimum granularity for dividing the collection,

The division of a collection into components, by whatever manner, serves two
purposes: it distributes the data of the collection, allowing elements to reside on
different processors; and via this distribution it provides a mechanism by which
concurrency may be regulated. The distribution of concurrent activity, and the
granularity at which it occurs, follows the distribution of data elements.

This scheme has a lot to recommend it. When considering large sets of data
being processed in parallel, the size of the data set is often a good measure of the
complexity of the problem. If such a data set is represented as a single partitioned
collection, then the size of the collection – in terms of the number of components – is
controlled by the size of the original data set: the larger the data set, the more
components the collection will have, and the more processing nodes it will use.
Similarly, the more components a collection has, the more activities will be created
when an activity is assigned to the collection, so a larger data set will generate more

P

Q

P Q

Q Q Q

q = new Q(); c -> AttachAndAwait(q);

Figure 20: Attaching activities to a collection

- 109 -

concurrent activity. Hence the size of the problem is the single factor controlling
distribution and parallelism in a scalable application.

However, determining the size of individual components may be a difficult task.
By way of illustration, consider two problems of identical size, each composed of a
number of integers, and each consisting of a function applied to each integer in the
collection. The function is encapsulated into an activity. The first problem's
function is a simple factorial calculation; the second is a more complex cellular
automaton which must access neighbouring values in order to compute its result.

In the first case, the activity will access only local data elements, so the more
components there are in the collection the more activities will run concurrently, and
the faster it will execute. In the second case, however, activities must access other,
potentially remote, elements, and this introduces remote requests when elements at
the “edge” of a component are processed. Although increasing the number of
components will increase the amount of parallelism, the reduced component size will
mean that proportionally more requests will be remote due to edge effects.
Concurrency control is performed en bloc over a component, so a large component
introduces more synchronisation. There is therefore a complex balance to be struck
between two factors.

In both cases, we have ignored the set-up times for both the collection and the
activities. Larger collections will take longer to create than smaller ones; larger
numbers of activities will similarly take more time to create than smaller numbers.
Here is another trade-off16.

Ideally these trade-offs would be resolved automatically: in practice, this
involves automatically determining the computational weight of a given piece of
code, which is equivalent to the halting problem; moreover, the piece of code to be
executed may not be known at compile-time.

There is a partial solution to hand, however. The model of scalable memory
does not mandate any particular distribution grain size, whilst the concurrency
regulation scheme can handle any grain size. If some means exists to specify the
grain size at run-time, without re-compiling or in any other way altering the
compiled application, the performance of the application – as determined by the
granularity of distribution – may be optimised on an exploratory basis.

The grain size may be treated as a property of a scalable memory, retrieved from
the property database mentioned in chapter 3: grain size is simply another property,
like the degree of the partition tree or the enabling of caching.

Other Concurrent Forms

We mentioned in chapter 2 that, whilst the multiple worker form of concurrency
seemed best suited to scalable processing, there were several problem domains for
which the model seems inappropriate. We shall now consider two of these forms –
pipelines and process farms – and how they relate to scalable memory.

16It should be noted in passing that most authors ignore set-up time when presenting results of
experiments in parallel computing, which are always assumed to be small compared to the
computation time and is all incurred before any “real” processing occurs. In scalable system this is
not the case, as the distribution of processes and data may change dynamically.

- 110 -

Pipelines
Pipelines, as shown in figure 3, are formed when a number of functional units

are connected by channels, down which they pass data. Each stage of the pipeline
accepts values from its predecessor, transforms them in some way, and passes them
to its successor. Stages of the pipeline may be replicated to improve throughput.
Since each stage of a pipeline is functionally different, there is not necessarily a
correlation between the number of stages in a pipeline and the amount of data to be
processed.

However, memory is used in two places: as the source of data into the pipeline
and as a sink for the values produced. The first stage of the pipeline is responsible
for removing data from the source and feeding them into the pipeline; the last stage
performs the opposite function. Of course, stages in the pipeline may have local
storage, and may interact with other memory modules like any other object.

In many cases, it may be possible to replicate the pipeline. If the first stage is an
activity, it may be attached to the source and replicated; it may then create the rest of
the stages of the pipeline. The final stage should be passed a handle to the sink
collection, in which the final data is to be stored.

Handling replication within a stage is a problem which cannot directly be
tackled by the partitioned model, although it is possible to express this construction
quite simply.

Farms
A process farm is a variation on the multiple worker idea with an important

difference. In a multiple worker system, the work which each worker is to perform is
assigned initially; for a farm, each member requests an new piece of work whenever
it is free, until no more elements of work exist.

It is simple to implement a process farm using the partitioned model: one may
in fact use the same attachment and regulation mechanism as with the multiple
worker paradigm. Rather than each process computing with the elements of its
component, however, a slight variation is required: the workers must iterate through
the collection as a whole.

Each worker could begin processing the local elements. If these elements are
exhausted, however, the worker should attempt to obtain another, remote element for
processing. This implies that the work which in a multiple-worker system would be
assigned to one process is in the farm performed by another process which would
otherwise be idle.

Implementing a process farm requires that there is some means of determining
those elements of a collection which have been processed. This could be provided
by simply tagging each element, and marking its tag when some process deals with
it. A request protocol is then required which will locate some unprocessed element:
in the beginning, these elements should come from the component receiving the
request, and will only access remote components when the local pool of work is
exhausted. When stated like this, it is evident that process farms may be
implemented within the partitioned model by sub-classing the existing storage
structures.

- 111 -

Processes Within Collections
There is another possibility for creating process structures: placing the objects

which compose the structure into a scalable memory, and using the memory's
operations to co-ordinate the processes' actions.

This is a radical departure from the concurrency structures considered so far.
Rather than memory being a repository for data to be used by processes, it becomes a
repository for the processes themselves: processes become special forms of data to
be stored in memory. It is hardly a surprising suggestion – the Von Neumann model
keeps code, data and process tables in memory (separated to a greater or lesser
extent) – and is closely akin to the notion of an “active tuple” in Linda systems.
However, the partitioned model offers considerable benefits of this form of process
structuring is adopted.

Firstly, all the benefits of the model – distribution transparency, type safety,
high-level interfaces, customisable distributions et alia – may be used to control
process structures. This means, for example, that an array of processes – a cellular
automaton – may be built in which the processes communicate using the array
protocol: by position instead of by process name. Another example is processes
placed into an associative store, from which they may be retrieved by a complex
name: this might be used as a “yellow pages” name server. A third possibility is the
emulation of CSP's channels by using a directed storage architecture with processes
as the nodes.

In principle, this form of structuring is very attractive. It restores the full
equality of activities as data elements whilst allowing them to be manipulated in
large abstract collections in the same framework as other objects. The extent to
which this would affect programming practice is still a matter for investigation. We
shall return to consider it further in chapter 7.

4.4. Résumé

In this chapter we considered two facets of concurrency within scalable systems:
concurrency control and concurrency regulation. We examined the ways in which
they interact with each other and with scalable memory, and have developed
strategies for dealing with them.

Some examples of concurrency control in object-oriented systems were
summarised and compared. From them, a system was synthesised which allowed
flexible concurrency control protocols to be constructed in a logical manner. The
sorts of concurrency encountered in components and partitions was discussed, and
from them a small number of primitive sets of operations was derived. These sets
constitute the only operations which access the internal structures of the partitioned
collections. Constraints required to ensure that they execute correctly in a parallel
environment were then derived.

The problem of regulating concurrency in a scalable system was considered. A
common paradigm for concurrency regulation – the multiple worker paradigm – was
examined in detail, and the ways in which the number of workers could be regulated
automatically using scalable memory were presented. This illuminated some trade-

- 112 -

offs between distribution and parallelism in this form of system. Other process
structures were considered more briefly, showing that the partitioned model can
support a range of parallel architectures within its framework.

Chapter 5.

Phœnix: a Prototype Environment

“Well, can I walk beside you?
I have come here to lose the smog,
And I feel just like a cog in something turnin'.
Well maybe it's the time or year,
Or maybe it's the time of man,
And I don't know who I am, but life's for learnin'.”

 Joni Mitchell, Woodstock

Programming is a human activity. In advocating any new or improved
programming method or tool, one must evaluate how the new item relates to
programming as practised by programmers, and not simply evaluate the system's
purely technical merits.

An evaluation of the partitioned object model may be conducted from its
theoretical description, but in order to assess its true usefulness some practical
experience is also necessary. For this reason a prototype programming environment,
based on the partitioned model, has been constructed. The prototype – called Phœnix
after the legendary keeper of Wisdom – is not intended as a production-quality piece
of software, nor as a practical programming platform. Its goal is to provide a means
of exploring two questions:

• to what extent is it possible to practically hide the problems of

distribution and concurrency within a scalable environment?
and

• in what manner can this abstraction be used to encourage the
design and re-use of designs and implementations?

- 114 -

These are problems which cannot adequately be tackled without an

implementation, however primitive.

5.1. The Structure of Phœnix

As with any large piece of software, Phœnix is not monolithic: rather, it is
composed of a set of sub-libraries, or “kits,” each of which control one aspect of the
toolkit's operation. The layered structure of the Phœnix kits is shown in figure 21.

Phœnix is composed of four layers: environment, virtual machine, partitioned
environment and extensions. Each layer provides a new abstract machine for the
layers above, in the manner described in chapter 2.

The environment layer includes the hardware and operating system platform on
which Phœnix is executing, together with the host programming language used to
create Phœnix applications.

The virtual machine layer provides the abstraction of a virtual object space. The
OS kit presents a high-level interface to the process control and message transport
functions of the operating system, while the RPC kit is used to implement remote
procedure call[18][94] outside the host compiler. The Storage kit manages memory
in a typeless manner; the Lock kit implements concurrency controllers of various
varieties.

Activity kit

Collection kit

RPC kit

OS kit

Programming language (C++)

Operating system (Wisdom)

Physical hardware (Transputer array)

Virtual machine

Partitioned environment
Basic kit

Applications

Storage kit

Environment

Extension kit
Extensions

Lock kit

Figure 21: The Structure of Phœnix

- 115 -

The partitioned environment layer provides the abstraction of scalable memory
modules having various storage architectures. The Basic kit contains classes of
general use, and those classes which are used internally by partitioned collections;
the collection kit contains the basic components and distribution managers for the
supplied storage architectures; the Activity kit contains the support necessary to
provide scalable processing capabilities using multiple worker tasks.

The extension layer contains a small number of partitioned collections which are
considered to be particularly useful: an array of real numbers, a dictionary and a
binary tree. These are built on top of the partitioned environment classes using sub-
classing. This layer allows applications (or additional layers) to work with strongly-
typed scalable memories.

Each layer of Phœnix thus provides an essentially new memory abstraction to
the layers above: from distributed memory to object-oriented memory to scalable
memory to typed and extensible scalable memory. There are also changes in
abstraction with regard to concurrency, beginning with manual concurrency control
and regulation and finishing with an object-oriented per-method concurrency control
system coupled with automatic concurrency regulation based around typed scalable
memory.

5.2. The Host Language and Environment

We shall begin by describing the host language and environment used by the
Phœnix prototype.

5.2.1. Design Issues

In designing a suitable prototyping platform, two main decisions must be made:
on what hardware is the system to be implemented, and in what language.

The partitioned model is targeted at scalable, highly parallel, tightly-coupled
multicomputer systems. Most of the currently-available technology in this area is
based around the Inmos Transputer which, although deficient in many respects,
makes an adequate testbed for experiments with scalable systems. A small network
of Transputers was made available for experiments. On top of this system was
running the Wisdom scalable operating system nucleus (§1.2.2 and Appendix B).

One effect of using Wisdom was that it provides a load balancing module, which
may be modified to work on a per-task basis. The module follows the “ink blot”
style, and thus respects the assumptions of the partitioned model with regard to
object locations (§3.2.5).

The choice of a host language was restricted to those object-oriented languages
which were readily available to run on a Wisdom system, for speed of
implementation. Although it might have been preferable to implement a new
language from scratch, it was felt that a prototype implementation in an existing
language was more suitable for the project.

- 116 -

The language selected was C++, running a translator which converted C++ into
C. This has the advantage of portability, as the C++ translator is available for use on
any target system which supports a C compiler.

5.2.2. The Phœnix Pre-processor

Pure C++, however, does not support certain features which are essential for
Phœnix: it lacks support for the implementation of a virtual object space and for the
introduction of parallelism.

For this reason, another pre-processor was implemented to translate a minimally
enhanced dialect of C++ into the pure language suitable for the C++ translator. This
lead to the five-stage-pipeline compiler architecture shown in figure 22.

The pre-processor follows the style of the standard C pre-processor, translating
“directives” dealing with the creation of objects in a distributed environment, their
interaction and concurrency, into C++.

Introducing Distribution

To build a distributed object-oriented system is to abstract away from the
physical location of objects and instead to allow any pair of objects to interact
regardless of their relative locations. This is achieved by creating a virtual object
space in which the name of an object is sufficient to identify it uniquely within the
system. Using this name, together with an appropriate support structure, objects may
interact via method calls even when they reside on different processors.

Implementing a virtual object space within C++ is a difficult task. The problem
centres around a design decision, taken deep within the C++ language, that an object

C pre-processor Phoenix pre-processor
C++ translator

C compiler

Loader
Executable

source file

start-up code

implementation of class

RPC stubs and dispatching

Figure 22: The compilation process

- 117 -

name is a pointer to an area of memory. So deeply is this assumption buried that it is
impossible to change objects names to be some other, more complex structure
without fatally damaging the language's semantics. It is, for example, perfectly legal
– though not encouraged – in C++ to perform C-style pointer arithmetic on object
names17.

Two possible solutions suggest themselves. The first is to keep object names as
pointers into some intermediate object table, such as is found in most Smalltalk
systems. In this table could be kept the information necessary to identify the object
being referenced. The other possibility is to introduce some new object naming
system outside the syntax of C++, and convert it into “pure” C++ using a pre-
processor.

The first solution, while attractive, leads to a rather problematic implementation
due to the way in which classes are represented. The second solution, however, is
easy to implement. The pre-processor converts a slightly embellished dialect of C++
into the “pure” language, with the embellishments supplying enough information to
generate the necessary remote method invocation code. The disadvantage is that a
program is no longer strictly speaking a C++ program, and must be transformed by
another compiler pass.

This solution was adopted for Phœnix. Object names are represented by the
abstract “handle” type, which may be stored in variables, compared and passed as
parameters without restriction.

Method calls are made using statements interpreted by the pre-processor. A call
takes the form

#Call(class, res = handle -> method (p1, p2, ...))

which is expanded into “pure” C++ by the pre-processor.

Introducing Concurrency

The model of concurrency favoured for the partitioned model was presented in
chapter 4: methods in a class may be defined as being called asynchronously,
whereupon the caller does not block and does not expect a value to be returned.

C++ provides no mechanism for introducing new class syntax: it is not possible
to embellish the properties of methods. Therefore there is no way, within the
language, to specify that a method is to be executed asynchronously. (This is one
reason which many concurrent C++ implementations adopt a model of concurrency
based around objects having special properties.)

The choice of a pre-processor, as described above, now comes to our aid. By
adding suitable pre-processor constructs, we may maintain sufficient information
about a class' definition to specify that some of its methods be executed
asynchronously. This information may be used by the method call statement to
create the correct calling code transparently The programmer may call any method

17If C++ is implemented on a machine with a segmented architecture, pointer arithmetic fails anyway
when a segment boundary is crossed. This makes the choice of object names as pointers, de rigueur,
even more questionable.

- 118 -

using the #Call directive, whereupon the pre-processor will automatically
determine whether the method is asynchronous or not and generate the correct code.
The same declarations may also be used to generate RPC stubs.

To obtain the information about a class' methods, the simplest solution is to
provide a “parallel” definition for each class specifying the type signature and calling
convention of each method18.

Restrictions

It should be apparent that, in terms of language design, the Phœnix C++
compiler leaves much to be desired. No apologies are made for this: the host
language is purely a vehicle for experiment, and such needs only be as finished as
necessary for the desired experimentation. However, it is worth pointing out exactly
which features of the host language would require work in a “real” system.

The first point is the use of a pre-processor to expand method calls. The
statements used are completely outside the scope of C++, and do not integrate well
with it. Furthermore they are outside C++'s type system, and so cannot be
guaranteed by the compiler to be type-correct: in particular, the “handle” type used
to name objects does not preserve their type, so the programmer must ensure that all
operations are applied to objects of suitable type. Since “type-correct” is almost a
synonym for “sensible[69],” the programmer must take on through discipline much
of what, in a real language, would be enforced by the type system.

A related problem is the use of parallel class descriptions which the programmer
must ensure are consistent. In practice, inconsistencies are caught by the compiler –
though not in the place which might be expected. This consistency checking is an
additional burden which, again, would be carried out by the compiler in a real
language.

The use of the pre-processor adds another pass to the compilation process. In
expanding definitions into “raw” C++, it also increases the amount of compilation
and (more importantly) linking required to create an application. This leads to
significantly increased compile-edit-debug cycles.

5.3. The Virtual Machine Layer

The purpose of the virtual machine layer is to act as an interface between the
host language and the higher-level components of Phœnix. It provides four services:

• process creation;
• remote method calls;
• concurrency control; and
• local storage management

18It would be more attractive to parse the existing C++ class definitions to obtain this information.
However, due to yet another “feature” of C++, parsing class definitions potentially requires a program
to be able to parse the entire C++ language rather than only a restricted sub-set. For simplicity of
implementation, and for no other reason, parallel definitions are to be preferred.

- 119 -

These services are all intimately related to the operating system being used at the

environment layer: their encapsulation means that the operating system may be
changed with minimal impact on the rest of the Phœnix system.

5.3.1. Design Issues

Many of the features of the virtual machine layer are mandated by the object
model chosen for Phœnix. Other features are constrained by the capabilities of the
operating system and host language used.

The chief design decision concerns the way in which objects themselves are
represented. This decision was taken in the host language: each class is represented
by a stand-alone executable file which manages all objects of that class on a single
node. Class servers are created and located as required.

The host itself, however, does not implement facilities such as links to the
operating system or object interactions itself: rather, it generates calls to the objects
which are defined in the virtual machine layer to perform these tasks. The layer may
thus be regarded as the Phœnix “run-time library.”

The basic structure of a Phœnix application is a set of stand-alone class servers.
Each server manages objects of a single class, providing the interface between
objects and the other objects in the virtual object space. The actual interactions are
performed by the virtual machine layer.

5.3.2. Implementation Overview

We shall give only a brief overview of the implementation of the virtual
machine layer, before moving on to the implementation of the more novel parts of
the Phœnix toolkit.

Managing the Virtual Object Space

The primary function of the layer is to manage a virtual object space containing
all the objects composing the applications in the system. The space must allow
objects to be named and to interact regardless of their relative locations.

The Guardian
The basic object of a class server is an instance of the Guardian class. Every

class server has exactly one Guardian, which acts as a gateway to the virtual object
space.

Guardians perform several functions: they

• implement the start-up and close-down code needed by class
servers;

• manage several pools of frequently-used resources; and
• provide a remote procedure call service (see later);
• co-operate to ensure that class servers are created as needed;

- 120 -

• shield the rest of Phœnix from the details of message transfer,
process creation and other low-level operating system tasks.

When a class server is first created, the Guardian executes the start-up code

necessary for the correct working of Phœnix. This includes registering the new
server in the system's name space (along with its location), and the creation of the
resource pools.

Two pools are managed by Guardians: a pool of RPC packets and a pool of
processes. The former are used whenever a method is called on another object, or a
reply to a method call is sent from an object managed by the Guardian; the latter are
used to service incoming method calls. The sizes of both pools may be controlled at
run-time.

The remote procedure call service is used internally by Phœnix when making
method calls on remote objects. It is dealt with fully in the next section.

Phœnix takes steps to ensure that only a single class server for a particular class
is running on any one node – although in general there will be several class servers
for a class in the system, each running on a different node. The Guardian provides a
set of functions which allow the RPC service to determine whether, when creating an
object on a new node, it is necessary also to create a class server. Each class server
registers its name and location in the system name space, along with a capability
down which it may be accessed.

In general the programmer never interacts with the Guardian, as the Phœnix pre-
processor and support classes provide higher-level abstractions. For example, the
process-creation functions are perceived as asynchronous method calls.

When started, the Guardian begins to run an event loop monitoring the
capability which it registered with the namer. All requests for service – remote
method calls, the creation and deletion of objects – occur on this capability. The
event loop is very simple: when a request is received on the capability it acquires a
server process from the process pool and assigns it to process the request; it then
awaits the next request. Although the capability forms a single point of
communication (and hence is a potential bottleneck), the simple nature of the event
loop minimises the chances of serious delays at this point.

A server process, when assigned a request, performs all the actions required by
that request and then returns itself to the pool. Typically a request will animate a
method call in an object managed by the Guardian.

Remote Method Call
Phœnix objects interact using method calls, which are dispatched across the

network by the underlying virtual object space management system. Methods are
implemented using remote procedure call[18][94] (RPC).

Objects make calls to other objects using the pre-processor #Call directive.
These are expanded to:

• obtain an RPC request packet;
• add the necessary routing information;
• marshal all the parameters to the call;

- 121 -

• for synchronously-called methods, create a capability down
which the return value will be sent;

• interact with the Guardian to send the request;
• for synchronously-called methods, wait until the result of the

method is received;
• tidy up, returning the packet to the Guardian's pool.

A single method call is an exchange of datagrams. The Guardian is responsible
to sending the request packet to the correct site, but this packet contains a capability
to which the method's return value will be sent. This means that the caller's Guardian
is not involved in the reply: the receiver transmits the reply directly to the calling
process.

A method call is assigned a server process when it is accepted by the Guardian
which is managing the target object. This process identifies the object which should
receive the method, unpacks the parameters and makes the method call. The process
will execute until the called method terminates, and will be responsible for returning
any return values to the caller. For asynchronous methods, no such values are
returned: the difference between a synchronous and an asynchronous method call is
all at the caller's end of the RPC system, not at the receiver's.

A variation on the simple RPC request involves the creation and deletion of
objects. The former is simply a call to one of the class constructors, and may be
treated like a synchronous method call whose return value is the handle to the newly-
created object; object destruction is a synchronous call with no parameters and no
return value.

Although all method calls are logically remote, a simple optimisation occurs if
the targeted object is on the same node as the caller. The Guardian performs a
“short-circuit” to avoid invoking the kernel to pass messages, simply calling the
necessary routines in the target object's Guardian directly. (This particular short-cut
only works because, on the Transputer, all tasks share a common address space. In a
processor with virtual address spaces, this direct-call strategy would be impossible.)

Object Naming
An issue not yet touched upon is the manner in which objects are named.
Virtual object space names are perforce more complicated that those for simple

shared-memory systems. An object's name must uniquely identify it, and must also
allow method calls to be routed to it from any part of the system.

The solution adopted for Phœnix is that, in the absence of object migration, the
Guardian managing an object is fixed at its creation: therefore a name which
identifies the Guardian and also the object within that Guardian's management
domain will serve to identify all objects uniquely. A Phœnix object name – also
called a handle – is composed of the capability which the Guardian registers with the
system namer and the address of the object within the Guardian's address space.

This scheme has the advantage that an object name contains all the information
needed to route messages to the object directly, since all RPC traffic occurs through
the Guardian's capability; furthermore, it contains all the information which the
Guardian needs internally.

- 122 -

The major disadvantages of the scheme are that it makes object migration
difficult (though not impossible, if a scheme similar to Emerald's forwarding
addresses is used), and it makes object names rather large since capabilities are
usually quite large objects (in Wisdom, a capability is around forty bytes).

Concurrency Control

Concurrency control is the province of the Lock kit, which provides a set of
classes implementing the concurrency control model described in §4.1. A lock is an
object which embodies a concurrency control policy. The functions which the lock
exports are then used by objects to ensure that method calls are “safe” according to
that policy.

Phœnix defines locks in the abstract as instances of the Lock class. This class
exports a simple interface: methods call the lock whenever they wish to execute, and
this call only returns when the lock determines that the execution is safe. Methods
also call the lock when they complete execution, so as to allow other methods to run.

A particular sub-class of the general Lock is the DLock, which implements an
evaluator for the deontic logic presented in §4.2.2. Sub-classes of DLock may then
use the logic to define their concurrency control policies. The important special
cases of single writer/multiple reader and the lock used in the partitioned collections
themselves are pre-defined, and may be re-used by any class in Phœnix.

Low-level Storage Management

Although the partitioned model provides a model of memory as seen by
applications, another system is needed to manage memory at the most primitive
level.

Phœnix provides two classes for dealing with storage in this manner. Both
manage storage as collections of fixed-sized, untyped values: one implements a
vector of elements accessed using an index, whilst the other implements a variable-
length list of elements. Both are sub-types of the Storage class.

The memory management classes all manage memory in untyped units called
StorageElements. A StorageElement may be placed into a storage class
and later retrieved. The size of each StorageElement is fixed at its creation,
although different StorageElements may have different sizes. They export a
completely untyped interface.

Phœnix manages local memory in collections as follows: the elements of a
collection are stored in StorageElements, which are themselves placed into an
instance of a Storage class. The storage routines themselves do not manipulate the
values which they store, and may thus be made independent of the values' type. The
collection classes are responsible for ensuring that values are stored and retrieved in
a type-safe manner.

- 123 -

5.4. The Partitioned Environment

The heart of Phœnix are the classes which directly support the partitioned
model. Phœnix provides a collection of partitioned data structures which are
designed to as to be completely distributed, scalable, highly concurrent and simple to
extend through sub-classing.

5.4.1. Design Issues

The Phœnix Collection and Partition class hierarchies directly implement the
functions described in §3. There are, however, some subtle differences introduced
by the choice of host language. The two main differences concern the way in which
resolution is performed, and the creation and deletion of components of collections.

Resolution

Resolution (§3.2.4) involves forwarding requests for data in toto between
components. A component which receives a request which it cannot service locally
forwards it via its partition to another component which can deal with the request. In
essence, the continuation of the request is passed to another site.

This architecture is very attractive for a number of reasons: it is simple, logical,
and means that a site receiving a request may simply forward it and continue
processing, thus avoiding a potential bottleneck. It proved rather difficult to
implement for Phœnix, however, for two reasons: the nature of C++ procedures and
the use of RPC.

C++ internally treats function names as pointers. Once a function has been
called, therefore, all other information disappears. It is not possible in C++ – as it is
in Smalltalk – to obtain the text of the request being serviced. This makes
forwarding of requests difficult.

A second difficulty is the use of RPC, as the client blocks awaiting a reply from
the called object. Passing a request involves changing the object which will reply to
a request. (Actually this is not as difficult as it sounds, as Wisdom allows
capabilities – return addresses – to be passed to another process. Whilst possible,
such an architecture would require a “pass responsibility” primitive, increasing the
complexity of the programming model.)

- 124 -

The solution adopted for Phœnix is to implement resolution using simple RPC.
The difference in control flow is illustrated in figure 23. It is interesting to compare
this diagram with that in figure 8: the “circular” flow of control is replaced by a
“chained” flow. This has several disadvantages. The first is that there is an amount
of unnecessary message-passing occurring: the partitions which were involved in
resolution have no interest in returning messages, and act simply as forwarders. This
introduces overheads. Secondly, such circularities may introduce unnecessary
synchronisation. They are accepted here purely for the sake of a simple
implementation: we shall discuss possible improvements in chapter 7.

Re-arrangement, and the Deletion of Components

The second major problem concerns the aspects of the partitioned model which
involve the deletion of components, specifically the join operation in associative and
directed storage.

Suppose that an application creates a dictionary (associative memory) and
attaches an activity to it, so that a copy of the activity is attached to every
component. In the course of processing, a replica removes an element from the
dictionary, which causes the dictionary to join several components into a single
component. This operation is perfectly well-defined within the partitioned model,
and is the reverse of the split operation: the elements held by one or more
components are amalgamated into a single component, and the extraneous
components are then deleted.

It is this deletion which causes the problem: there will be activities attached to
these components, and their deletion will result in “dangling” pointers. Even if
deletion operations use some form of reference counting, the components will be
detached from the collection.

Figure 23: Control flow for resolution in Phœnix

- 125 -

Another variation of this problem occurs in the opposite case – when elements
are added which cause splits. The new components will then have no activities
attached to them, and it is not safe to attach activities as this may result in elements
being processed twice.

The general statement of this problem is that it may not be safe to perform re-
arrangement of data structures during processing. This is an annoying, but not
crippling restriction, and Phœnix does not enforce it. It only affects those structures
which may suffer re-arrangement (i.e. anything except arrays); indeed, it may be
safe to re-arrange such structures even during processing, depending upon exactly
what application is running.

A similar problem affects iteration: iteration across a structure is not completely
deterministic in the presence of possible re-arrangements. Iterating through a
structure whilst simultaneously adding elements to it (or deleting elements) may
result in the iteration omitting some elements of the structure, or returning duplicates
of some elements.

5.4.2. Basic Classes

The Phœnix Basic kit implements classes which are used directly or indirectly
by several parts of the system.

Common Functionality of all Phœnix Objects
C++, unlike Smalltalk, does not force its class definitions to form a tree: they

may form a forest of trees19. It is useful, however, for all objects to have a certain
minimum functionality, and this is best accomplished by having a single base class
for all objects.

Phœnix defines a class Object for this purpose. It provides the following
guaranteed functions for each objects:

• class naming
• instance naming
• equality comparison
• copying
• hashing
• concurrency control
• property access
• error handling, logging and debugging messages

The class name allows an object to access its type at run-time. Each object may
have an instance name to distinguish it (at a textual level) from other objects of its
class. The equality comparison, copying and hashing protocols are “virtual” (re-
defined on a per-class basis, but always with a common type signature): hashing is
implemented to support associative memory architectures.

19Actually, using multiple inheritance, a forest of directed acyclic graphs.

- 126 -

The concurrency control methods allow a method to register its starting and
finishing with the object's concurrency controller (if any) in a manner independent of
the actual controller class being used.

Property access will be discussed in more detail later, but is concerned with
accessing a database of user-supplied “hints” to control aspects of an application's
function.

Error handling allows common error conditions, such as run-time exceptions, to
be reported through a standard interface. There is support for logging actions to the
user (or to a file) and for accessing a debugging level to control the amount of
debugging information generated (without re-compilation).

When created, an Object runs through the sequence of constructors defined by
its inheritance hierarchy. The result of construction is to create an Object whose
class and instance names are defined and which has a concurrency controller
installed.

Properties
One important aspect of Phœnix yet to be touched upon is the way in which the

programmer supplies “hints” to an application at run-time.
In §3.4 it was mentioned that the partitioned model allows decisions about a

structure's exact configuration to be deferred until run-time. A distribution strategy –
embodied in a particular Partition sub-class – may make use of run-time
conditions and programmer-supplied hints to determine the exact distribution pattern
used.

The judicious use of hints allows programmers to influence markedly the
distribution of structures. To take one example, a hint might suggest an order-of-
magnitude number of elements to be stored in an array component. The distribution
policy may then use this suggestion to decide how many components to create for
arrays at their creation.

The hints which may be supplied are obviously very dependent upon the
structure being hinted at. By taking care in selecting what features may be controlled
by hints, it is possible to generate a very flexible control mechanism for distribution
at very little cost. Moreover, it might allow the use of automated tools for optimising
distributions.

Phœnix provides a hints mechanism via its property sheet. A property sheet is
an object of class PropertySheet, of which exactly one instance exists per
application. When created, this object reads hints from a file to create a hints
database which may be accessed by any object.

The form of properties is modelled on that of X Windows[103]. Properties are
described hierarchically by naming the class hierarchy to an object. For example, the
hierarchy to the Array class is

 Object.Collection.ArrayedCollection.Array

meaning that Array is a sub-class of ArrayedCollection which is turn a sub-
class of Collection and so on. A property specification takes the form of a class
path followed by a property name and value, for example

- 127 -

Object.Region.verbosity: 2

which sets the verbosity (amount of logging information generated) in all Region
objects to be 2.

Properties may be set generically for parts of the class hierarchy by using the *
wildcard. So, for example, to set the verbosity of all collections to 2, one would
supply the hint

Object.Collection*verbosity: 2

Generic properties are overridden by properties given farther down the tree: to
disable debugging logging on all collections except Arrays, the following hints may
be used:

Object.Collection*verbosity: 0
Object.Collection*Array.verbosity: 2

Properties may also be set for particular objets by giving an object an instance
name and using it in a hint: adding the property

Object.Collection*Array.test.verbosity: 0

would disable the logging in an Array called test. The Object class
automatically creates the property path name for all objects, and there is support
within the base Object class to obtain properties.

5.4.3. Collections

The components of partitioned collections are, in Phœnix, all derived from the
Collection class. Each storage architecture – arrayed, associative and directed –
has an associated Collection sub-class hierarchy.

The hierarchies are separated into two classes: an abstract class defining the
protocols and functions common to all implementations of an architecture and a
concrete class implementing a particular local-storage model. Many of the functions
in the abstract class are empty, being used to define the type signatures of functions
will which be defined later.

The classes do not implement any functions intended for application-level access
to data. All data access is performed at an untyped level: it is the responsibility of
sub-classes to implement appropriate access functions.

Iteration
As an alternative to using access functions, it is possible to iterate across

collections. Iteration allows client objects to access all the elements in a component
“anonymously,” one at a time: it also has the advantage of being a protocol shared
by all architectures, so a client may iterate across any storage architecture.

- 128 -

All the Collection sub-classes multiply-inherit the Iterator class20. This
defines a set of functions which return the first element in a component, and then
successive elements until the component has been fully iterated. To allow concurrent
access, iteration uses a “key” held by the client object: the iteration protocol itself is
stateless, and holds all its context in the key value. Each concrete Collection
sub-class must provide functions to interpret the key value and return the correct
element: this is provided automatically by the built-in concrete classes. There is no
pre-defined order for iteration – indeed, there is no single order which is meaningful
for all architectures – so sub-classes are free to define their own orderings.

Iteration is not necessarily safe in the presence of concurrent addition or deletion
to structures, and this may cause problems in associative and directed collections.
The reason is that these operations may cause the collection to be re-arranged, and
this may confuse the iteration routines. It would be possible to disallow these
“dangerous” operations whilst iteration is in progress using the Lock kit, if so
required.

5.4.4. Partitions

Associated with each storage architecture hierarchy is a storage management
hierarchy, derived from the Partition class. The partition hierarchy exactly
mirrors the component hierarchy.

The partitions defined for each collection implement the general-case
distributions described in chapter 3. They can thus distribute an instance of an AMM
in some manner, although this is unlikely to be the most efficient distribution for
particular applications. The class hierarchy is defined so as to allow individual
aspects of the distribution to be changed independently of other aspects, to allow
easy refinement.

“Area” Classes
Distribution of structures is performed using instances of auxiliary classes. The

elements held locally by a component are represented by an instance of such a class,
and other instances are used internally by partitions when constructing a collection
and resolving requests.

The arrayed architecture uses a Region class, which defines a small region of an
n-dimensional discrete space. The associative collections use a Slice object defining
a portion of a hash space. Directed collections are sufficiently simple that they need
no area class.

The advantage of this approach is that, by altering the behaviour of the area
class, the behaviours of the collections may be altered. For instance, defining a new
Region sub-class allows different shapes of region to be used in array decomposition,
without changing either the component or the partition class.

20This is the only example of the use of multiple inheritence in Phœnix.

- 129 -

5.4.5. Activities

Multiple-worker tasks are supported in Phœnix using sub-classes of the class
Activity. Each sub-class defines a different “process,” and contains the
supporting protocol necessary to interact with the collections to provide scalable
parallel processing.

Within the Collection and Partition classes are functions which allow
activities to be attached to collections in a single operation. These attachment
functions are provided at the top of the class hierarchy, and require no support from
sub-classes.

A single function, Body(), implements the activity's main function. This
function is called automatically when the activity is attached to a collection.
Functions are provided so that the activity can gain access to the component to which
it is attached.

It is possible to determine the state of an activity – whether it has started,
finished, raised an error et cetera – and to interrupt or kill it21.

Groups
It is sometimes necessary to manipulate a group of processes en bloc. This is

particularly true in a scalable system when, although it may be know that a number
of concurrent processes are running, it may not be known exactly how many
processes have been created.

The Group class is a sub-class of Activity which collects together a number
of activities under a single name. All the functions concerned with attachment work
with groups of activities, although many of them hide the Group object from the
outside world.

Group supports exactly the same control interface as Activity, and
dispatches the commands to all its members. It is possible, therefore, to create a
group of activities and start their execution with a single command to their Group.
The states of members are reflected in the Group so that, for example it is possible
to wait until any one member of the Group completes its execution. This might be
used for multi-version or speculative parallel computation, where the other members
are killed as soon as one completes successfully.

Applications
Every Phœnix application contains exactly one instance of a sub-class of a

special form of activity, an Application. This class contains special start-up
code which initialises the Phœnix environment.

21Actually, although the kill function is provided for completeness in the interface to Activity, it is
unimplemented: it is not possible to kill a process in a Transputer system.

- 130 -

5.5. Extensions

A major advantage in the use of partitioned collections as a memory model is
that the model which an application uses is, at its most basic level, extensible. This
allows memory to be made “intelligent” to better reflect the operations used in the
application. This encapsulation of intelligence into memory modules both increases
the level at which programming takes place and reduces the amount of
communication needed in an application.

5.5.1. Issues in Extending Phœnix Classes

To minimise the amount of code which must be re-written, however, classes
must be designed with sub-classing and extension in mind. This ensures that all the
functions which may sensibly be re-defined are made independent of each other, so
that single facets of a class may be changed.

Another important factor is the use of abstract classes: classes which cannot be
instantiated directly, but which define the interface protocols for a selection of sub-
classes. The abstract class is an “umbrella” defining a collection of possible
implementations of the same abstraction, which may be used interchangeably.

Phœnix has been designed very much with sub-classing in mind. There are
several abstract classes used in the programmer's interface – for example
Collection defining the basis for all partitioned collections, and
ArrayedCollection defining those functions which are specific to all arrayed
collections. The bottom-level concrete classes, such as Association, may also be
considered rather abstract, as they do not define a user-level access protocol.

In addition, Phœnix separates all aspects of the partitioning process into separate
methods. This allows a single facet of the process – for example the generation of
sub-regions of an array – to be re-defined by sub-classing whilst allowing the
existing functions for creation and distributing these regions to remain unchanged.

5.5.2. Example Extensions

The Phœnix Extension kit contains some useful class pre-defined. These include
some commonly-encountered memory modules and some sample custom
distributions. It is these concrete classes which will be used as the basis for the
evaluation of Phœnix in the next chapter.

Custom Components

Three collections have been implemented as part of the Extension kit: an array
of real numbers, a dictionary mapping strings onto objects, and a binary tree.

For illustration, the interface to the FloatArray class – slightly abbreviated
for clarity – is as follows:

- 131 -

class FloatArray : public Array {
public:
 FloatArray(Region *lr);
 FloatArray(int x, int y);
 ~FloatArray();

 /* copying */
 virtual void BasicCopy(Object *o);
 virtual Object *BasicReplicate(NodeAddr a);

 /* access */
 virtual void AtPut(Point p, float f);
 virtual float At(Point p);
};

A few points may be made about this class. The first is that it contains very little
“real” code. The constructors simply pass information back to the parent Array
class' constructor, whilst the access operations provide type-checking for the
BasicAtPut() and BasicAt() methods implemented as part of Array.

Similar points may be made about the Dictionary and BinaryTree
classes: in all cases most the work is being done by the memory architecture classes,
leaving the user-defined classes to concentrate of application-level issues.

Custom Distributions

The partition sub-classes described earlier all implement particular, very general
distribution strategies. Phœnix provides an additional distribution for one particular
type of structure – the array – based around the most commonly-occurring mapping
of arrays onto processors: as a rectangular mesh, with one component being placed
on each processor.

- 132 -

class ArrayMeshPartition : public ArrayPartition {
private:
 ...
public:
 ArrayMeshPartition(Collection *rc,
 Partition *p =nil);
 ~ArrayMeshPartition();

 /* copying */
 virtual void BasicCopy(Object *o);
 virtual Object *BasicReplicate(NodeAddr a);

 /* partitioning */
 virtual void PerformPartitioning(void);
 virtual void BasicPartition(int srs,
 Region *sr[],
 boolean ism);
};

The new partitioning policy – overriding that in ArrayPartition – is
implemented by the PerformPartitioning() and BasicPartition()
members. The latter takes an array of sub-regions generated by the former and
creates a partition tree based upon them. The function is called recursively during
the tree's creation. Hence the policy is divided into two parts: the division of the
array into sub-arrays is performed by PerformPartitioning(), which then
calls BasicPartition() to build the tree.

The same approach may be taken with other custom distributions. The various
parts of the distribution strategy are separated into different functions, which may
thus be altered individually as required. This minimises the amount of re-coding
which is needed to implement new distribution strategies.

5.6. Résumé

This chapter presented an overview of a programming system based around the
partitioned object model . The tool kit, called Phœnix, is composed of a set of
classes written in a dialect of C++ extended to support the distribution of objects
around a network and the asynchronous execution of methods.

The issues important in the design of the various layers of Phœnix were
described to illustrate the possible alternatives in the design. The implementation of
the various classes were then presented.

Some consideration was given to the extensibility of the tool kit, allowing
programmers to create sub-classes of the important classes to define application-
specific functions. It was shown that, by giving careful attention to the facets of the
system which might meaningfully be re-defined, it is possible to maximise the
flexibility with which users can customise the Phœnix classes whilst maximising the
amount of design and code re-use within the system.

- 133 -

Chapter 6.

Evaluation

The pursuit of happiness is just a bore.

 Mary Coughlan, Mother's little helper

The preceding chapters have presented an argument in favour of the partitioned
approach, and its ability to abstract away from the most difficult attributes of scalable
systems, and have described an implementation based on this model However, such
arguments seem somehow incomplete: there is a need to discuss post facto the
features of the system.

The partitioned model is not intended to extract the best absolute performance
from a system: its aim is to simplify the programming task, possibly at the expense
of efficiency. At the same time, parallel programming's raison d'être is to tackle
computationally challenging problems, so too great a sacrifice in performance is
unacceptable. For a prototype system such as Phœnix, however, it will suffice to
identify areas of inadequacy and discuss ways in which they can be perfected. This
is the focus of the following evaluation.

The evaluation proceeds along four paths. Firstly the partitioned model itself is
evaluated in terms of the abstractions which it presents, and is contrasted against
other possible implementations of scalable memory. Secondly the Phœnix prototype
is discussed as an implementation of the model, and its shortcomings as a
programming system highlighted. Thirdly, statistics are presented on some of the
experiments run practically on the prototype, showing that, whilst its performance is
wholly inadequate in practical terms, the overheads incurred are due to identifiable
(and correctable) flaws in the prototype implementation. Finally some case study
problems are developed using Phœnix.

- 136 -

6.1. The Partitioned Object Model

The partitioned object model attempts to provide a view of memory which is
scalable, in terms of resource consumption and concurrency.

6.1.1. Meeting the Aims of Scalable Memory

The partitioned model is an attempt to implement the goals of scalable abstract
memory laid-down in chapter 2, and we may compare it with this abstraction in order
to determine how well it succeeds in this aim.

The aims of scalable memory were defined in the Introduction: to provide a
system which

• manages and co-ordinates large quantities of structured data in

a distributed-memory environment;
• regulates and controls massive amounts of concurrent activity;
• hides architectural details from programmers through the use

of an abstract programming model;
• provides a supportive programming framework with scope for

re-use, to avoid unnecessary re-invention; and
• ensures scalability by ensuring that applications can take

advantage dynamically of whatever resources are available at
run-time.

We may evaluate how the partitioned model meets these aims.

Distributing Data

A partitioned collection of data is essentially a memory module, according to the
arguments presented in chapter 2. Since the data in the collection is physically
distributed between its component objects, it may be implemented on a
multicomputer without unnecessary centralisation; but since the data is logically
centralised – all elements being accessible through any component, regardless of
which component actually holds the item being sought – it effectively hides the
physical distribution being used.

This has two advantages. The first is that a major source of complexity in
distributed programming – the management of data locality – is removed from
applications. However, since collections are actually distributed entities, there is still
scope for the knowledgeable programmer to control the distribution of data as
required. The important point is that this control is largely an optimisation of an
application, and is not essential to its correct function.

Regulating Concurrency

In the partitioned model, the amount of concurrency used and its location,
follows the distribution of data. Altering the distribution of a collection will affect
the pattern of concurrency used to process it.

- 137 -

The justification for this view is that the size of a collection is often a good
metric for deciding how to process it in parallel, whilst the distribution of data allows
the programmer to exploit the possibilities for true concurrency provided by
multicomputers.

Abstracting Away from the Architecture

The architecture has several effects on applications. It will determine the
amount of data which may be held locally by a processor; suggest a certain “grain
size” for concurrent computation; and define the cost of communications between
processes on different processors.

In the partitioned model, all these factors may be balanced indirectly by altering
the sizes of components and their distributions. This allows a partitioned application
to be mapped efficiently onto any given architecture, but the mapping occurs post
facto and need not affect the code of the application. The statement of problems
within the model is to a large extent architecture-independent.

Programming Support

The kernel of scalable memory modules provided by the partitioned model may
be re-used in many different applications, since they implement “general case”
storage requirements. They may also be extended incrementally to develop new,
application-specific structures. There is considerable scope for the re-use of designs
and code within such a framework, simplifying the construction of distributed
applications based around large amounts of shared data.

Ensuring Scalability

By providing a scalable memory model, the partitioned model ensures that a
central aspect of program creation – its data organisation – is completely scalable.
The use and re-use of partitioned data structures need not affect the basic algorithms
used internally, so “intelligent” memory sub-systems may be created from the basic
structures provided.

Moreover, the use of memory as a concurrency regulation infrastructure ensures
that, for properly-written applications, the amount of concurrency used in an
application is completely variable according to its distribution pattern.

These features do not, of course, guarantee that an application can scale. It is
still the programmer's responsibility to ensure that applications have as little
centralisation as possible, and that locality of reference is exploited to the full when
creating worker tasks.

6.1.2. A Comparison of Possible Alternative Implementations

In §2.4 we suggested that a scalable memory would be best implemented using a
community of objects, and it was this suggestion which gave rise to the partitioned
model. There are, however, a number of other alternative implementations which

- 138 -

might also be considered, and we shall compare partitioning against the four most
promising alternatives: Linda, distributed shared virtual memory, the use of objects
within a DSVM framework, and Concurrent Aggregates.

Linda

The similarities between scalable memory and the Linda tuple space abstraction
(§1.4.2) are obvious: both allow large collections of entities to be stored and
manipulated en masse by processes distributed across a network.

Linda's tuple space is a large shared associative memory. Depending upon the
implementation there may be multiple tuple spaces in existence, but most current
systems implement only a single space shared between all processes in an application
(and occasionally between all applications in a system). Single tuple spaces
introduce the problem that processes must ensure that the tuples which they inject
into tuple space do not conflict with those of any other processor.

A more serious complication – or advantage, depending on one's viewpoint – is
that Linda completely hides distribution from the programmer. Whilst it is true that
scalable memory aspires to the same ideal, the latter also seeks to allow the
programmer to intervene to control distribution if desired in order to increase
applications' performances. Early Linda implementations were very inefficient
precisely because they could not automatically deal with the problems of efficiently
distributing tuples.

It is perfectly possible to build structures like arrays in Linda, by using
appropriate patterns of tuples. However, this reduction of arrays to tuples destroys
all those spatial characteristics of arrays which are useful in distributing elements
efficiently. For example, consider the case of a two-by-two array called array1
implemented using the following tuples:

("array1", 0, 0, -1)
("array1", 0, 1, 0)
("array1", 1, 0, 0)
("array1", 1, 1, -1)

A priori, there is no way of identifying the relationship which these tuples have
to each other – other than the fact that they will be matched by a common pattern, for
example:

("array1",?x, ?y, ?v)

which information is insufficient to perform any intelligent distribution. The Linda
assertion that “all tuples are equal” is a double-edged sword.

By comparison, the partitioned model retains the information about a data
collection's essential structure, and may thus exploit it in creating a distribution
pattern. The programmer may explicitly become involved, if he so desires, with the
distribution of collections, using the full power of the host language rather than
simple annotations.

- 139 -

Concurrent processing in Linda comes from the use of “active” tuples inserted
into tuple space. By the same token as above, Linda prevents programmers from
placing processes onto nodes (even as an optimisation step) and prevents processes
from making use of the principle of locality (since there is no idea of locality in
Linda). This places a large burden onto the Linda system implementor to manage the
distribution of tuples intelligently, and there is no evidence that this is possible
without programmer involvement – and Linda itself does not provide mechanisms
for this involvement.

Distributed Shared Virtual Memory

DSVM is another logically shared memory for use in distributed systems, but
one which is centred around access to memory at the word level. In seeks to
simulate a simple “flat” address space by using the local physical memories of nodes
as page caches in a virtual memory system.

Some problems in the scalability of DSVM systems have already been
mentioned (§1.3.1). The problems of page usage and allocation, cache sizes and
thrashing mitigate against the use of DSVM as a scalable memory implementation.

Representing Large Objects using Distributed Shared Virtual Memory

There is, however, a second possible use for DSVM. If a conventional object-
oriented language is executing in a DSVM environment, then its object abstractions
may be used as a model of memory without any intervention on the part of the
programmer.

This is a very attractive possibility. The same collection techniques as used in
(for example) Smalltalk or a C++ data structure class library could be introduced
directly into the distributed computing arena. A collection of arbitrary size could be
represented easily, since not all the pages of an object need fit onto a single
processor: they may be distributed between several nodes, with the guarantee that
any access to a “remote” data item will cause that item to be acquired transparently
through a page fault.

This approach hides the distribution of data onto nodes – indeed, it makes it
impossible to discover what data is on which node – and so could not be used as a
concurrency infrastructure. The best one could achieve is to decide the number and
location of processes and then allow them to divided the data between themselves
using page faults. This means that processing becomes process- rather than data-
oriented.

Indeed, this illustrates a major problem with all DSVM applications. There is a
distinct separation between data and code, despite the fact that code must reside in
memory. It is essential for an application to place its processes with great care in
order to perform load balancing and minimise communication overheads: but the
features of DSVM make this impossible by preventing the programmer from
controlling distribution. In a very real sense, DSVM is equivalent to Linda in this
respect, but at a lower level of abstraction.

- 140 -

Concurrent Aggregates

The system in the literature which bears most resemblance to the partitioned
model is Chien and Dally's Concurrent Aggregates[36] (CA) (§1.3.2).

The main use of CA is as a concurrency-management system, since aggregates
are inherently parallel to the degree of the number of objects within the aggregate –
objects themselves may remain strictly sequential, but aggregates are concurrent.
However, as a collection of objects manipulated using a single name, the parallel
with the partitioned model is obvious.

The major difference is one of emphasis. CA is intended to introduce
concurrency into objects, something which we have assumed to be present within the
partitioned model and have controlled using auxiliary objects. CA is simply a
framework, onto which may be added any desired functionality.

CA does not address the problems of deciding how many objects to create as
part of an aggregate, nor of determining how to distributed the component objects or
selecting a target site for interaction. All these are features of the partitioned model.

It seems, however, that CA would make an excellent possible host language for
a partitioned system, since it provides many of the necessary features (especially
concurrency control and message delegation). Although the described system was
not strongly typed, there is no reason why this might not be added. It would be
interesting to explore the effects on CA programs of introducing partitioned memory.

6.1.3. Some Problems with the Chosen Implementation

The partitioned model does, however, present some problematic aspects. Most
serious are its use of software in routing requests, which is a direct consequence of
the model's flexibility.

All routing of requests for data are sent round a partitioned collection using an
algorithm embodied in the partition classes. The use of such software control makes
the partitioned model very simple to optimise, as the algorithms used may be
changed without necessitating the re-writing of the entire structure.

However, other possible implementations – notably Linda and DSVM – may
make use of hardware acceleration to speed-up the routing of requests. The
partitioned model, on the other hand, is not so susceptible to the use of hardware
accelerators: this implies that, in purely speed terms, it is demonstrably inferior to
the alternatives.

This objection may be answered in two ways. Firstly, there is a trade-off to be
made between flexibility (which comes from software) and speed (which arises from
hardware). A system with a hardware accelerator is very much tied into that
accelerator's algorithm, and cannot adopt a different strategy if circumstances
warrant.

Secondly, there is some scope for the use of hardware acceleration in partitioned
systems. Hardware message routing would be a great advantage, and may be
provided within the operating system kernel. Furthermore, many of the partitioned
model's algorithms involve look-up against a table of possible values. There is a
great deal of knowledge about the creation of hardware-based associative

- 141 -

memories[74], which could be used by partitioned structures with little problem
(storing routing tables in a special memory with hardware support for the necessary
searching).

6.1.4. The Programming Model and Method

The programming style encouraged by the partitioned model is one of shared
data processed by several largely independent worker tasks. It is thus a shared
memory model as opposed to a message passing model.

Since the partitioned model favours one of the two major parallel programming
paradigms, it is natural to ask: for what classes of problem is the partitioned model
suitable? For what classes is it unsuitable? Are these two classes sufficiently
recognisable to ensure that unsuitable applications are avoided?

A shared data model, when implemented on a distributed memory machine,
suffers from overheads whenever tasks request data which is not held locally to
themselves. The farther away – in network terms – the data resides, the longer it will
take to access. Although Valiant's work indicates that such a shared memory is
implementable with only a constant factor overhead[113], it gives no clues as to the
magnitude of this overhead. Hence in order to reduce the potential for unacceptable
overheads it is essential that:

a. locality of reference is available and is exploited; and
b. data is accessed sufficiently frequently to justify its

organisation.

The first condition implies that an application should not make “random” access
to a data structure – by “random” we mean accesses which target elements without
any pattern; or, put another way, there exists no distribution pattern such that the
accesses may exhibit locality of reference. For an array, this might imply that
elements accessed should be metrically close; for a graph, that only a few edges are
traversed. Applications which do make random access will incur significant
overheads.

The second condition states that applications must access the shared data a
number of times. If an application accesses a particular data item only once, there is
no advantage to be gained by structuring the data: it would be better to pass it
explicitly using streams.

These conditions together identify a class of algorithms which manipulates a
large shared data pool for a considerable length of time. The first excludes
applications whose data accesses are unpredictable, the second those applications
which use data “in passing.” (Interestingly, these are precisely those conditions
identified by Li and Hudak in analysing their DSVM system[77]. This would
suggest that partitioning and DSVM are largely equivalent, with the former offering
higher-level abstraction and the latter providing a more kernel-oriented approach.)

- 142 -

6.2. The Phœnix Prototype

In evaluating Phœnix it is necessary to compare it with both the theoretical
qualities of the abstract model and with other parallel programming systems. We
wish to determine whether Phœnix is a good implementation of the partitioned
model, and whether it compares favourably with other similar programming systems.

6.2.1. Sufficiency of the Base System

The basic Phœnix system provides three things: a distributed and parallel dialect
of C++, a set of high-level distributed memory structures, and an infrastructure for
regulating concurrency. We shall first examine this system as it appears to the
programmer, without refinement or specialisation, before going on to consider these
essential issues. Doing this enables us to assess the ease with which Phœnix may be
used for prototyping, before considering refinement.

It is possible to write object-oriented programs without using any tool kit
support, simply using the facilities of the C++ dialect. There is little support for
concurrency or distribution control, but applications could be created this way. The
significance of this is that it shows that aspects of a problem which are not covered
by Phœnix – or by the partitioned object model – may still be written. Phœnix
attempts to make this process easier, but does not outlaw other approaches being
used, and the admixture of several different paradigms may in some cases be
beneficial[123].

The Phœnix memory classes provide as standard roughly those structures
described in the standard work on the subject[70]. The abstract classes are chiefly
concerned with refinement operations; the concrete classes provided in the extension
kit (figure 21) supply basic functionality for several commonly-occurring structures.
Applications could use these basic functions to implement an algorithm, with all the
algorithm's sophistication being built into clients rather than memories. Although
potentially less efficient, this approach is completely workable for a first cut at a
problem.

6.2.2. Extensibility

Extensibility – the ability to re-use existing code and designs to create new
classes for new applications – is a prima facie advantage of object-oriented
programming. It reduces the amount of work, both in design and implementation,
which an application requires

Extension can occur in two directions. When existing classes are specialised to
provide new functions on an existing framework, it is termed extension by
differentiation; when classes are being created to provide new functions, it is termed
lateral extension. In practice creating a new class is often a mixture of these two
forms of extension.

- 143 -

Extension by Differentiation

The mechanisms for differential extension are perforce limited to those in the
host language. In C++, the main mechanism is the virtual member function which
replaces the definition of the parent's function with a new function which is called in
preference to the parent definition. The usefulness of differential extension is
therefore largely defined by which functions are declared to be virtual, and by the
decomposition of tasks into well-defined functions which may be replaced
selectively.

In other languages, different mechanism exist. In Smalltalk, for example, all
functions are by definition virtual: the dynamic binding of names to functions is the
only mechanism provided, whereas in C++ static binding is used by default. The
C++ version is in many respects more powerful and safer, as it allows functions to be
defined which must be used in all sub-classes.

Phœnix was designed with extension in mind, and the interfaces provided to
sub-classes for extension are intended to be the most flexible possible consonant with
the need to maintain the integrity of the structure. Phœnix defines as virtual
functions all those aspects of a collection or partition which might be changed as a
matter of policy, whilst leaving statically-bound (i.e. non-virtual) those methods
which maintain the structure of the collection.

This is a vitally important distinction, as it ensures that extensions may be made
to storage architectures without compromising their integrity. Consider, for example,
the partitioning of an array: the method which divides a region into sub-regions
ready for allocation or further partitioning is defined as a virtual method, and may be
re-defined in sub-classes to implement different partitioning policies; the method
which takes these sub-regions and creates the partition tree from them is defined
statically, since it is a matter of structural integrity, not policy.

Some of the classes in Phœnix are not directly related to partitioning, but are
used by collections internally. Examples are the Region and Slice classes,
defining the elements held by components of arrayed and associative collections
respectively. These classes may be sub-classed like any other, and the sub-classes
used indirectly to affect partitioning. A Region sub-class (for example) may be
supplied to an Array to define its global storage: Phœnix is written in such a way
that, when partitioning, the Array will use instances of the sub-class wherever an
instance of Region would be used by default (all internal objects are created using
copying rather than explicit creation). This makes it an easy matter to create an
Array whose components hold hexagonal rather than square areas of the array's
elements, simply by defining a Region sub-class with the given shape and passing
it to the Array constructor22.

Similar mechanisms may be used to define and utilise new Partition sub-
classes to define novel distribution strategies. A Partition sub-class is created to
implement the required policy and is then supplied to the root component of the

22Unusually-shaped array decompositions are found in applications such as computational wind
tunnels, where a polyhedral locale may be used to improve the connectivity betwen neighbouring
locales[118].

- 144 -

structure to be partitioned. The structure will then use the sub-class rather than the
original Partition sub-class henceforth.

Both these forms of extension are completely type-safe within C++, as the type
signatures of the member functions ensure that only suitable sub-classes may be
passed into the collections – it is not possible to pass an
AssociativePartition sub-class to an array, for example.

Lateral Extension

Phœnix naturally encourages the creation of new classes. If these new classes
are defined as sub-classes of the Phœnix Object class, they will have the same
functions and privileges as the basic objects: they will be available throughout the
network to any object which know their name; may be copied and placed into
partitioned structures; and may be used safely in a parallel environment.

A possible weakness is that there is no compulsion on programmers to derive
new classes from Object (as there would be in Smalltalk), so it is possible to
introduce classes into Phœnix applications which “misbehave” in some way. This is
a result of C++'s class model, which does not force the class hierarchy to be a tree.

The creation of new partitioned collections is, of course, a major undertaking,
requiring analogous functions to those contained in the Phœnix collection and
partition objects to be implemented. Such extensions should hopefully be needed
only rarely, if ever, since any data structure may be created by sub-classing one of
the existing storage architectures,

6.2.3. Refinement

We shall now return to the issue of refinement within Phœnix, which is
concerned with two things: allowing memory to manipulate data in an intelligent
fashion and creating novel distributions of data. The former removes intelligence
from parallel activities and places it into the memory; the latter allows the
distribution of data to be customised. Both forms of refinement may proceed using
differential extension of the basic Phœnix structures, so applications may be
progressively refined.

Concurrency may in some applications be viewed as a refinement – an example
would be an algorithm which is first implemented in a sequential manner and is then
parallelised – but it is more likely that parallelism will be inherent in applications
from their conception. Refinement in this latter case takes the form of balancing the
distribution of a structure using its properties, in order to achieve an optimal trade-off
between concurrent execution and communications overheads.

Intelligent Memory

Making memory “intelligent” essentially creates a memory module which is
targeted directly at a particular application domain. This movement from the general
to the particular may be accompanied by increased efficiency and readability in the

- 145 -

resulting applications and, if performed carefully, may allow significant amounts of
re-use within the domain.

Since Phœnix separates its Collection class hierarchy into classes providing
protocol and classes providing a storage model conforming to that protocol (for
example the AssociativeCollection and Association classes
respectively) it is a simple matter to supply new storage models for the same
architecture. An example might be an array whose storage was created lazily using
list-based storage rather than eagerly using indexed storage. It is also possible to
change the storage model deeper in the inheritance hierarchy, since all storage
management and access functions are virtual.

By default, Phœnix' memory modules simply allow access to individual
elements. In many applications, however, data may be dealt with in larger chunks –
entire array rows or collections of logical assertions, for example. By allowing the
memory to perform the chunking internally, several advantages accrue to the
programmer.

Firstly, an application's activities may deal with large conceptual units rather
than with the raw units of memory storage. This allows algorithms to be expressed
at the appropriate level. Chunking reduces the communication necessary between
activities and memory, as more data is transferred per step: this allows the costs of
resolution to be amortised across several data items.

Secondly, a memory may make use of knowledge about its distribution to
optimise operations for speed. This weakens the independence of data manipulation
and data distribution, but is useful as a refinement step. The simplest example of
such optimisation would be the caching of recently-accessed data elements which
were known to be read-only (or not, if cache consistency is implemented in an
appropriate form). Another would be the pre-fetching of data in order to service later
requests faster.

Thirdly, careful accumulation of intelligence into a memory allows applications
within the same domain to share the intelligent memory. An example would be a
bitmap (a variant of the array) which incorporated image-processing operations:
many image processing applications could usefully share the common operations.
The result of this process is the construction of domain-specific toolkits of classes,
having the advantage over other class libraries that they would be distributed,
scalable, and parallel, and could make extensive use of parallel processing.

Specialised Distributions

It is widely recognised that the distribution of an application has a major effect
on its performance. There are several factors to be balanced:

• objects which interact heavily should be placed close together;

but
• heavy interactions generate communications hot-paths and -

spots;
• application peculiarities determine the appropriate grain size

for distribution; but

- 146 -

• grain size is difficult to determine a priori;
• completely novel distribution strategies may be useful to

optimise particular algorithms; but
• optimisation is a (usually) performance issue, not a

fundamental question of design; and
• the appropriate distribution may not be immediately obvious

for a new, complex or irregular application.

The issue of distribution is a complex one. The common solution is to provide a
secondary configuration language to allow the distribution of program elements to be
specified after the fact: examples of these are the Occam toolset, the Helios
configuration language, and the Conic and Darwin systems. Phœnix takes the view
that distribution, from the general viewpoint, is the concern of the machine, not the
programmer. This implies that the system takes responsibility for placing objects,
and allows it to re-configure dynamically.

The distribution of a memory is controlled by the partition class being used.
This may be made arbitrarily intelligent by extending from the basic classes, which
themselves provide a simple distribution suitable for prototyping. Hence the strategy
used to distribute data may be refined: moreover, it is largely independent of the
data manipulations being performed by the collection.

Furthermore, properties may be used to provide hints to the distribution
controller at run-time. The classes supplied as standard allow various parameters to
be set, so that their run-time behaviour may be altered – in important but semantics-
preserving ways – until an acceptable pattern is found.

Covert Parallelism

One attractive possibility is the use of hidden, or “covert” parallel evaluation for
complex methods in a scalable memory.

A method appears to the user as a sequential operation which runs to completion
and terminates, with the caller being blocked throughout. Internally, however, the
method is free to use concurrent techniques to improve its performance. As a
refinement step, a simple method may be converted to use parallel evaluation without
changing the external interface.

In doing this, a method may make use of all the concurrency regulation features
of Phœnix. It may define an Activity sub-class which is then attached to the
collection being processed, and wait until all the activities thus created have
completed evaluation.

The need to use a new Activity sub-class for this operation is a problem with
Phœnix, as it is extremely inconvenient and results in yet another class definition. A
better approach would be to allow activities to be constructed from first-class
functions – a point which will be addressed later, §6.2.4.

- 147 -

6.2.4. Defects

The problem with the use of a tool kit in programming, rather than a complete
new language, is that the tool kit can do little to ameliorate problems introduced by
the host language: any defects in the host propagate through to the tool kit. Many of
the defects which one may identify in Phœnix are a direct consequence of the use of
C++ as a host language.

However, Phœnix also suffers from other defects as a programming system.
Both these classes of defect will be dealt with here: a third class, those concerned
with performance, will be deferred until the next section.

A Hybrid Object Model

One of the major criticisms of C++ as an object-oriented language is that, by
inheriting the functionality of C, it allows programmers to break its object model.
This causes difficulties for the class designer.

In a “true” object-oriented language, all instances of all entities are objects.
They may be all implemented in the same way (as in Smalltalk) or some may be
optimised to provide a better representation, but all are objects conceptually. In C++,
built-in types like integers are not objects, and follow completely different rules to
those of application-defined classes. C++ makes great use of pointers. Not only are
pointers used as object names (§5.2.2), they are also used to represent strings.

Both these factors complicate the construction of a class library. In order to be
useful, the Phœnix collections must be able to store not only all types of object but
also a variety of different entities which require different handling. Phœnix would be
considerably simplified by a host language in which “all objects are equal.”

Initialisation and Termination Functions

Another defect in C++ concerns the way in which initialisation and termination
of objects are performed using virtual functions..

Consider three classes A, B and C, where C is a sub-class of B which is in turn a
sub-class of A. B defines a virtual function f which is called from its constructor,
and C re-defines this function.

Construction of an object of class C occurs by executing the constructors of A, B
and C in order. One might expect that the constructor of B would, when calling the
virtual function f, actually call the re-defined version in C (in accordance with usual
practice for virtual functions): in fact, the original version in B will be called. The
reason for this is that the constructor of C has not yet executed, and so the re-defined
version of f may rely on initialisations which have not yet occurred.

The rule is therefore that a virtual function called in a constructor calls the
version of that function “at its own level” (or lower) in the class hierarchy. A similar
effect is observed (in reverse) with virtual functions called in destructors. This
policy prevents errors caused by non-initialised variables and the like.

An effect of this choice, however, is that it is impossible to define a protocol for
“top-level” initialisation of derived classes which is called automatically from the

- 148 -

constructor. It is necessary for the user to explicitly call a virtual function after
construction has occurred. This is an added complexity, and somewhat at odds with
C++'s goals of automatic object initialisation and destruction; it also makes it more
difficult to create complex class libraries.

A solution would be to define two new special functions within the language,
called (for example) Initialise() and Terminate(). Such functions should
be implicitly virtual, and should be called automatically after construction completes
(or before destruction commences) to allow top-level initialisation (or destruction)
operations to be defined virtually.

Type-safety

When creating any general-purpose programming system, it is desirable to make
it as general as possible. Of all the facets of a system which affect its generality, its
type model is probably the most profound.

A statically- and strongly-typed language offers the possibility of creating
programs in which errors caused by applying operations to inappropriate values can
be eliminated. Although based on C – often used as the classic example of a
language with no type system – C++ has a considerably tighter and more flexible
type system. In particular, it allows a particular brand of polymorphism sometimes
termed inclusion polymorphism (which Cardelli and Wegner[32] define as the
property that “an operation may be applied to objects of different types related by
inclusion”) and overloading of both member functions and operators23. In practice
this means that an object of type B which is a sub-class of class A may be used in all
circumstances in which an object of class A might be used, since they share the same
interface; the reverse substitution does not hold, as class B may define elements in
its interface which are not available in class A. As with most object-oriented
languages, C++ integrates both polymorphism and overloading through the
inheritance hierarchy.

Phœnix uses this form of polymorphism to great effect. A function may, for
example, be defined to accept an instance of class Collection and will then work
with any Collection sub-class. Similarly, a collection may be refined without
altering the code which depends upon it.

However, a major defect in C++'s type system, from Phœnix' point of view, is
that it does not support two other useful forms of polymorphism: functional or
parametric polymorphism[40].

Functional polymorphism allows functions to accept arguments of any type,
which they do no manipulate in any operational fashion. An example of this would
be ML[117], where a function such as that which performs the map operation (which
constructs a list by applying a function to all members of another list) may be defined
as

23There is occasionally some confusion over the difference between overloading and polymorphism.
Overloading (sometimes called ad hoc polymorphism) allows the same identifier to refer to different
functions, with the appropriate function being chosen at run-time according to the type of its
arguments; polymorphism allows the same function to apply to items of different types, with no run-
time selection necessary.

- 149 -

val map = fn [] f -> []
 | fn h::l f -> (f h) :: map l f ;;
val map = fn : 'a list -> ('a -> 'b) -> 'b list

and can work with any values of 'a and 'b (which represent type names) as it does
not manipulate values of this type explicitly – it is sufficient to know that the list is of
some type. This is similar to the common C (and C++) trick of type-casting values
which are not used as void *, but with the important difference that casting in this
way loses all information about the original type of the value.

Parametric polymorphism is found in languages such as Russell[22], where a
type may be passed as a parameter to a function. A Russell implementation of the
map operation would be

map ==
 func [l : val List a ;
 f : func [val a] val b ;
 a : type {} ;
 b : type {}] val List b
 {
 if l = Null ==>
 Null
 # else
 f[hd[l]] ^+ map[tl[l], f, a, b]
 fi
 }

whose major difference from the previous definition is that the types a and b are
passed explicitly as a parameter and is available for use within the function's body,
although in this case there are no operations defined for them. In general, it would
be possible to use any of the operations known to be available on that type, and the
function could be applied to any type providing these operations – and this type
conformance could be checked statically24.

For Phœnix, it would be useful to use both these polymorphic arrangements.
Collections could then be made type-safe for any type of value stored, without the
need for sub-classing.

The templates feature defined in the C++ standard (and the Ada generics
mechanism from which it is derived) are not equivalent to the above. A generic
package in Ada must be instantiated for a particular type at its creation, before use.
Thus it is not possible to define a generic type List parameterised by the type of
elements in the list, and to then write a function which will perform map over Lists
(although one could construct a generic function to do so, which would then itself
have to be instantiated).

24A similar effect may be achieved in languages which allow sub-typing without allowing type-valued
variables. In effect, the sub-type information makes available a set of operations which may be used.

- 150 -

Storage

Local memory in Phœnix is represented by the Storage classes
ListStorage and IndexStorage, which are parameterised by the size of their
elements and are accessed in a typeless manner. The use of a parametrically-
polymorphic type system could remove this typeless-ness by allowing the type of
values which a collection is to hold to be passed to the storage object.

The use of variably-sized storage is, however, only necessary because of the
variable size of possible elements, and this is in turn related to the tight coupling of
objects to memory found in C++. It is not reasonable to represent integers as objects,
for example – especially not in Phœnix, where object names are of the order of tens
of bytes long – and so it must be possible to store shorter values within a collection.
The use of shorter object names, and the implementation of Phœnix in a language in
which all object names are of the same, small size (such as Smalltalk) would
alleviate this.

The Proliferation of Classes

 A cursory glance at the Phœnix class hierarchy shows that it contains a large
number of classes, many of which are largely empty of new functionality but which
are needed to implement type-safety or some other slight interface variation. This
problem is again largely solved by the addition of other polymorphic forms to the
host language.

The most problematic feature comes in the creation of Activity sub-classes.
Every worker task is represented by an instance of such a sub-class. The creation of
a new activity is therefore a very heavy-weight operation and, what is more, must be
performed at compile-time.

It would be far more attractive to be able to create activities from functions so,
for example, a new activity could be created simply by instantiating the Activity
class with the function which it was to execute, rather than defining a new sub-class
and embedding the function within it.

In order for this to be practical, functions must be first-class entities, The
availability of first-class functions has many advantages, and this additional use as a
means of defining parallel activities comes “for free.” It means that a function may
be created dynamically, according to run-time conditions, and be then turned into an
Activity.

6.3. Performance

Our intention in evaluating the performance of Phœnix is to illustrate those
features of the partitioned model which most influence an application's efficiency,
not to evaluate the current prototype as a practical programming environment. We
shall first analyse the theoretical sources of overheads in Phœnix, derived both from
the partitioned model and from its overall implementation, before presenting some
experimental performance figures.

- 151 -

6.3.1. Theoretical Performance

In performing this analysis one important source of overheads and delays must
perforce be ignored – those arising from network contention and routing. The reason
for this is simply that the very features which allow the partitioned model to scale
and precisely those features which mitigate against being able to model
communications patterns to the accuracy necessary to include routing delays. We
shall therefore make the assumption that calling any function takes a unit amount of
time, no matter how the objects are distributed and what else is happening in the
network.

Creating and Destroying of Objects

Object-oriented programming tends to make extensive use of objects with very
short lifetimes, so the mechanisms for creating and deleting objects can make an
important contribution to application speeds.

Creating an object involves three steps:

1. Decide upon the node where the object is to be created (using
explicit placement or load balancing);

2. Interrogate the namer to see whether a class server is available
on that node;

2a. If no server is available, interact with the host operating
system to create one;

3. Make a remote procedure call to the appropriate constructor in
the selected class server.

The major cost, of course, is the creation of the class server, which (if necessary)

will involve calls to the machine's file system. Once loaded, the class server's
executable image must be transported across the network to the selected site and then
started up.

Deleting an object is somewhat simpler, involving only two steps:

1. Make a remote procedure call to delete the object;
2. (Optionally) Close-down the server if the it no longer holds

any objects.

As with the calling of constructors, calling destructors may cause a certain
amount of additional activity. The decision as to whether a server should close-down
when it has no objects remaining is a matter of policy: leaving the server running
means that, if objects are created on the node at some time in the future, the server
must be re-started; leaving it running may use memory unnecessarily.

- 152 -

Accessing Data

Data access may be divided into two possible cases: accessing data which is
held locally, and resolving data which is held remotely. In the latter case, local access
is performed after resolution has occurred, so the local-access operation is common
to both cases.

Local Access
Accessing data held locally involves the following steps:

1. Testing whether the element held is held locally;
2. Acquiring (or possibly failing to acquire) the data, or setting

the data, or some other operation on the local element.

The locality test is reasonably simple for all the storage architectures. For an

array, it involves testing whether a point lies within the component's local region; for
an associative memory, testing a hash key prefix; and for a directed structure testing
whether the node's parent is one of those whose children are held locally. All of
these cases, in the default architectures, involve communication between the
component concerned and another object, so at least one remote call is needed for
local accesses.

If the element being accessed is indeed held locally, then it must be located from
the local storage. This operation obviously involves no remote communication, but
will involve a search of local storage.

Resolution and Remote Access
If the locality test fails, then resolution must be invoked. This involves making a

request to the partition associated with the receiving component, the resolution
process itself, and a local data access operation at the servicing component.

At each stage of the resolution process – i.e. for each partition visited as part of
the process – some cost will be incurred for further routing. This cost will always
include the cost of the remote call made to the partition: the rest of the cost will
depend upon the architecture involved.

For arrays, if we assume that the regional decomposition strategy is used, each
partition will hold references to (on average) half the total number of sub-regions in
the array. In each component, assuming a linear search, each resolution step will
need to test on average half these sub-regions before finding a match: therefore,
denoting the total number of sub-regions by nregions , the total cost per step will be

given by 1
4

+
nregions method calls. For associative and directed structures, resolution

may occur without any remote communications and will thus take a single call (that
to the partition) per stage.

- 153 -

The total costs of resolving remote data elements is summarised by the table in
figure 24. This shows a general pattern in the cost of accessing data: the initial
request, a number of resolution steps, and the access to local storage involved in
accessing the data when it is eventually resolved. In other words,

overhead e n f estages() ()= + +1 τ

where overhead(e) is the overhead involved in an operation accessing an element e,
f(e) gives the cost involved in the resolution of e, if any, and τ is the local access
time. For locally-held data, f(e) is zero; for associative and directed structures, it is a
linear function of the number of resolution steps required (i.e. of the metric distance
between the receiving component and the component holding the element); for
arrays it is a product of the number of stages and the number of sub-regions (also
linear, since nregions is constant for a given array).

The result for arrays indicates the importance of better distributions in the array

case: for large arrays, where nregions is large, a significant overhead is incurred at
each stage of resolution; moreover, it is reasonable to assume that nstages varies with
nregions , so large arrays will also involve more resolution steps.

Although the costs of resolution are linear in terms of the number of stages or
resolution performed, the number of stages is itself often a logarithmic function.

 Structure

 Arrayed Associative Directed
Loca
l data

 1 + τ 1 + τ 1 + τ

Remote
data

Request 1 1 1

 Per stage 1
4

+
nregions

1 1

 Local
access

1 + τ 1 + τ 1 + τ

 Total 1 1
4

+ +
F
HG

I
KJ+n

n
stages

regions τ

1+ +nstages τ 1+ +nstages τ

Key: τ = local access time
 nstages = number of resolution steps
 nregions = average number of local sub-regions (arrays only)
(All figures are in units of one remote method call.)

Figure 24: Analysis of costs involved in accessing data

- 154 -

Consider the case with an associative memory: each level of resolution increases of
decreases the number of possible values accessible by a multiplicative factor. The
resolution complexity of any partitioned collection is logarithmic; the actual cost per
stage varies according to the type of collection and the distribution used.

6.3.2. Experimental Performance

Rather than fill the section with data, we shall concentrate on the most important
low-level performance aspects when performing the experiments. These are the
factors which affect all other aspects of the prototype's performance, and so are most
representative of its drawbacks.

The experiments were performed using Phœnix on the existing Wisdom kernel.
This is composed of a four-by-four mesh of T800 Transputers connected via a serial
line (100Kb/s) to a Sun file server acting as a Wisdom host, which is in turn
connected by a 10Mb/s EtherNet to the departmental filing system. All Wisdom
executable programs are loaded using the Sun NFS protocol, with Wisdom itself
acting as an NFS client.

For the experiments, Phœnix was instrumented with a class Logger to record
logging information. This information took the form of a single asynchronous
request, and was stored along with a time-stamp and a source-node record. Logging
was activated and de-activated through a property.

The experiments were designed to identify the factors which introduce
overheads when creating applications with Phœnix, and to quantify these overheads.

In general, it may be noted that it proved very difficult to obtain timings of any
real significance for Phœnix. The system's flexibility in allowing different aspects of
its behaviour to be changed easily means that representative timings are hard to come
by: there is always the possibility that a better distribution pattern exists. The
instrumentation used is rather intrusive, and can distort the transport times for
messages significantly. Problems were also experienced in the C run-time library
with regard to the accuracy and length of the system timers, making it impossible to
obtain long-term timings.

Basic Properties

The start-up of a Phœnix application involves the following tasks:

• creation of the master (Application) object;
• creation and loading of the PropertySheet and Logger

objects;
• the running of the Application object's main code section.

The first experiment determines the overheads in this process, which may then
be discounted in future timings. The average time taken to start an application was
recorded by the Logger as 305ms. This figure, of course, does not include the time
taken to load most of the object servers – for Logger, PropertySheet and the

- 155 -

Application – so these occur “before time” and may be discounted in this and all
future experiments.

The time taken to run an application which performs no action – simply starts-up
and then terminates – is 492ms.

Object creation
The creation of objects may occur in two modes: in the first, an object is created

onto a node which is not running a suitable object server; in the second, an object
server is running at the target node.

In both cases, the number of “hops” (communications links traversed) between
the creating object and the new object was varied. In the first case, the results were
as follows:

number of hops

time (ms)

6400
6500
6600
6700
6800
6900
7000
7100
7200
7300

0 1 2 3 4 5

In the second case, the results were:

number of hops

time (ms)

240

242

244

246

248

250

252

254

256

258

1 2 3 4 5

We can illustrate the difference between these two sets of timings in the

following graph which plots both timings on the same axes:

- 156 -

number of hops

time (ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5

creation time (new
server)

creation time (existing
server)

From this it can be seen that there is a generally linear relationship between

distance and object creation time, and that the time taken to start a new class server is
of the order of 6 seconds. This is a quite appalling figure! It is somewhat mitigated
when the current experimental set-up is examined. Files must be retrieved from the
host file system across a serial line, which achieves a transfer rate of less than
100Kb/s. In addition to this, there is a certain (variable and effectively
unquantifiable) overhead associated with accessing the departmental file servers.
(File system design in scalable is discussed extensively by Austin[9][11], and one
conclusion is that filing systems require extensive kernel support if they are to be
efficient, especially in the area of large-packet message transport. This feature is not
currently available in Wisdom, with the result that file system access times suffer.)

Still, the figure is quite unacceptable. It indicates that significant gains in
performance may be expected if the system has all its necessary code servers loaded
ahead of time, rather than loading them “on demand.” This is exactly the approach
taken by other systems, where all an application's code is assumed to reside on all
nodes. For a multi-user scalable system this assumption is not realistic: in the
interests of realism, we shall use lazily-loaded code in all experiments, but the
benefits of eager loading should be borne in mind.

Method Calls
An experiment was performed in which method calls were made between

objects at varying distances. Three different methods were tried, taking arguments of
an integer, a string, and an integer and a string. The results for varying distance
(averaged over 100 repetitions) were as follows:

- 157 -

number of hops

time (ms)

20

25

30

35

40

45

50

1 2 3 4 5

int

string

int x string

These figures indicate that the (un-)marshalling time for integers is negligible,

but that for strings is of the order of 20ms (the marshalling time for reals is
comparable with that for integers, as is the time taken to marshal an object handle).
There is a constant overhead of around 20ms from acquiring packets, creating server
processes et alia. The time taken to send a method call averages at about 1ms per
hop (in each direction).

Partitioned Collections

Arrays, unlike the other storage architectures, allocate all their elements at their
creation. The creation time for various sizes of array were as follows:

- 158 -

size of structure

time (ms)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

20x20 40x40 60x60 80x80 160x160

Note the unusual shape of this graph: there is a “step” where a significant

number of components must be created, but then a tailing-off as components are
placed onto nodes which already have servers running.

Creating associative and directed collections takes approximately the same time
as taken to create an array with a single component: experimentally, this comes to
around 20 seconds (adjusted) A more meaningful time is the time taken to split a
component of such an architecture when one overflows.

Splitting a Component
An associative memory splits a component whenever the number of elements in

that component grows to be too large. The time taken to perform a split depends
upon several factors, notably the number of new buckets which are created as a result
of a split operation and the number of elements which were in the bucket being split
(both controlled by properties).

Take as an example a structure with ten-element components which, when split,
generates four new components (i.e. adds two bits to the hash key). The splitting
operation takes 27674ms (creating nine new objects and four new class servers).
Added to this is the time taken to re-arrange the contents of the split component
between the new buckets (averaging around 2200ms – ten resolution operations).

The times for directed structures are almost identical, and are not shown. This is
hardly surprising, given the similarity between the algorithms used in splitting both
structures. The re-arrangement operation averages at 1800ms.

Resolution
The resolution of elements within an array depends upon the distance (in terms

of resolution steps) between the receiving component and the servicing component:

- 159 -

there is also a factor of distance in terms of hops, although this is less significant.
The following results were obtained by for accessing an array of fixed size, varying
the targeted element to vary the distance between receiver and servicer:

number of resolution steps

time (us)

100

110

120

130

140

150

160

170

0 1 2 3

An associative memory incurs similar overheads, but with better linearity due to

the simpler resolution protocol:

0

50

100

150

200

250

300

0 1 2 3
A directed collection resolves along edges in a constant time, approximately

20ms. Retrieving data from each node follows the same timing profile as retrieving
from an array.

Activities

The time taken to create the replicas of an activity is the main factor affecting an
application's start-up time. The time taken to create replicas of an activity
(performing no action) are as follows:

- 160 -

number of activities (components)

time(ms)

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

1 4 9 16 32

Notice again the “step” in the graph where re-use of servers occurs.

6.3.3. Discussion

In discussing the figures arrived at above, we shall start with the admission that
they are disappointing in the extreme. There are two main reasons for this: the
prototype nature of the low-level support system and the granularity of
decomposition.

The low-level supporting system of Phœnix, especially the RPC kit, are very
simplistic in their approach to communication, and could be significantly optimised
given time. In particular, the way in which parameters are marshalled could be much
improved.

At present a parameter block is built by moving the value of each parameter,
individually, into the block. This is somewhat unnecessary, as there already exists a
suitable block holding all parameters: the stack frame of the current RPC stub. In
principle the contents of the stack frame could be transferred directly to a parameter
block; in practice, the way in which C++ handles certain structures (especially
strings) as pointers to local memory, and the internal architecture of the Transputer,
make this rather too difficult. Given a different, more regular host language on a
different processor architecture, it would be possible to reduce significantly the
delays associated with RPC.

The second problem is more serious. As mentioned above, Phœnix is written so
as to be highly modular and hence highly extensible and customisable. This is
accomplished by a detailed object-oriented decomposition in which each object
represents a separate logical entity.

Unfortunately this results in a profusion of objects. Consider an array. An array
consists of several components, each having an associated Region object holding
the bounds of its local data. This arrangement allows new Regions to be defined –
defining, for example, hexagonal areas of space – without altering the definition of
the component class. This makes for easier extension; it also means that each test
for locality in a component results in a method call to another object. Even though
the Region is likely to be on the same processor as the component, the parameter

- 161 -

marshalling overhead is still incurred. A similar problem exists in associative
memories, in which slices of hash space are represented by objects.

The overheads thus incurred are prohibitive, and make Phœnix impractical as a
programming environment. Ironically, this is a direct result of proper
decomposition! The use of the “correct” discipline results in a severe degradation in
efficiency.

In some ways, however, this is point in Phœnix' favour. It is possible to develop
software according to the traditional, well-accepted disciplines and have it run in a
scalable manner – albeit very slowly. Phœnix then allows an application to be
refined, and one possible refinement path is to remove some of the auxiliary objects
– effectively freezing the application into a particular pattern and reducing its
flexibility – in order to reduce communications overhead and hence improve
performance. This introduction of performance after-the-fact may make for faster
software development times overall, as the early stages may be programmed
experimentally.

6.4. Three Examples

We shall conclude this evaluation by creating some Phœnix applications. Firstly
we shall review the practical comparison of Phœnix with the Booch Components.
We shall then follow the creation of two applications from start to finish. This
derivation illustrates the stages which Phœnix encourages in creating scalable
parallel applications.

In the examples, the code presented is functionally that required by Phœnix. We
have, however, converted the syntax into “pure” C++ rather than use the pre-
processor directives necessary in the current prototype, and have elided some low-
level details. The structure of the code, however, is that of Phœnix.

6.4.1. Example One: the Booch Components

The Booch Components25 are a library of data structures used extensively in the
Ada community, and which have since been implemented in Ada, C++ and Ada-9X.
As an established class library consisting almost entirely of data structures, it offers
an ideal vehicle for testing the flexibility and extensibility of the Phœnix memory
modules: the result is a parallel, distributed and scalable implementation of an
existing software tool.

An Overview of the Booch Components
The most accessible presentation of Booch's work is [24], which covers the

components' implementation in C++. The original version of the Components, in
Ada, is presented in [23].

The Component library consists of four orthogonal elements:

25We shall use the term Component (with a capital C) to refer to the Booch components, to avoid
confusions with Phœnix' components (with a small c).

- 162 -

• abstract data types;
• internal memory representations;
• concurrency controllers; and
• utilities which may be applied to structures.

The abstract data type classes define minimal abstract data type interfaces to a
component. For example, queues, sets, strings, rings, trees and maps are all provided
as abstract data types. For each data type one of several memory representations
may be used, each having a different time/space complexity, which may include
garbage collection. Concurrency controllers control access to data structures in a
multi-tasking environment. The utilities implement functions such as sorting and
searching, and may be used in conjunction with structures of several different types.

The first three element categories exist (in the C++ implementation) as
independent class hierarchies. To create a usable data structure, an application
creates a class which multiply inherits one of the data type, storage management and
concurrency control classes. The class itself need provide no extra functions
(although it can if required).

Comparing the Components with Phœnix
Some immediate differences between the Components and Phœnix are evident.
The primary difference is that the Components are not classes: rather, they are

templates from which classes may be constructed by combining an ADT, a storage
manager and a concurrency controller. The classes are parameterised according to
the type of their contents, using the templates mechanism defined in the C++
standard.

Phœnix collections are classes in their own right, containing their storage
management and concurrency control protocols within them. The classes are not
parameterised by type: instead the basic architecture classes are parameterised by the
size of elements which they are to store. Type-safe access is provided by sub-
classing the component class and tightening the type checking at its interface.

At first glance, it would seem that Phœnix' collections are considerably less
flexible than the Components. Their storage management and concurrency
controllers are in-built rather than being composed from “outside,” and their type
parameterisation is less safe. However, the internal architecture of Phœnix makes it
quite straightforward to implement a new local memory architecture by re-defining
the collection's basic access members: this is a result of the careful use of virtual
functions. The same is true of concurrency controllers.

Type safety remains a problem in Phœnix. The templates mechanism of C++ is
not implemented by very many compilers, and those which do implement it usually
use some form of macro expansion. In a shared-memory environment this may be
acceptable, but its use in Phœnix would be complicated since every new class must
have its own class server. Ideally a more flexible type system than that of C++
would be used to alleviate these problems.

Local storage management architecture is slightly less flexible in Phœnix than in
the Components, as Phœnix aims to maximise the use of global rather than local
memory. Phœnix adopts a slightly more cavalier attitude to local memory, but

- 163 -

allows global memory to be co-ordinated; the Components assume that all memory
is shared, and attempt to optimise its use by providing storage managers which make
different trade-offs in time and space.

The concurrency controllers provided for the Components are quite low-level,
especially when compared to Phœnix' use of deontic logic. They are tailored for use
in an environment where concurrency is the exception rather than the norm: in Ada,
one might reasonably expect that only a few tasks will share a set of data structures.
There is no attempt to minimise potential interference between concurrent accesses.

The Component's associated utility objects – for searching, sorting et cetera –
are similar in flavour to a set of commonly-needed activities which might be
implemented easily in Phœnix.

The most radical difference, of course, is that Phœnix collections are distributed
and have support for concurrency regulation. There is no feature in the Components
corresponding to Phœnix' use of data structures as infrastructures for concurrency
regulation, and the Components do not address issues of distribution. Since each
Component is a single object, they cannot be distributed as they stand even with a
distributed host language (e.g. [62]). This makes then unsuited for use in a
distributed, highly parallel environment.

Sample Implementations
Several Components were re-implemented in Phœnix to examine whether there

were any important gaps in the Phœnix class hierarchy as compared to that of the
Components.

A selection of the Components were easily implemented in Phœnix. These re-
implementations shared all the important features of the Components in terms of
external interface (functionally, though probably not syntactically, as the C++
Components' interfaces are not available in the public domain). For example, the
Ring component can easily be implemented using a directed storage architecture.
(The Components do not provide an array type, as this is provided intrinsically by the
host language.) The Phœnix associative memories may be used to implement
structures behaving like the sets, bags and maps (dictionaries) found in the
Components.

The Phœnix implementations were completely scalable, which would not be the
case with an implementation of the Components. They provided a better interface
for concurrent access. Neither of these two results is surprising, as Phœnix was
specifically designed with these aims in mind: it does illustrate, however, that there
are important differences between computing in scalable and non-scalable
environments.

One difference which was discovered was that large-scale queues and lists may
be highly inefficient in the partitioned model, essentially because of their single
points of access: adding to the head of a list must always be directed to the same
component of the directed structure which composes the list, for example.
Fortunately such large lists – or, at least, this sort of manipulation of large lists – are
quite rare, and it is acceptable to create partitioned lists (or queues, or dequeues, or
other similar structures) as directed collections which are seldom partitioned. This
may be accomplished very simply in Phœnix by setting an appropriate property: the

- 164 -

result is that all elements of the list will tend to reside on the same processor, which
has the same problem with hot-spots but avoids any partitioned overhead. Hence the
properties mechanism allows problems like these to be addressed without changing
any of the application's code.

6.4.2. Example Two: a Cellular Automaton

Cellular automata are a commonly-encountered processing model for highly
regular, highly parallel systems. They are especially prevalent in simulation studies
of physical systems such as gases and fluids. A good overview of the field is
presented by Wilson[118].

Coarse Structure
A cellular automaton is essentially an array of points, each representing a

discrete amount of “real” space. A single point in the automaton has the “average”
value of the area which it represents: the more points the automaton has, the closer
it will approximate to a continuous space and the better its behaviour will model the
“real world.” The value of each point is typically a simple integer or a vector.

Conceptually, a cellular automaton simulation centres around a large array of
points, where each point is a structure which holds the properties being modelled as
they evolve through time.

Computation in the automaton occurs in the following manner. A point is
updated at time t by obtaining the values of its immediate neighbours (and itself) at
time t-1 and averaging these values. Hence a point's behaviour is only directly
influenced by its immediate neighbours (although indirectly it is influenced by the
entire model), and so the computation exhibits an almost ideal locality of reference.

Parallelism in such systems comes by updating the values of several points
simultaneously. In principle, every point may update its own value: in practice, in
automata consisting of millions of points, this amount of parallelism is
unmanageable and processes are assigned to update the values of a locale of points.

Points and Access
A single point within a cellular model may be quite complex. A simple example

is a model of electrical field characteristics, where each point holds the field
intensity; more complex is a fluid flow system in which each point holds the local
flow vector.

It is the updating function – controlling how a point's value is updated by its own
and its neighbours' values – which determines the functionality of the model. For our
current purposes, the details of this function are largely irrelevant: a set of values
must be obtained from the array and have a simple function applied to them.

An important feature of a cellular system is that there may be some amount of
asynchrony in evaluation. It is not necessary to force all points to be updated for
time t before proceeding to time t+1: it is only necessary to wait for the values of
those points actually being interrogated to arrive at the current time. This does,
however, imply that a point can carry with it a certain amount of its past history, and
that values from times in the past may be obtained.

- 165 -

A Primitive Implementation
The most primitive implementation possible builds the automaton from the basic

array class, extended to hold elements of type Cell:

class Cell : public Object {
private:
 ...
public:
 Cell(int history =DEFAULTHISTORY);

 float GetValueAt(int t);
 void SetValueAt(int t, float v);
};

For simplicity, we shall assume that the GetValueAt() operation will block
until a value for the requested time is set, and that the last value set defines the
current time. This may be expressed using a customised Lock:

boolean CellLock::CanStart(int st, int t) {
 switch(st) {
 ...
 case SetValueOp:
 ...
 case GetValueOp:
 return (Finished(SetValueOp)>=t);
 }
}

The automaton may be built using the ordinary ObjectArray provided as part
of the Phœnix extension kit. The cells' values are initially set to zero, with two high-
value “peaks” being placed manually towards the centre of the model:

ObjectArray *a; Cell *cell;
Point p(2, 0, 0), q(2, 10000, 10000);
Region *r =new Region(p, q);

cell=new Cell; cell->SetValueAt(0, 0.0);
a=new ObjectArray(r); a->Initialise(cell);

cell->SetValueAt(0, 5000.0);
p.Is(100, 5000); a->AtCopy(p, cell);
p.Is(9900, 5000); a->AtCopy(p, cell);

A Cell is first created with an initial value of zero. An ObjectArray is then
created with the desired dimensions (specified by its two diagonal corner Points),
and is initialised using this Cell (which will be copied into all values).

- 166 -

Initialise() causes the array to be partitioned. The two peaks are then inserted
by placing copies of a high-valued Cell into the array.

Properties
The scalability of a collection is controlled by several factors, the most

important of which is the size of each component. Two considerations affecting the
selection of a component size are the size of each node memory and the amount of
work which will be performed on a component by activities.

The size may be specified as a property by altering the property sheet. At its
creation, an arrayed structure acquires this property and uses it as a hint to determine
the size of components, the number of components created and (indirectly) the
number of nodes over which the collection distributes.

In this example, selecting a component size of 1000 elements on each side
(1000000 elements per component) would result in 100 components, each of which
might potentially be placed on a different processor; it would also result in 100
parallel activities being created to process the array.

A Customised Access Protocol
The interface for accessing cells – using the At() and AtPut() operations in

conjunction with Points – is rather awkward for the current application. The
mechanism is designed so as to cope with arrays having any number of dimensions,
but in the current application we know that there will always be exactly two
dimensions to the array. We may thus specialise the ObjectArray class to
provide a new access protocol which will be more usable:

class CellArray : public ObjectArray {
public:
 CellArray(int x, int y, int d);

 /* access protocol */
 float GetValueAt(int x, int y, int t);
 void SetValueAt(int x, int y, int t,
 float v);
};

These new functions may easily be implemented in terms of the existing
interface, but provide a better, more convenient interface for external objects:

- 167 -

float CellArray::GetValueAt(int x, int y,
 int t) {
 Point p(2, x, y);
 Cell *cell;
 Region *r =GetGlobalRegion();

 if(!r->Contains(p))
 return 0.0;
 cell=At(p);
 return cell->GetValueAt(t);
}

Note that the new function makes no references to the structure's distribution, or
to resolution and partitioning: it is acting, in many respects, as a client to the original
ObjectArray methods. This is also true in concurrency control terms: the new
function do not require additional concurrency control, as it accesses the component's
state through an already-protected interface. It also extends the function of the basic
access routine by returning zero if the value of a point outside the array is requested.

Processing
Performing the processing in the automaton may make use of the concurrency

regulation infrastructure. It is necessary to define a new Activity sub-class to act
as a worker:

class CellActivity : public Activity {
private:
 int simTime;

protected:
 float Evaluator(int x, int y, int t);
 virtual void Body(void);

public:
 CellActivity(int st);
};

The Evaluator() function performs the actual evaluation function,
calculating the value of a point (x, y) at a time t+1:

- 168 -

float CellActivity::Evaluator(int x, int y,
 int t) {
 CellArray *a =(CellArray *) GetCollection();
 int dx, dy;
 float ave =0.0;

 for(dx=-1; dx<=1; dx++)
 for(dy=-1; dy<=1; dy++)
 ave+=a->At(x+dx, y+dy, t);
 return ave/9.0;
}

The Body() of the Activity simple calls this evaluation function once for
each point in the component to which it is attached. The cycle is repeated once for
each time step until the requested simulation time has passed:

void CellActivity::Body(void) {
 CellArray *a =(CellArray *) GetCollection();
 Region *r =a->GetGlobalRegion();
 Iterator iter =r->NewIterator();
 Point p(2);
 int px, py;
 float value;

 for(t=1; t<simTime; t++) {
 p=r->First(iter);
 while(!p.Undefined()) {
 px=p.Ordinate(0); py=p.Ordinate(1);
 value=Evaluator(px, py, t-1);
 a->SetValueAt(px, py, t, value);
 p=r->Next(iter);
 }
 }
}

This activity calculates the mean value of a three-by-three locale of points at a
time t-1 and uses this as the value for the centre point at time t. It uses the iteration
methods of the Region class to iterate through all points held locally by the
component to which it is attached.

Executing this Activity involves attaching it to the components of the
CellArray and waiting for all copies to terminate:

a->AttachStartAndAwait(new CellActivity(SIMTIME));

By using the AttachAndStart() method instead, the activities could be
started without blocking. In either case, a copy of the given Activity is attached

- 169 -

to each component of the collection, without explicit involvement of the
programmer.

Increasing the Granularity of Access
However, a problem with this architecture is immediately apparent: since it

accesses points singly, it requires ten operations – nine reads and one write – to
update each point. Moreover, there will be a considerable amount of redundant
acquisition of information as points are retrieved several times.

A straightforward solution to the first problem is to implement a new access
protocol to the array which acquires a set of points at a single call. This reduces the
number of calls required from activity to array by an order of magnitude. Although
internally the array may still need to make several resolution requests to acquire all
the elements not held locally, it is likely that many of the elements will be held
locally (ideally all of them). In the original architecture, the client activity benefited
from locality by the absence of resolution requests being generated; in the new
system, it also benefits by the fact that no method calls are needed to acquire these
elements.

A possible implementation of this new access routine is as follows:

void CellArray::At(int x, int y,
 int t, float v[]) {
 int i =0;

 for(int dx =-1; dx<=1; dx++)
 for(int dy=-1; dy<=1; dy++)
 v[i++]=At(x+dx, y+dy, t);
}

The client activity's evaluation function must be re-written so that it makes use
of this “chunking” of access:

float CellActivity::Evaluator(int x, int y,
 int t) {
 CellArray *ca =(CellArray *) GetCollection();
 float ave =0.0;
 float v[9];

 ca->At(x, y, t, v);
 for(int i=0; i<9; i++) ave+=v[i];

 return ave/9.0;
}

Although this difference seems trivial, it is crucial. In the first definition of
Evaluator(), nine At() calls were made – all to another object. In the second,
there is a single At() call in Evaluator() and nine in the new definition of
At(): but these calls will be made to the same object, and so incur no

- 170 -

communications overhead unless they are for points held elsewhere. At the same
time, the CellArray memory has become more intelligent and specialised towards
its application.

Caching
The fact that partitioned memory may present an abstract interface may be

exploited to provide features internally which are not visible externally to client
objects. Such additional features may be used to improve performance whilst
maintaining the same interface – a classic optimisation step.

The intention is to use the same scheme as mentioned above but to hide it within
the memory: elements may then be pre-fetched and cached at the component, and
may be retrieved from the cache when requested.

The advantage of this approach is that it requires no modification to client
objects; the disadvantage is that it re-introduces the communications overheads
which the use of external pre-fetching avoids.

The most attractive architecture, then, is to use the “chunked” data access
routine to access a component which internally caches remote objects to avoid
resolution requests.

In the general case, such caching may be extremely unsafe due to the actions of
other clients. There is then a need for a cache-coherence protocol which, in the worst
case, degenerates into a form of DSVM implemented entirely in software. However,
in many cases, the requirements on consistency are less strict: in the current case, for
example, the value of a point forms a history trace which is only added to, never
changed. Caching of the most recent part of the trace may thus be performed safely.
This is a good example of the ability of the partitioned model's ability to absorb the
programmer's knowledge of the application in situations where the details would be
difficult to extract automatically.

Rectangular Distribution of Components
A cellular automaton has a very regular pattern, following the arrangement of

the space which it models; moreover, the requests for remote elements will only ever
be made to neighbouring locales. A further optimisation is to ensure that
neighbouring locales are always mapped onto neighbouring processors; or, more
precisely, match the distribution of components to the underlying mesh-structured
hardware. Such a distribution may be implemented by making use of a novel
distribution manager (i.e. partition sub-class) which performs this mapping, and may
be performed without affecting the shapes of the components26.

26Actually this is not always entirely true. Care must be taken to ensure that no hidden assumptions
about the shape of components are introduced into an application. With care, however, this is
possible: the code fragments given will work for any distribution.

- 171 -

6.4.3. Example Three: an Inference System

Inference systems are typified by Prolog interpreters. The idea is to solve a
query deductively by examining a database containing logical assertions and
inference rules.

The main part of the inference system is the database of clauses against which
queries are solved. The database is a single conceptual structure which may grow to
be very large, and which may be accessed in parallel if required.

We shall represent the database as a large associative memory. We shall make
the assertion, however, that clauses are never removed from the database, so it will
only grow in size.

Resolving queries uses the unification algorithm and may proceed in parallel:
several different processes may attempt to unify different parts of the database, with
the results being combined to give the query's final result.

Clauses and Bindings
A clause is the unit of storage within the database. A clause may contain actual

values and variables, which the unification process will bind onto appropriate values.
Clauses are generated by parsing strings describing the structure of the assertion:

struct Binding {
 string variable, value;
};

class Clause : public Object {
private:
 Binding **bindings;
 ...

public:
 Clause(string str);

 virtual HashKey Hash(void);
 boolean Unify(Clause *clause, Binding b[]);
};

Calling the Unify() method will attempt to match the free variables in the
Clause supplied and the target Clause (the unification algorithm is described in
detail most AI books, e.g. [35]). The result is false if the two clauses cannot be
unified, or true together with a set of bindings describing the most general
unification of the clauses.

The Clause Database
The clause database may be represented as a large associative memory

containing clauses. As with the previous example, the basic partitioned structure – in
this case a Dictionary rather than an ObjectArray – could be used: but we

- 172 -

shall bypass this step and develop an interface which is better suited to our
application.

The database essentially consists of three operations: assert a fact, retract a fact,
and deduce the answer to a query. The first two are simply variations on the theme
of access to the associative memory; the last is a more complex operation involving
operations on the clauses themselves.

class ClauseDatabase :
 public AssociativeCollection {
private:
 ...

public:
 ClauseDatabase(void);

 void Assert(string cl);
 void Retract(string cl);
 int Query(string cl, Binding b[][]);
};

The operations accept string arguments, creating Clause objects to
represent them internally: thus the Clause object is never manipulated by clients of
the database. All the operations must make use of the ability of Clause objects to
generate a hash key based on their values. The Hash() member function must
return a hash key from the contents of the Clause, and this key will then be used to
store and access clauses.

The Query() method functions by unifying the query against all members of
the database using the clauses' Unify() methods, and returns the set of sets of
bindings representing all possible unifications across the database.

As an example, consider the following database containing the logic
programmer's favourite, a family tree:

man(simon)
man(matthew)
man(chris)
woman(pamela)
man(frank)
woman(betty)

parent(chris, simon)
parent(pamela, simon)
parent(frank, matthew)
parent(betty, matthew)

father(?x, ?y) :- man(?x), parent(?x, ?y)

- 173 -

Creating this database involves first creating the ClauseDatabase structure,
initialising it, and placing clauses into it

ClaseDatabase *cd;

cd=new ClauseDatabase(); cd->Initialise();
cd->Assert("man(simon)");

and so forth. The assertion of new facts and rules may result in the partitioning of
the clause database memory structure, controlled according to properties from the
property sheet. The most important property in this case is the size of each
component, interms of the number of clauses which it may contain: exceeding this
limit causes the component to split. Smaller component sizes result in more splits
(which take more time) but allow more concurrent activity to be generated when
queries are performed in parallel.

Once built, queries may be made of the database, for example:

Binding **bind;

cd->Query("father(chris, simon)", bind);
 true

cd->Query("father(?x, ?y)", bind);
 {?x=chris, ?y=simon}
 {?x=frank, ?y=matthew}

(where the lines in italics represent the results of the queries). This is an example of
a sequential query regime being run on a distributed-memory system: a simple, but
hardly efficient solution. For better performance, especially on large databases, it is
necessary to use parallel evaluation of queries.

Parallel Querying
Within Phœnix, a parallel query will obviously involve the creation and

attachment of Activity objects. For every sub-clause in a query, an activity is
created on every component in the clause database to perform the unification. Each
activity attempts unification against those clauses which are held by its local
component. The result is that a query gives rise to a set of worker activities which
will eventually return the set of all possible unifications to the creator of the query.

The activity takes the usual form, but is extended with functions to allow the
results of a unification to be acquired:

- 174 -

class SubGoalProcessor : public Activity {
private:
 void SetBindings(int b, Binding b[][]);
 ...

public:
 SubGoalProcessor(Clause *gl);

 int GetBindings(Binding b[][]);
};

We shall assume that a single function LocalQuery() has been added to the
definition of ClauseDatabase which behaves in exactly the same way as
Query() but only attempts to unify the query with the clauses held locally. The
activity's Body() code may be implemented as follows:

void SubGoalProcessor::Body(void) {
 ClauseDatabase *cd =(ClauseDatabase *)
 GetCollection();
 Clause *goal =GetGoal();
 Binding **b;
 int uni;

 uni=LocalQuery(goal, b);
 SetBindings(uni, b);
}

For simplicity, we shall consider the case of a query composed of a single
clause, which may be answered using the following algorithm:.

Clause *query;
Group *g;
SubGoalProcessor *sgp;
ClauseDatabase *cd;
Binding b[][], c[][];

sgp=new SubGoalProcessor(query);
g=cd->AttachAndStart(sgp);
g->Await();

for(i=0; i<g->Members(); i++) {
 g->Member(i)->GetBindings(c);
 CollectBindings(b, c);
}
delete g;

- 175 -

The operation makes use of the Phœnix Group object to manipulate a set of
activities en masse: in this case, a Group is created for the activities evaluating all
the sub-goals, and the routine waits for all processing to complete before collecting
the results together into a single set of bindings.

It is interesting to compare this code fragment against the example presented in
§2.4. The structure of the algorithm is exactly the same: an activity is created and
attached to a memory. The creator awaits the completon of the query and then
amalgamates all the partial answers to form a single result (a set of sets of bindings).
There is no reference to the exact amount of concurrency generated, or the location
of elements required in processing queries.

Refinements and Optimisations
The refinements which may be appropriate in this application are less obvious

than those of the previous example, and it may be better to refer to someone whose
studies of parallel logic programming are an end in themselves rather than the current
means to an end. – a good example is the work of Wise[121]. A few alternatives
suggest themselves, however.

The first is that a predictable hash function, coupled with the predictable nature
of clauses, may be exploited. If, for example, all clauses of the form man(?x) are
hashed with the same prefix, they can be guaranteed to all fall into the same portion
of the partition tree and it will only be necessary to create sub-goal processors on a
small portion of the collection's components.

At present, evaluating a new query requires the attachment of a new set of
activities. An alternative would be to create the evaluating activities along with the
components of the database, and to send queries directly to these activities.
Specialising the memory interface would allow parallel processing to occur in this
fashion without the user's involvement.

6.5. Scalable Memory, Partitioning and Phœnix: a Judgement

The preceding sections have evaluated to work presented in the earlier chapters
from four main perspectives:

• how good is the abstraction of scalable memory when creating

scalable applications?;
• how good an implementation of scalable memory is the

partitioned model?;
• how well does the Phœnix prototype perform?; and
• how easy is it using the model, as embodied in Phœnix, to

create scalable applications?

We shall here draw together the conclusions reached in each of these evaluations
to form an overall value judgement on the system.

The idea of a scalable memory which may be distributed transparently across the
nodes of a multicomputer system is a very powerful one. When compared with other

- 176 -

similar systems it offers advantages over them all, and suffers from few of their
disadvantages. The ability of a data structure – a large, user-defined, strongly-typed,
scalable collection of elements accessed using meaningful names – to be used as a
programming metaphor is a major simplification over other parallel processing
paradigms.

The partitioned object model is a good implementation of the scalable memory
abstraction. Again, it offers several large advantages over other possible
implementations: it is potentially more flexible and tailorable than either Linda or
DSVM, and would allow these systems to be implemented in itself if required.
There is little or no loss of abstraction when moving to a partitioned system;
moreover, a partitioned data structure may be configured very finely to take account
of any application-domain knowledge. The collections may also be used to regulate
concurrency in a scalable manner.

However, the partitioned model suffers from a handicap when compared to
recent Linda and DSVM implementations, in that these systems make use of
dedicated hardware. No software-only system can hope to compete against a rival
which uses hardware assistance to improve its performance. Partitioning is less
susceptible to enhancement via hardware, although a machine designed exclusively
to support its object model would be a major step in this direction.

The scalability of the system is closely tied to its use of “hints” supplying
important parameters. Currently the best values for these hints must be determined
experimentally: it would be better if this process were automated to some extent.
Although the use of hints is an improvement over the re-compilation required by
other systems, it falls short of the goal of truly transparent scalability.

Phœnix is very much a prototype system, and lacks several features which
would be needed in a “real” programming system. Its host language's type system
and object model are not ideal – although this illustrates that a partitioned system can
be implemented in a variety of host languages. The lack of optimisation, in both the
host and the RPC system, coupled with the fine decomposition of the Phœnix class
hierarchy, means that performance suffers as a result of the large number of method
calls made. Flexibility, in this sense, is a drawback.

The model is, however, extremely easy to program in. If applications are built
around large data structures – and a sizeable fraction are – then the partitioned model
and Phœnix may be used to create a working application in a remarkably short time.
This basic applications may then be refined to remove some overheads – effectively
performing the reverse of an object-oriented decomposition – in order to improve its
performance. There is no reason in principle why such refinement might not result in
an application as efficient as one written using a lower-level programming system:
in practice, it is doubtful that refinement would be carried so far.

The partitioned model offers good potential for the creation of applications able
to tolerate faults in the underlying hardware. Although we did not examine fault
tolerance experimentally – due to constraints of time and of available hardware –
there is reason to suppose that a partitioned system might be built which was
extremely resilient to faults. An experimental verification of this would be
interesting future work.

- 177 -

6.6. Résumé

This chapter has sought to evaluate the work set down in the preceding chapters,
with a view to deciding whether the ideas presented really constitute a viable
approach to scalable parallel programming.

The scalable memory abstract was examined. The abstraction was seen to hide
some of the more troublesome characteristics of multicomputer systems, whilst
providing a means of regulating the distribution, and hence the concurrency, used in
solving problems.

The partitioned object model was seen to be a good implementation of the
abstract memory model, with advantages over all the possible alternative
implementations – although it also suffers from disadvantages, notably its use of
software-based routing of requests.

The Phœnix prototype was examined and was seen to be deficient in several
respects. The use of C++ as a host language outlawed some desirable language
features – notably true polymorphism and the creation of activities from first-class
functions – which were seen to be advantageous to a partitioned system. The
system's performance, from a theoretical standpoint, was seen to be free from
bottlenecks as long as the application exhibited locality of reference, but its practical
performance left much to be desired. As a programming system, however, Phœnix
was seen to offer great scope for fast prototyping of applications, followed by
stepwise refinement to improve performance as an optimisation step. The need to
consider the exact distribution of applications from the start of development was thus
removed.

Chapter 7.

Conclusions and Further Work

To live only for some future goal is shallow. It's the sides of
the mountain which sustain life, not the top. Here's where
things grow. But, of course, without the top you can't have
any sides. It's the top which defines the sides. So on we go ...
we have a long way to go ... no hurry.

 Robert M. Persig, Zen and the art of motorcycle maintenance

This thesis has examined some aspects of programming on machines whose
hardware and software resources are dynamically variable. Such scalable machines
offer considerable hope for “future-proof” computing, as their capabilities may be
incrementally increased as required to support a larger user base, more
computationally complex applications et cetera. The central theme has been the
development of an abstract programming model, an implementation architecture and
a programming environment for creating scalable parallel applications. Such
applications are capable of taking advantage of whatever resources are available in
the machine at run-time, without re-compilation.

7.1. Réprise

Chapter one explored the concept of scalability in all its forms, concluding that
the essence of something's being scalable was its ability to cope gracefully with
changes in its fine structure whilst maintaining its gross structure. It then reviewed
the existing literature in three areas: machine architectures, operating systems and

- 180 -

programming environments for parallel distributed machines. The focus of this
review was on the scalability of the various systems described.

Of all the available multicomputer architectures, only those architectures
maintaining a constant number of links per node were seen to be scalable in our
sense. Although hypercubic architectures are scalable in some respects, adding
additional nodes requires that all the nodes in the system are upgraded with extra
links. The design of operating systems for these machines was a challenge, as it
requires a substantial degree of information hiding to shield applications from
changing number of processing nodes.

Many of the programming environments described in the literature were seen to
offer the possibility for creating truly scalable applications, but few procedural or
object-oriented systems provided a sufficient degree of architecture-independence for
scalable applications to be constructed easily.

Given this, chapter two developed a more abstract view of scalable computing.
It began by examining the nature of programming systems in general, concluding
that all such systems are built using layers of abstraction. This allowed us to take the
view that toolkits built on top of programming languages nevertheless provide the
programmer with an abstract machine on which to write applications. For a scalable
system, such an abstract machine could be seen as implementing a model of memory
and processing which was highly divorced from the underlying hardware and
software base: this allows applications to be constructed using a shared-memory
model whilst retaining a large degree of scalability.

Chapter three developed an object-oriented implementation of the abstract model
of scalable memory, built around the notion of object communities constructed to
implement highly scalable memory modules. These communities appear to the
programmer as common data structures. They are composed of many objects which
interact to present the illusion of a single logical entity. This means that a data
structure may be created which is as large as required by an application,
unconstrained by architectural features such as the size of individual node memories.

A collection of techniques were developed for the creation of such memory
modules. These techniques included the design of a novel hashing algorithm with
highly scalable and distributed characteristics. The complexities and access
characteristics of the various approaches were analysed, as was the ease with which
the structures might be extended to provide application-specific functions.
Consideration was also given to the effects of failures within the machine, and the
ability of the partitioned model to degrade gracefully.

Chapter four addressed the problems implied for concurrency control and
regulation by the introduction of scalable processing. Concurrency control was first
dealt with: while no new model or algorithm was presented for concurrency control
in a scalable environment, a suitable system was devised from a fusion of the deontic
concurrency control logic of DRAGOON with the auxiliary control objects of
Arjuna. This fusion is extremely flexible, allowing applications to specify complex
concurrency control constraints simply.

Concurrency regulation was introduced by the observation that a multiple-
worker approach is very well-suited to a system with shared memory. The number
of tasks may be controlled automatically by the partitioned collection itself, with all

- 181 -

co-location and replication occurring transparently. Support may be provide for
termination detection, speculative concurrency et cetera.

No new programming system is complete without an experimental
implementation, however simple. Chapter five described Phœnix, an implementation
of the partitioned object model in C++. Phœnix follows closely the descriptions of
chapters three and four, with some restrictions introduced by the syntax and
semantics of C++. The implementation is basically a virtual object space within
which partitioned collections may be built: all the features of the partitioned model
are supported. Considerable emphasis was placed on the construction of a “clean”
class hierarchy with features for easy extension.

Chapter six presented the results of the evaluation performed on both the
partitioned model and Phœnix. The use of scalable memory was judged to be a good
abstraction for scalable computation, and the partitioned object model showed many
advantages over the other possible implementation strategies. The class of
algorithms suited to partitioned computation was identified.

The Phœnix prototype was analysed in detail. It was found to be a good
implementation of the partitioned model in terms of its theoretical complexity and
the support which it provided for the creation of parallel applications. Some case
studies were used to demonstrate the ease with which a Phœnix application may be
first prototyped and then refined into a more suitable form. The practical
performance of Phœnix, however, was shown to be prohibitive, as too much
overhead was introduced by the underlying system and by the fine level of
decomposition performed to maximise the system's flexibility: ironically, a good
object-oriented decomposition is what destroys the system's performance.
Identifying these causes, however, lead to methods by which the overheads might be
eliminated.

Some of the deficiencies of Phœnix were also seen to derive from the use of
C++ as a host language. The major problems with C++ in this context were
identified.

Contributions

The research described has, it is believed, made the following contributions to
the field of programming language design for scalable systems:

• a thorough discussion of the concept of scalability in all its

manifestations – from hardware, through algorithms, to
applications;

• a novel parallel programming model which views memory,
rather than processing, as the central component of a parallel
system, around which processing may be centred in a scalable
and flexible manner;

• a collection of implementation techniques which allow true
shared-memory computing to take place in a distributed-
memory environment, using the abstract programming model;

- 182 -

• a novel algorithm for building large hashed data structures
which is scalable, distributed and free from bottlenecks; and

• some insights on language and operating system design for the
next generation of scalable systems, in the light of the
experience gained in the course of the research.

7.2. Further Work

The work presented in this thesis is, of course, not an end in itself. It has
suggested several course of study for the future.

A Language for Partitioned-model Programming

The design of the partitioned object model has been an experiment in the design
of a programming system, differing from a programming language only in as much
as that it may be implemented in any one of a number of possible host languages. By
identifying the features in the host which most act to the benefit (or detriment) of the
partitioned model (§6.2.4), it is possible to draw some conclusions about the form of
an “ideal” scalable parallel programming language, in which the ideas of scalable
memory are embedded.

The model rests on the initial contention that the distributed nature of
multicomputer memory should not propagate to the programmer, in the sense that it
should not make the construction of applications more complicated unnecessarily.
The way in which it should propagate is by allowing more efficient, more parallel,
more scalable applications to be constructed. This allows the power of
multicomputer architectures to be harnessed whilst hiding the difficulties which they
introduce.

A language based on the partitioned model presents memory as a collection of
typed abstract memory modules, to which activities are attached. This means that the
methods by which data is structured within the language must be very flexible. In
particular, it is important that data structures may be introduced using type
parameterisation or polymorphism. This greatly increases the generality of memory
modules.

A more important contribution comes from the provision of first-class functions.
The ability to build new concurrent activities ex nihilo at run-time is something
which is seriously missed in Phœnix: although providing no essential advantages in
terms of expressibility, first-class functions make the creation of general-purpose
tools very much simpler. (Interestingly, first-class code is a feature of Smalltalk –
the first object-oriented language – but not of many of its descendents.)

Once we have the ability to create worker tasks “on the fly,” we reduce the
number of classes required by an application. The code which an activity is to
execute is simply a parameter – especially when the types of elements contained by
the activity are also parameterised.

Indeed, the ability to pass code to objects as parameters raises some questions
about the nature of objects. What is the distinction between a method and a function

- 183 -

passed as a parameter? Does it make sense to change the text of a method
dynamically? These are interesting directions for the future.

A Better Implementation

The most pressing need is for an implementation of the partitioned model which
is better than Phœnix in terms both of performance and of language design.

The factors contributing most to Phœnix' poor performance were identified in
§6.3.3: the poor implementation of remote procedure call, coupled with the
overheads involved in dynamically creating class servers. Optimising RPC is a
difficult and time-consuming task, although experience on other projects indicates
that it is feasible. The size of code servers may be reduced by allowing some
portions of the server – the RPC management especially – to be shared by all the
class servers on a node. Both these improvements would have a considerable effect.

Another alternative is to implement a virtual machine interpreter running on
each node. The code for the various objects is then simply passed to this interpreter.
Such an organisation is more portable, but incurs a penalty through the use of
interpretation. Such a strategy interacts well with the ideas of first-class functions
and other high-level constructs, however.

Applications Experience

It is difficult to evaluate the success or usability of a new programming approach
without developing a significant amount of code with it, and naturally it is difficult to
obtain such experience in a limited time. There is also a natural reluctance on the part
of third parties to invest time programming an experimental system.

Phœnix is not a practical vehicle with which to perform large-scale
programming, but with a better implementation it would be possible – and eminently
desirable – to obtain more practical experience with the construction of realistic
partitioned-model applications.

In particular, there is a need to experiment with the configuration of scalable
applications. There area great many factors which must be balanced to achieve an
optimal configuration and, although some small experiments in this line were
performed, meaningful results could only come from prolonged use of the system.

Some form of tool support for generating configurations, or for assessing the
effects of changes, would also be beneficial. The latter case could take the form of
additional instrumentation of partitioned collections (activated by a property) which
analysed resolution traffic. It is then possible to determine the effects of different
property values by examining (for example) the different number of remote requests
generated by activities

Fault Tolerance

Fault tolerance in the partitioned model was discussed briefly in §3.5, although it
was not embodied into Phœnix; nor is the Transputer a suitable testbed.

- 184 -

Implementing a partitioned system on a different architecture would make it
possible to test the ability of the partitioned model to withstand faults in its hardware
and software. The techniques outlined in §3.5, although quite minor, offer the
potential for a highly fault-tolerant memory architecture to be constructed.

7.3. Conclusion

The partitioned object model has been shown to be a possible programming
environment for creating highly parallel, highly distributed, highly scalable
applications. It has several advantages over other systems.

The most notable advantages are in the areas of abstraction and refinement. The
model provides a very good abstraction over a scalable machine, hiding the issues of
data distribution and concurrency regulation from the programmer. The programmer
is presented with a system based on large scalable memory modules which manage
distribution of data elements automatically.

In contrast to many other systems, the partitioned model still allows the
programmer to exert a marked degree of control over data distribution. This control
comes from two sides: the ability to supply run-time parameters, and the ability to
provide totally new distribution controller. The former allows factors such as
component size, tree structure et cetera to be controlled at run-time, without re-
compiling the application and possibly making use of automatic tools; the latter
means that new distribution algorthms may be introduced.

The abstraction over the hardware view of memory allows programmers to
create applications very quickly using the partitioned model, without being
immediately concerned about distribution. The exact distribution of an application
may be left until it is debugged and working, at which point different distribution
patterns may be applied a posteriori if required. The distribution of elements has no
semantic relevance, and so need only be considered where performance is an issue.
This is a major simplification over other parallel programming systems.

Some of the techniques developed may have uses outside the current work. The
best example of this is the scalable hashing algorithm, which might form the basis for
a distributed name server or a database engine. The algorithm might also be used to
manage data stored on disc: by decomposing both the data and index table of a
hashed data structure, it would allow better control over what parts of the structure
are brought into memory.

Concurrency concerns the programmer in two ways: controlling concurrent
activity to avoid interference and regulating it to determine how many concurrent
activities to deploy as part of an application. The first is tackled on a per-object basis
by using concurrency control objects coupled with a deontic logic for the
specification of constraints; the latter is addressed using the memory infrastructure.

The partitioned model contains support for the multiple-worker paradigm for
concurrency control. Concurrent activities may be created which access a scalable
memory to transform it in some way. These activities are replicated according the
memory's size and distribution, with the scalable memory itself determining how
many replicas to create and where to locate them. An application may thus treat
parallelism as indeterminate: it specifies when parallel activity is to occur, but does

- 185 -

not specify how many activities should be created or where they should reside.
Memory organisation controls concurrency, regulating the number of activities
automatically. This allows concurrency to scale alongside memory.

Although not considered at length, partitioned data structures might form a good
basis for a fault-tolerant memory architecture. Their abstract nature means that fault
tolerance may be added, to some extent, internally, without being visible to clients.

Applications may be written using a very simple abstract model – that of
scalable memory and automatic concurrency regulation – and this is a major
simplification over other systems. The penalty is increased execution times due to
the amount of communication involved in resolving requests for data.

If flexibility is the great strength of the partitioned model, then performance is
its major weakness. Although all the structures and algorithms used in the system
are completely scalable, the fine-grained decomposition of applications into objects
means that efficient performance in practice is governed by the efficiency of the low-
level communications system; nor is the model as amenable as other systems to the
use of hardware accelerators.

The ability to incrementally refine applications' distribution patterns, however,
may be used to reduce unnecessary communications. In the limit, this refinement
might result in a system with exactly the same properties as one constructed in (for
example) Occam, with manual data placement and concurrency regulation. An
application might be prototyped using the partitioned model and then refined into
another, more efficient form.

A long-term aim is to investigate the creation of a practical programming system
based around the ideas in this thesis, with the appropriate language support and
including support for fault tolerance and hardware assistance. This would lead to a
high-level, practical approach to scalable parallel programming.

References

[1] Gul Agha, “Actors: a model of concurrent computation in distributed
systems,” MIT Press (1986).

[2] Sudhir Ahuja, N. Carriero and D. Gelernter, “Linda and friends,” IEEE
Computer 19(8) (August 1986) pp.26-34.

[3] R.J. Allan, “Numerical algorithm libraries for multicomputers,” Advanced
research computing group, SERC Daresbury nuclear physics laboratory
(1990).

[4] Tom Anderson and Pete Lee, “Fault tolerance: principles and practice,”
Prentice-Hall (1981).

[5] Artificial Intelligence Ltd., “Strand-88 technical descripion,” (August 1989).
Admiralty release.

[6] Martin C. Atkins, “Implementation techniques for object.oriented systems,”
YCST 90/01, Department of computer science, University of York (June
1989). D.Phil. dissertation.

[7] Colin Atkinson, “An object-oriented language for software re-use and
distribution,” Department of computing, Imperial College of Science and
Technology (February 1990). Ph.D. dissertation.

[8] Paul B. Austin, Kevin A. Murray and Andy J. Wellings, “The design of a
scalable parallel operating system,” YCS 129, Department of Computer
Science, University of York (November 1989).

[9] Paul B. Austin, Kevin A. Murray and Andy J. Wellings, “File system caching
in large point-to-point networks,” YCS 139, Department of computer science,
University of York (September 1990).

[10] Paul B. Austin, Kevin A. Murray and Andy J. Wellings, “Early experiences
with the construction of a scalable parallel operating system,” YCS 153,
Depertment of computer science, University of York (November 1990).

- 188 -

[11] Paul B. Austin, “Towards a file system for a scalable parallel computing
engine,” YCST 92/01, Department of computer science, University of York
(March 1992). D.Phil. dissertation.

[12] Maurice J. Bach, “The design of the Unix operating system,” Prentice-Hall
(1986).

[13] John Backus, “Can programming be liberated from the Von Neumann
style?,” Communications of the ACM 21(8) (August 1978) pp.613-641. 1977
Turing Award Lecture.

[14] Henri Bal, Andrew S. Tanenbaum and M. Frans Kaashoek, “Orca: a
language for distributed programming,” ACM SIGPLAN Notices 25(5)
(May 1990) pp.17-24.

[15] Bell Labs, “Plan 9 programmer's manual,” (1992). Unpublished document,
supplied with the pre-release of Plan 9.

[16] J.K. Bennett, J.B. Carter and W. Zwaenpoel, “Munin: distributed shared
memory based on type-specific memory coherence,” ACM SIGPLAN Notices
25(3) (March 1990) pp.168-176. Proceedings of the 2nd ACM symposium
on principles and practice of parallel programming.

[17] B.N. Bershad et alia, “An open system for building parallel programming
systems,” ACM SIGPLAN Notices 23(9) (September 1988) pp.1-9.
Proceedings of the SIGPLAN '88 conference on parallel programming:
experience with applications, languages and systems.

[18] A.D. Birrell and B.J. Nelson, “Implementing remote procedure call,” ACM
Transactions on Computer Systems 2(1) (February 1984) pp.39-59.

[19] R. Bjornsen, N. Carriero, D. Gelernter and J. Leichter, “Linda, the portable
parallel,” YALE/DCS/RR-520, Yale University (1988).

[20] A, Black, N. Hutchinson, E. Jul and H. Levy, “Object structure in the
Emerald system,” ACM SIGPLAN Notices 21(11) (November 1986) pp.78-
86. OOPSLA '86.

[21] A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter, “Distribution and
abstract types in Emerald,” IEEE Transactions on software engineering 13(1)
(January 1987) pp.65-76.

[22] H. Boehm, A. Demers and J. Donahue, “An informal description of Russell,”
80-430, Department of Computer Science, Cornell University (1980).

[23] Grady Booch, “Software engineering with Ada,” Addison-Wesley (1987).

- 189 -

[24] Grady Booch and Michael Vilot, “The design of the C++ Booch
components,” ACM SIGPLAN Notices 25(10) (October 1990) pp.1-11.
OOPSLA '90.

[25] Steve Bourne, “The Unix system,” Addison-Wesley (1983).

[26] Per Brinch Hansen, “The programming language Concurrent Pascal,” IEEE
Transactions on Software Engineering 1(2) (June 1975) pp.199-207.

[27] Per Brinch Hansen, “Joyce: a programming language for distributed
systems,” Software - practice and experience 17(1) (January 1987) pp.29-50.

[28] David Bruce, “A strongly-typed approach to parallel systems,”, pp.57-59 in
Collected position papers of the BCS workshop on abstract machine models
for highly parallel computers, volume 2, University of Leeds (25-27th March,
1991).

[29] Tim Budd, “A Little Smalltalk,” Addison-Wesley (1987).

[30] Paul Butcher, “Lucinda: an overview,” ACM SIGPLAN Notices 26(8)
(August 1992) pp.90-100.

[31] David Catton (June 1990). Personal communication.

[32] Luca Cardelli and Peter Wegner, “On understanding types, data abstraction
and polymorphism,” ACM Computing surveys 17(4) (December 1985)
pp.471-522.

[33] N. Carriero and D. Gelernter, “Applications experience with Linda,” ACM
SIGPLAN Notices 23(9) (September 1988) pp.173-187. Proceedings of the
ACM SIGPLAN conference on parallel programming: experience with
applications, languages and systems.

[34] N. Carriero and D. Gelernter, “How to write parallel programs: a guide for
the perplexed,” ACM Computing surveys 21(3) (September 1989).

[35] E. Charniak and D.M. McDermott, “Introduction to artificial intelligence,”
Addison-Wesley (1985).

[36] A.A. Chien and W.J. Dally, “Concurrent Aggregates,” ACM SIGPLAN
Notices 25(3) (March 1990) pp.187-196. Proceedings of the 2nd ACM
symposium on principles and practice of parallel programming.

[37] Alonzo Church, “Calculi of lambda-conversion,” Princeton University Press
(1941).

- 190 -

[38] L. Clarke and G. Wilson, “Tiny: an efficient routing harness for the Inmos
Transputer,” Concurrency – practice and experience 3(3) (July 1991) pp.221-
245.

[39] W.F. Clocksin and C.S. Mellish, “Programming in Prolog, 2e,” Springer-
Verlag (1984).

[40] Scott Danforth and Chris Tomlinson, “Type theories and object-oriented
programming,” ACM Computing surveys 20(1) (March 1988) pp.29-72.

[41] E.W. Dijkstra, “Co-operating sequential processes,” in Programming
languages, ed. F. Genuys, Academic Press (1968).

[42] Graeme N. Dixon, “Object management for persistence and reliability,” TR
276, Computing laboratory, University of Newcastle upon Tyne (December
1988). Ph.D. dissertation.

[43] G.D. Dixon, S.K. Shrivastava, F. Hedayati, G.D. Partington and S.M.
Wheater, “A technical overview of Arjuna: a system for reliable distributed
computing,” TR 262, Computing laboratory, University of Newcastle upon
Tyne (July 1988).

[44] G.N. Dixon, G.D. Parrington, S.K. Shrivastava and S.M. Wheater, “The
treatment of persistent objects in Arjuna,” TR 283, Computing laboratory,
University of Newcastle upon Tyne (June 1989).

[45] R. Fagin, J. Nievergelt, N. Pippenger and H.R. Strong, “Extendible hashing a
fast access method for dynamic files,” ACM Transactions of database systems
4(3) (September 1979) pp.315-344.

[46] M.J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE
54 (1966) pp.1901-1909.

[47] James D. Foley, Andries van Dam, Steven K. Feiner and John F. Hughes,
“Computer graphics: principles and practice,” Addison-Wesley (1990).

[48] Ian Foster and Stephen Taylor, “Strand: new concepts in parallel
programming,” Prentice-Hall (1990).

[49] Steve Frank, “Virtual memory to ALLCACHE memory,” in Proceedings of the
virtual shared memory symposium, Centre for novel computing, University
of Manchester (17-18 September 1992).

[50] E. Fredkin, “Trie memory,” Communications of the ACM 3(9) (September
1960) pp.439-499.

[51] N.H. Gehani and W.D. Roome, “Concurrent C,” Software - practice and
experience 16(9) (September 1986) pp.821-844.

- 191 -

[52] D. Gelernter, “Generative communication in Linda,” ACM Transactions on
Programming Languages and Systems 7(1) (January 1985) pp.80-112.

[53] D. Gelernter, “Getting the job done,” Byte 13(12) (November 1988).

[54] Adele Goldberg and David Robson, “Smalltalk-80: the language and its
implementation,” Addison-Wesley (1985).

[55] J. Gustafson, G.R. Montry and R.E. Benner, “Development of parallel
methods for a 1024-processor hypercube,” SIAM Journal of scientific and
statistical computing 9(4) (July 1988) pp.609-638.

[56] R.H. Halstead, “MultiLisp: a language for concurrent symbolic
computation,” ACM Transactions on Programming Languages and Systems
7(4) (October 1985) pp.501-538.

[57] High Performance Fortran Forum, “High Performance Fortran language
specification, Draft version 0.4,” (November 1992).

[58] Daniel Hillis, “The Connection Machine,” MIT Press (1985).

[59] C.A.R. Hoare, “Communicating Sequential Processes,” Prentice-Hall (1985).

[60] C.A.R. Hoare, “Monitors: an operating system structuring concept,”
Communications of the ACM 17(10) (October 1974) pp.549-.

[61] P. Hudak, “Conception, evolution and application of functional programming
languages,” ACM Computing surveys 21(3) (June 1989) pp.359-411.

[62] A.D. Hutcheon and A.J. Wellings, “The virtual node approach to designing
distributed Ada programs,” Ada User 9(Supplement) (December 1988)
pp.35-42.

[63] N.C. Hutchinson, “Emerald: an object-based language for distributed
programming,” 87-01-01, University of Washington at Seattle (1987). Ph.D.
dissertation.

[64] Leah H. Jamieson, “Characterizing parallel algorithms,”, pp.65-100 in The
characteristics of parallel algorithms, ed. L.H. Jamieson, D.B. Gannon, R.J.
Douglass, MIT Press (1987).

[65] Michael Jones and Richard Rashid, “Mach and Matchmaker: kernel and
language support for object-oriented distributed systems,” ACM SIGPLAN
Notices 21(11) (November 1986). OOPSLA '86.

[66] David Jourdan, John McDermid and Ian Toyn, “CADiZ – computer aided
design in Z,”, pp.93-104 in Proceedings of the Z user workshop, Oxford
1990, ed. J.E. Nicholls, Springer-Verlag (1991).

- 192 -

[67] E. Jul, “Object mobility in a distributed object-oriented system,” 88-12-06,
University of Washington at Seattle (1988). Ph.D. dissertation.

[68] E. Jul, H. Levy, N. Hutchinson and A. Black, “Fine-grained mobility in the
Emerald system,” ACM Transactions on Computer Systems 6(1) (February
1988) pp.109-133.

[69] Samuel N. Kamin, “Programming languages: an interpreter-based
approach,” Addison-Wesley (1990).

[70] Donald Knuth, “The art of computer programming,” Addison-Wesley (1973).
(3 volumes).

[71] C. Koelbel, P. Mehrotra and J.V. Rosendale, “Supporting shared data
structures on distributed memory architectures,” ACM SIGPLAN Notices
25(3) (March 1990) pp.177-186. Proceedings of the 2nd ACM SIGPLAN
symposium on principles and practice of parallel programming.

[72] Glenn Krasner, “Smalltalk-80: bits of history, words of advice,” Addison-
Wesley (1983).

[73] Per-Åke Larson, “Dynamic hashing,” BIT 18 (1978) pp.184-201.

[74] R.M. Lea, “ASP: a cost-effective parallel microcomputer,” IEEE Micro 8(5)
(October 1989) pp.10-29.

[75] William Leler, “Linda meets Unix,” IEEE Computer 23(2) (February 1990)
pp.43-54.

[76] Kai Li, “Shared virtual memory on loosely coupled multiprocessors,”
Research report 492, Department of computer science, Yale University
(September 1986). Ph.D. dissertation.

[77] K. Li and P. Hudak, “Memory coherence in shared virtual memory systems,”
ACM Transactions of computer systems 7(4) (November 1989) pp.243-271.

[78] K. Li and R. Schaefer, “A hypercube shared virtual memory,”, pp.123-131 in
Proceedings of the international parallel processing conference, volume 1
(August 1989).

[79] B. Liskov and L. Shira, “Promises: linguistic support for efficient
asynchronous procedure calls,” ACM SIGPLAN Notices 23(7) (July 1988).
Proceedings of the ACM conference on programming language design and
implementation.

[80] Witold Litwin, “Virtual hashing: a dynamically changing hashing,”, pp.517-
523 in Proceedings of the 4th international conference on very large data
bases, ed. S. Bing Yao (1978).

- 193 -

[81] S.E. Lucco, “Parallel programming in a virtual object space,” ACM
SIGPLAN Notices 22(12) (December 1987) pp.26-34. OOPSLA '87.

[82] Craig Lund, “Goal of a new machine,” Parallelogram 46 (July/August 1992)
pp.8-10.

[83] E. Lusk, D.H.D. Warren and S. Haridi et alia, “The Aurora or-parallel
Prolog system,” New generation computing 7(2,3) (1990) pp.243-271.
Special issue on parallel logic programming.

[84] Jeff Magee and Naranker Dulay, “MP: a programming environment for
multicomputers,”, pp.1-16 in Programming environments for parallel
computing, ed. Nigel Topham, Roland Ibbett and Thomas Bemmerl, North
Holland Elsevier (1992).

[85] David P. Mallon and Peter M. Dew, “Communicating through shared
objects,”, pp.181-191 in Programming environments for parallel computing,
ed. Nigel Topham, Roland Ibbett and Thomas Bemmerl, North Holland
Elsevier (1992).

[86] David May, “Occam-2 language definition,” Technical note, Inmos (13
February 1987).

[87] Isi Mitrani, “Modelling of computer and communications systems,”
Cambridge University Press (1987).

[88] Sape J. Mullender and Andrew S. Tanenbaum, “The design of a capability-
based operating system,” Computer Journal 29(4) (April 1986).

[89] Sape J. Mullender, “Amoeba – high-performance distributed computing,”,
pp.17-26 in European Unix systems user group Spring conference (April
1989).

[90] K.A. Murray and A.J. Wellings, “Issues in the design and implementation of
a distributed operating system for a network of Transputers,” in Proceedings
of EUROMICRO '88.

[91] Kevin A. Murray and Andy J. Wellings, “Wisdom: a distributed operating
system for Transputers,” Computer Systems Science and Engineering 5(1)
(January 1990) pp.13-20.

[92] Kevin A. Murray, “Wisdom: the foundation of a scalable parallel operating
system,” YCST 90/02, Department of Computer Science, University of York
(February 1990). Ph.D. dissertation.

[93] T. Nakajima, Y. Yokote, M. Tokoro, S. Ochiai and T. Nagamatsu,
“DistributedConcurrentSmalltalk: a language and system for the
interpersonal environment,” ACM SIGPLAN Notices 24(4) (April 1989)

- 194 -

pp.43-45. Proceedings of the SIGPLAN workshop on object-based
concurrent programming.

[94] B.J. Nelson, “Remote procedure call,” CMU-CS-81-119, Carnegie-Mellon
University (1981). Ph.D. dissertation.

[95] Cherri M. Pancake and Donna Bergmark, “Do parallel languages respond to
the needs of scientific programmers?,” IEEE Computer 23(12) (December
1990) pp.13-23.

[96] Graham D. Parrington, “Management of concurrency in a reliable object-
oriented computing system,” TR 277, Computing laboratory, University of
Newcastle upon Tyne (July 1988). Ph.D. dissertation.

[97] Rob Pike, Dave Presotto, Ken Thompson and Howard Trickey, “Plan 9 from
Bell Labs,”, pp.1-9 in Proceedings of the Summer UKUUG conference
(1990).

[98] Dick Pountain, “Parallelizing Prolog,” Byte 13(12) (November 1988)
pp.387-394.

[99] Dave Presotto, Rob Pike, Ken Thompson and Howard Trickey, “Plan 9: a
distributed system,”, pp.43-50 in Proceedings of the Spring EurOpen
conference (May 1991).

[100] Sanjay Raina, David H.D. Warren and James Cownie, “Shared virtual
memory on the Computing Surface via the data diffusion machine,”, pp.137-
141 in Proceedings of the 13th technical meeting of the Occam User Group –
extended abstract of papers (18-20th September 1990).

[101] John H. Reppy, “Concurrent programming with events – the Concurrent ML
manual, v.0.9,” Department of computer science, Cornell University
(November 1990).

[102] R.D. Rettberg, W.R. Crowther, P.P. Carvey and R.S. Tomlinson, “The
Monarch parallel processor hardware design,” IEEE Computer 23(4) (April
1990) pp.18-30.

[103] Robert Schlieffer and James Gettys, “The X Window system,” Digital press
(1990).

[104] Karsten Schwan and Win Bo, “Topologies – distributed objects on
multicomputers,” ACM Transactions on computer systems 8(2) (May 1990)
pp.111-157.

[105] J.M. Spivey, “The Z notation: a reference manual,” Prentice-Hall (1989).

- 195 -

[106] P.D. Stotts, “A comparative survey of concurrent programming languages,”
ACM SIGPLAN Notices 17(9) (September 1982) pp.76-87.

[107] R.F. Stone, “Reliable computer systems – a review,” YCS 110, Department of
Computer Science, University of York (January 1989).

[108] Bjarne Stroustrup, “The C++ programming language,” Addison-Wesley
(1987).

[109] Andrew S. Tanenbaum and Robbert van Renesse, “Distributed operating
systems,” ACM Computing Surveys 17(4) (December 1985).

[110] Andrew S. Tanenbaum, “Operating systems: design and implementation,”
Prentice-Hall (1987).

[111] Andrew S. Tanenbaum, “Modern operating systems,” Prentice-Hall (1992).

[112] Andrew S. Tanenbaum, M. Frans Kaashoek and Henri Bal, “Parallel
programming using shared objects and broadcasting,” IEEE Computer 25(8)
(August 1992) pp.10-19.

[113] L.G. Valiant, “Bulk synchronous parallel computers,” TR-08-89, Aiken
computation laboratory, Harvard University (1989).

[114] Chris Wadsworth, “Virtual shared memory: the good, the bad and the
unknown,” Parallel processing group note 85, Informatics department, SERC
Rutherford Appleton Laboratory (September 1992).

[115] David Walker, “pi-calculus semantics of object-oriented programming
languages,” ECS-LFCS-90-122, Laboratory for foundations of computer
science, Department of computer science, University of Edinburgh (October
1990).

[116] Peter Wegner, “Dimensions in object-based language design,” ACM
SIGPLAN Notices 22(12) (December 1987) pp.168-182. OOPSLA '87.

[117] Åke Wikström, “Functional programming in Standard ML,” Prentice-Hall
(1987).

[118] Greg Wilson, “The life and times of cellular automata,” New Scientist (8th
October 1988) pp.44-47.

[119] Greg Wilson, “Improving the performance of generative communication
systems by using application-specific mapping functions,”, pp.117-130 in
Proceedings of the workshop on Linda-like systems and their
implementation, University of Edinburgh (24 June, 1991).

- 196 -

[120] Niklaus Wirth, “Algorithms + data structures = programs,” Prentice-Hall
(1976).

[121] Michael J. Wise, “Prolog multiprocessors,” Prentice-Hall (1987).

[122] Yasuhiko Yokote and Mario Tokoro, “The design and implementation of
ConcurrentSmalltalk,” ACM SIGPLAN Notices 21(11) (November 1986)
pp.331-340. OOPSLA '86.

[123] Pamela Zave, “A compositional approach to multiparadigm programming,”
IEEE Software (September 1989) pp.15-25.

Appendix A.

A Formal Treatment of Partitioning

Any new technique benefits from a formal treatment: it allows the properties
and interactions of a system to be presented unambiguously. In this appendix we
present a formal treatment of the partitioning technique introduced in chapter 3,
using the Z notation[105]. The specification was generated using the University of
York's CADiZ type checker and formatter for Z[66].

Objects and Collections
We shall begin by defining a rudimentary object space. Values stored in

collections are identified by abstract identifiers.

[VALUE_ID]

There is a single identifier which represents the "null" object.

NULLVALUE_ID : VALUE_ID

Values are identified within collections by names < array index tuples, hash
keys, edge labels et cetera.

[VALUE_NAME]

A collection is a community of component and partition objects. These
objects may also be represented in the system using abstract identifying values.

[COMPONENT_ID, PARTITION_ID]

Similarly, there exist privileged objects identifiers representing the "null"
component and partition object.

NULLCOMPONENT_ID : COMPONENT_ID
NULLPARTITION_ID : PARTITION_ID

Local storage within a component, where values are stored, may be seen as a
(finite partial) function from a values names to value identifiers.

STORAGE == VALUE_NAME VALUE_ID

A component object is an instance of an abstract type having a system-unique
identifier, a partition to which it is attached, a (possibly infinite) set of names which
it may store locally, and a binding from some or all of those names to values.

COMPONENT
cid : COMPONENT_ID
part : PARTITION_ID
localNames : VALUE_NAME
local : STORAGE

dom local localNames

Partition, similarly, are named instances of another abstract type. One
element of this type is a disjoint union of possible descendents of a partition, which

may be components or other partitions.

TREENODE_ID ::=
ComponentTreeNodeID COMPONENT_ID |
PartitionTreeNodeID PARTITION_ID | NullTreeNodeID

A partition itself is composed of a unique identifier, a parent partition’s
identifier, and a sub-mapping table of this disjoint union, accessed using value
names.

PARTITION
pid : PARTITION_ID
parent : PARTITION_ID
submap : VALUE_ID TREENODE_ID

The identifiers for the objects, held within the abstract values, act to all intents
and purposes as object names (or pointers to) single shared instances of the abstract
type. Such names may be dereferenced uniquely by ensuring that only at most one
object has the given identifier. The "system" of partitioned collections is
essentially a set of component and partition objects < for simplicity we shall
consider stored values to lie outside the system being specified. Every object
within the system has a unique name.

SystemObjects
componentObjects : COMPONENT
partitionObjects : PARTITION

c1, c2 : COMPONENT |
c1 componentObjects c2 componentObjects
c1 . cid = c2 . cid c1 = c2

p1, p2 : PARTITION |
p1 partitionObjects p2 partitionObjects
p1 . pid = p2 . pid p1 = p2

This completes the description of the object space.

Collections and the System

A collection may be seen as an abstract value composed of a number of
components and partitions and having a set of value names which it may resolve.

COLLECTION
componentIDs : COMPONENT_ID
partitionIDs : PARTITION_ID
resolvable : VALUE_NAME

The system is defined as a set of collections. The members of a collection
possess a structural relationship to one another, and not to members of any other
collection.

SystemCollections
collections : COLLECTION

coll : COLLECTION | coll collections
#coll . componentIDs = 1 coll . partitionIDs =
#coll . componentIDs > 1
(c : COMPONENT | c . cid coll . componentIDs

c . part coll . partitionIDs)
(1 r : PARTITION | r . pid coll . partitionIDs

r . parent = NULLPARTITION_ID)
(p : PARTITION | p . pid coll . partitionIDs

p . parent = NULLPARTITION_ID
(q : PARTITION |
q . pid coll . partitionIDs q p
p . parent = q . pid))

For partitions, there is a notion of a partition being "above" another if it or one
of its descendents holds a reference to that partition in its submap table.

_ above _ : PARTITION PARTITION

p1, p2 : PARTITION
p1 above p2

p2 . parent = p1 . pid
(p3 : PARTITION

p3 above p2 p3 . parent = p1 . pid)

Partitions and components are related by the fact that a given partition may
contain in its submap table an entry relating to a local element of a component.
This partition is said to "resolve" the component; moreover, by virtue of the
partitioning technique, any partition which is below a partition which can resolve a
particular component can itself resolve that component.

_ resolves _ : PARTITION COMPONENT

p : PARTITION; c : COMPONENT
p resolves c

ComponentTreeNodeID c . cid ran p . submap
(q : PARTITION

p above q
ComponentTreeNodeID c . cid ran q . submap)

The complete system may be defined as the synthesis of objects and
collections together with the additional constraint that every resolvable value name
must be held locally by exactly one component.

System
SystemObjects
SystemCollections

coll : COLLECTION | coll collections
vn : VALUE_NAME | vn coll . resolvable

1 c : COMPONENT | c . cid coll . componentIDs
vn c . localNames

Resolution
"Resolution" is the process by which value names are mapped onto

components by traversal of the partition tree. The resolution operation accepts the
value name being sought and a target component, and returns the name and the
component which holds the name locally. The target and servicing component will
always be in the same collection.

RESOLVE
id? : VALUE_NAME
target? : COMPONENT_ID
id! : VALUE_NAME
service! : COMPONENT_ID
USystem

coll : COLLECTION |
coll collections target? coll . componentIDs
id? coll . resolvable service! coll . componentIDs
(c : COMPONENT | c . cid = service!

id? c . localNames)
id! = id?

The resolution operation relies on the fact that, from any component in a
collection, there is a path to a partition which can resolve the component holding
the required data item. If we represent the parameters to a resolution operation as
the receiving and servicing components, dereferenced from their identifiers and
ignoring the value name for the present:

ResolutionParameters
rec? : COMPONENT
ser! : COMPONENT

then this property may be stated as follows:

ResolutionParameters; System

coll : COLLECTION | coll collections
rec? = ser! rp resolves ser!
(p : PARTITION | p above rp p resolves ser!)

where

rp : PARTITION

rp partitionObjects
rp . pid = rec? . part

This property may be proved trivially as the partitions form a tree with
references at every node to all components below: therefore there exist either no
partitions or a single root partition able to partially route any request. In other
words,

System

coll : COLLECTION | coll collections
coll . partitionIDs =
(1 p : PARTITION |

p partitionObjects p . pid coll . partitionIDs
c : COMPONENT |
c componentObjects
c . cid coll . componentIDs p resolves c)

It is this property which allows a partitioned collection to behave as a single
resource, with all components acting as pseudonyms for each other, whilst still
maintaining an essentially distributed nature.

Creating and Manipulating Collections
If a component is judged to be full, it may be split. Splitting has an important

property: it is value-preserving across the set of mapped names, even though the
contents of components and the object population may change.

SPLIT
id? : VALUE_NAME
service? : COMPONENT_ID
id! : VALUE_NAME
service! : COMPONENT_ID
6System

collections’ = collections

(oldcoll, newcoll : COLLECTION |
oldcoll collections
collections’ = collections \ {oldcoll} {newcoll}
oldcoll . resolvable = newcoll . resolvable
oldcoll . componentIDs newcoll . componentIDs
oldcoll . partitionIDs newcoll . partitionIDs)

This operation will be used in defining user-level access operations.
The overall collection-creation function must simply generate some collection

which can contain all the value names specified.

CREATECOLLECTION
global? : VALUE_NAME
root! : COMPONENT_ID
6System

c : COMPONENT | c componentObjects c . cid = root!
componentObjects componentObjects’
partitionObjects partitionObjects’
coll : COLLECTION
coll collections coll collections’
root! coll . componentIDs

Operations
We shall define two operations on collections to illustrate the process: getting

a value and assigning to a value. All operations share a common framework: the
supplied ideitifier is resolved to the correct servicing component, at which the
activity specified by the operation occurs.

Getting the value of a name from a collection simply involves accessing the
local storage function of the servicing component. The result of the operation is
the value associated with the supplied name, or the null value if no such association
exists.

RETURNVALUE
id? : VALUE_NAME
service? : COMPONENT_ID
value! : VALUE_ID

id? c . localNames
(id? dom c . local value! = c . local id?)
(id? dom c . local value! = NULLVALUE_ID)
where

c : COMPONENT

c . cid = service?

The entire get operation may be represented as the composition of resolution
and storage access.

GET RESOLVE RETURNVALUE

Altering a value < assignment into a storage function < is slightly more
complex. The alteration of the servicing component involves modifying the

component selected, over-riding its storage function to reflect the assignment.

ALTERVALUE
id? : VALUE_NAME
service? : COMPONENT_ID
value? : VALUE_ID
6System

id? c . localNames
(newc : COMPONENT

newc . cid = c . cid newc . part = c . part
newc . localNames = c . localNames
newc . local = c . local {id? value?}
componentObjects’ =
componentObjects \ {c} {newc})

partitionObjects’ = partitionObjects collections’ = collections
where

c : COMPONENT

c . cid = service?

Since assignment may cause a component to be split, the full operation
involves resolution, (possibly) splitting, and storage over-riding.

PUT RESOLVE SPLIT ALTERVALUE

One might similarly define a value-removal operation by subtracting a pair
from the appropriate local storage function, and so on: the point is that all
operations are composed as resolution-plus-action. Similarly, high-level user-
defined operations may be defined as compositions of the basic operations.

Appendix B.

Wisdom

The Wisdom project investigated the design and implementation of a general-
purpose scalable parallel computing engine (SPCE) based on an extensible mesh of
processing nodes. The principal product of the project is an operating system
nucleus which provides the minimum support necessary for running communicating
tasks on such a processor mesh. At the time of writing, a prototype of the Wisdom
nucleus has been implemented for a mesh of Inmos T800 Transputers.

B.1. The Wisdom Nucleus

Wisdom creates a virtual machine in which a (potentially vary large) number of
communicating tasks are executed in parallel. Inter-task communication is
performed through a capability-based message-passing system, not through a shared
primary memory, so communicating tasks can be executing on different processing
nodes. Although Wisdom distributes tasks amongst the available nodes, tasks are not
aware (unless they want to be) of their location, or the location of tasks with which
they are communicating. This location transparency means that the user can think of
a Wisdom system as being the same as a traditional time-shared computer, except
that tasks really execute in parallel rather than having their executions interleaved. It
is hoped that this abstraction will encourage programmers to produce applications
composed of a large number of communicating tasks. Such applications would
execute on a Wisdom system with any number of processors, but should run more
quickly on a Wisdom system with a large number of processing nodes since each
task could be executed on a separate node.

- 208 -

The Wisdom nucleus runs on each processing node in the mesh, and is
composed of four principal components (or modules) (figure 25). The modules are:

• tasking module – manages the allocation of memory and

processor time between the tasks running on the node;
• load balancing module – manages the creation and distribution

of new tasks amongst the nodes. When a new task is created
the load balancing module examines the load of its own
processor and of its four immediate neighbours. The new task
is then created on the processing node with the lowest load.
(There is a threshold function used to avoid conspired
thrashing: see Murray[92] for details.). This style of load
balancing results in tasks spreading-out in a “ink-blot” pattern
(see figure 26);

• routing module – manages the transfer of messages between
tasks on the same or different processing nodes. A
capability[88] abstraction is used to allow tasks to identify the
destination of messages without having to know the targeted
task's location. A capability is a user-space object with a
single reader (its creator) but may be written to by any task
which has a copy of it. Capabilities may be freely exchanged
in messages. At present the routing modules on all nodes co-
operate to move message around the network using a store and
forward routing mechanism: this is a consequence of the lack
of routing hardware on the Transputer, and could be rectified
by a different processor design or a routing co-processor;

Tasking
Routing

User tasks Namer

Load
balancing

Links

Neighbouring
processor

Neighbouring
processor

Neighbouring
processor

Neighbouring
processor

Figure 25: The Wisdom nucleus

- 209 -

• naming module – provides a way for tasks to associate a
textual name with a capability. Other tasks may then obtain a
capability to a task if they know its textual name. Although
naming module is considered to be part of the nucleus, it runs
as a user task.

In addition to the nucleus, other prototype software has been developed to

provide a primitive user interface to the Wisdom system. This includes a simple file
system that allows programs to access the department's NFS-based file server
network and Unix services, a shell, and small number of utilities.

B.2. The Filing Systems

The Wisdom nucleus, by itself, does not constitute a working operating system:
there is, at the very least, a need to be able to access files. Two file systems have
been provided for Wisdom.

The first is a simple attachment of the Wisdom system to an external NFS file
server. A library of file system calls interact with a process which converts file
system requests into TCP/IP requests, which are then sent to another process running
on the host system: this host then places these packets onto the EtherNet to which
the NFS servers are attached. Returning data is handled in a similar way. This
structure allows Wisdom to access the filing system of its host, using the most
widely-available network file system standard. As a bonus, Wisdom applications can
also use the TCP/IP libraries to communicate with any process running on the host
via sockets[12], and the system can also provide a proper log-in suite using the host's
password protection scheme.

The more interesting file system is an experimental project called Sage[11].
This project involved the creation of a filing system explicitly designed for use on a
scalable parallel computing engine. It makes extensive use of caching: files are
cached as near as possible to the site at which they are used[9], with processes
sharing caches for common files. The system also identifies commonly-used,
infrequently-updated files (such as system binaries, font descriptions and the like) for
optimised handling.

- 210 -

B.3. Wisdom in Use

The intention is that a Wisdom system would be used to serve a group of users
in the same way as a traditional time-shared computer. One Wisdom system with an
appropriate number of processing nodes, some secondary storage devices and other
peripherals would have terminals or workstations connected to it by high-bandwidth
links. The connection points of the terminals would be distributed evenly throughout
the mesh so that each user would start programs off at a separate point in the mesh
and his (or her) tasks would flood-out from this point (figure 26). (In a Wisdom
system using Transputers the connection points must be at the edges of the mesh
since only the Transputers at the periphery have a free communications link.) Users
would be allowed to use any terminal connected to the mesh, regardless of the
terminal's connection point.

The current Wisdom nucleus presents the user with an environment very similar
to that of Unix. A full-function shell allows files to be examined and executed direct
from the host filing system, and most of the standard Unix tools are available. This
is a marked contrast to most parallel systems, which must access filed data using
some other, less convenient mechanism.

A

B

C

D E

F

AB

C

D E

F

User A's
workstation Part of the mesh

running user A's tasks

Link to
workstation

Figure 26: A Wisdom system in use (showing load balancing)

	THESIS
	APPENDIX
	THESIS

