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Abstract 

Current parallel programming environments are inadequate in dealing with the 
problems introduced by highly parallel, highly scalable, general-purpose computing 
systems.  They fail to tackle problems of conceptual modelling, distribution 
management  and concurrency regulation which are central to the effective use of 
such systems. 

It is argued that sophisticated models of memory and processing hold the key to 
scalable programming, by allowing applications to be written in an abstract 
framework which may then be mapped transparently onto an underlying scalable 
machine.  A model of memory based around scalable typed abstract memory 
modules is developed, which allows applications to create and manipulate arbitrarily 
large collections of data, independently of the collection's distribution, and to use 
these collections as an infrastructure for creating and regulating concurrent activity. 

A set of implementation techniques for representing scalable memories is 
developed, covering the commonly-encountered forms of memory.  Concurrency 
control and regulation in such architectures are considered.  A prototype 
programming environment based on these techniques is presented and discussed.  
The abstract model, implementation architectures and prototype are then evaluated 

The evaluation shows that scalable memory is indeed a viable programming 
solution for scalable systems, simplifying the construction and configuration of a 
range of parallel applications.  However, the prototype environment is shown to be 
deficient in several key respects.  Future work is proposed to rectify these faults, 
thereby creating a realistic environment for scalable programming. 
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I'd sing like 
Cherry flakes falling. 
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Introduction 

If we offend, it is with our good will. 
That you should think, we come not to offend, 
But with good will.  To show our simple skill, 
That is the true beginning of our end. 
 
  Quince in A Midsummer Night's Dream 

The course of computer science, over its short history, might be described as a 
conflict between two sometimes contradictory aims:  increasing the power of 
computers in order to tackle harder problems, whilst finding better ways to express 
solutions to these problems. 

It is a truism that computer users have an insatiable demand for more computing 
power, both to address more complex problems and to increase the sophistication of  
user interfaces.  However, there are limits – both physical and fiscal – to the 
performance which may be obtained from a single processor.  Most modern 
computers make use of dedicated support processors for input/output and floating-
point arithmetic;  recently there has been much interest in systems where a number of 
general-purpose processing elements are connected together.  In particular, systems 
of processor-memory pairs connected by a sparse network of point-to-point links 
have become popular. 

Multicomputers have several highly attractive features.  Firstly, each processing 
element may be built from affordable off-the-shelf hardware rather than from 
expensive custom units.  Secondly, processors may be added to a system as required 
by simply connecting them to the existing system with additional communications 
links. The architecture is thus both highly scalable and massively parallel, and allows 
extremely high-performance machines to be built at a reasonable cost – which in turn 
allows highly computationally intensive problems to be tackled. 

Programming language evolution is essentially concerned with finding new 
models within which programmers may express applications.  In general, the trend 
has been towards greater levels of abstraction in programming languages, taking 
programmers away from machine-oriented concerns and allowing applications to be 
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expressed in terms which are close to the programmer's conceptual model.    The 
price for this simplification of programming is generally a decrease in a program's 
run-time efficiency, as more demands are placed on the compiler and run-time 
system. 

Hence there is a conflict:  on the one hand, applications programmers wish to 
exploit the power of the new multicomputer machines in order to create more 
complex applications;  on the other, the languages which would best allow these 
applications to be expressed incur (sometimes unacceptable) performance penalties.  
In the quest for obtaining the best possible efficiency, programmers have often been 
forced to return to the low-level practices which high-level language evolution has 
sought to banish, but multicomputer architectures – especially their distributed 
memory and massive parallelism – make high-quality programming difficult for any 
but the most trivial and regular applications. 

Programming for scalable multicomputers thus presents a classic paradox:  the 
features which make the architecture attractive are precisely those features which 
make the creation of applications most difficult. 

Intentions of this Thesis 

The goal of the research described in this thesis is to develop a new method of 
programming by which the power of the multicomputer architecture can be 
harnessed.  It is intended to explore the notion that a high-level, application-oriented 
view of programming – concentrating on the structures which are of most use to the 
application developer, rather than simply on those which are most attractive from a 
theoretical standpoint – would considerably simplify the programming task.  The 
overall aim is the production of the theoretical framework for programming scalable 
applications, together with a prototype programming system.  Five related problems 
need to be satisfactorily tackled: 

 
• managing and co-ordinating large quantities of structured data 

in a distributed-memory environment; 
• regulating and controlling of massive amounts of concurrent 

activity; 
• hiding architectural details from programmers through the use 

of an abstract programming model; 
• providing a supportive programming framework with scope 

for re-use, to avoid unnecessary re-invention;  and 
• ensuring scalability by ensuring that applications can take 

advantage dynamically of whatever resources are available at 
run-time. 

 
The intention is to produce a programming environment to run on top of a 

suitable scalable parallel operating system:  the work does not address operating 
system issues such as process management or load balancing, although these are 
crucial to the success of the system. 
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Thesis Structure 

Any new course of work must first begin with a thorough study of what has 
gone before.  Chapter one, therefore, contains a survey of the literature of  parallel 
computing.  It covers three broad fields – parallel architectures, operating systems for 
parallel computers, and parallel programming systems – but approaches each by 
considering from the start the scalability of each element and its relationship to other 
elements.  As a result of this survey, some shortcomings in the programming models 
used on previous highly parallel systems are observed. 

Chapter two addresses these shortcomings by describing a programming model 
specifically aimed at scalable parallel programming.  The model's emphasis is on the 
transparent and scalable use of resources, and on the ease with which applications 
may be created and re-used.  The central theme of the model is the use of scalable 
memory as a basis for programming.  Memory is seen as being typed, being similar 
to the data structures commonly found in applications. 

Chapter three presents a set of techniques which aim to implement scalable 
memory efficiently.  Several alternative implementation strategies are considered:  
the one chosen makes extensive use of fully distributed algorithms to avoid 
performance bottlenecks.  The effects of various parameters for distribution are 
considered.  Three variations on the main theme are described to implement three 
common forms of storage – arrayed, associative and directed – which may form the 
kernel of a programming environment. 

Chapter four considers the problems and consequences associated with the 
introduction of large amounts of concurrency into applications.  Scalability demands 
a high degree of system involvement in the creation and location of processes, and 
these problems are addressed via the scalable memory implementations described 
earlier.  Concurrency control is also discussed. 

Chapter five presents Phœnix, a prototype programming system based around 
the abstract model.  Phœnix realises the implementation techniques discussed in 
chapter three as a set of classes for use in constructing object-oriented applications.  
The use of object-oriented techniques allows a substantial amount of code and design 
re-use to occur both between classes and across applications – a feature considered 
vital for the successful programming of complex parallel systems.  

Chapter six contains an evaluation of the Phœnix prototype.  The evaluation 
approaches Phœnix from three directions:  in terms of efficiency, programmability 
and abstraction.  The weak points of the system are highlighted and analysed. 

Chapter seven concludes the thesis with a résumé of the work described.  It 
comments upon the decisions taken during the work, discusses the design of 
programming languages and operating systems for an “ideal” scalable parallel 
system, and points to some directions for future research. 

Some Conventions 

There is currently a healthy debate within the programming language 
community as to the exact meanings of the common terms concurrent, parallel and 
distributed.  These words have been used in contexts so disparate as to destroy their 
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usefulness.  Without wishing to contribute to this debate, we shall henceforth adopt 
the following convention: 

 
• a concurrent system is a system in which several loci of 

control may be active simultaneously, at least from the 
programmer's conceptual viewpoint; 

• a parallel system is a concurrent system in which the number 
of simultaneously active processes is very large – of the order 
of hundreds or thousands;  while 

• a distributed system is a system built from a number of largely 
independent computers connected by a network, so that nodes 
do not share memory. 

 
A similar debate exists around the term scalable.  As the meaning of this term is 

central to this thesis, it is discussed in chapter one as the basis for the literature 
review. 

Within this thesis, all fragments of code, class definitions and the like appear in 
Courier typeface. 



Chapter 1. 

     

Scalable Parallel Computing 

Half of the people can be part right all of the time, 
Some of the people can be all right part of the time, 
But all of the people can't be all right all of the time. 
I think Abraham Lincoln said that. 
 
  Bob Dylan, Talkin' World War III Blues 

There exist many surveys of the field of parallel processing (for 
example[95][106][109]), but few have considered the scalability of systems as their 
primary organisation.  This is our aim here. 

The concept of scalability is very important in understanding the aims of the 
current work, so we shall begin by defining the term and analysing the ways in which 
it may be applied to different computing tasks.  We shall then use this definition to 
examine the literature appertaining to the creation of parallel applications, 
concentrating on the available operating systems and programming languages.  We 
shall investigate the advantages and failings of different systems when considered for 
scalable programming, and shall derive from this investigation some factors which 
are characteristic of programming system suitable for scalable computing. 

1.1. What is Scalability? 

The term “scalable” has different meanings to different people, and we shall first 
define it more precisely. 

The idea of scale derives from notions of measurement.  We may speak of things 
being “on different scale,” such as a mountain and a mole-hill, where the same 
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characteristics are apparent at two different orders of magnitude;  and of “changes of 
scale” when a phenomenon occurring in small objects manifests itself in larger 
domains.  We may also speak of things which are constant across a range of scales, 
either qualitatively or quantitatively. 

Essentially, something is scalable if, without altering its gross characteristics, its 
size may be increased or (less commonly) decreased.  That is, the phenomenon can 
deal with changes of scale without apparent change.  The key word here is 
“apparent”:  scalability does not imply that no changes occur internally  but simply 
that, to the outsider's view, the system being studied remains qualitatively the same 
across a range of problem sizes. 

Scalability offers a number of advantages.  It allows underlying factors to 
change without these changes propagating beyond the scalable system's boundaries;  
allows systems to be compared across changes in size;  and allows a system to be 
applied to a range of different scales, which in turn implies that the scale of problem 
is not relevant to its solution.  Thus scalability is an important form of abstraction. 

Another important facet of scalability is that it tends to be an emergent property:  
when a group of smaller items are collected together, scalability arises from their 
interactions.  The scalability of a system is not latent within the components of the 
system , but arises solely from their interconnection and interaction. 

1.1.1. Scalability in Various Guises 

The most commonly-mentioned form of scalable system is represented by a 
class of algorithms which may be applied to problems of radically different sizes.  
Coming as it does from computational complexity theory, this form of scalability is 
pervasive.  A common statement is that, for an algorithm or system to be truly 
scalable, it must have a computational complexity of no more than logn  (or 
sometimes n nlog ) for a problem of size n.  This implies that, for a system to be 
scalable according to this definition, no important algorithm or structure must have a 
complexity greater than this, otherwise this item will become a brake on the system 
as it grows – a “bottleneck.”  A good example might be a system which used a 
bubble-sort in one of its fundamental algorithms:  since bubble-sort has a complexity 
of order n2 [70], this algorithm will bottleneck as the number of elements rises. 

Another frequently-encountered scalable system is the interconnection network 
of a multicomputer.  The scalability in this case applies to the complexity of routing 
messages between nodes:  since communication is so fundamental to multicomputer 
systems, it is vital that the hardware which controls message routing is scalable – 
otherwise there is a maximum number of nodes representing the point of diminishing 
returns, beyond which the addition of more nodes will be counter-productive due to 
communication delays.  The hypercube architecture[55], with a communication 
complexity of logn  for an n-node system, thus has “perfect” scalable 
communications characteristics. 

A third example of scalability is found in the creation of operating systems for 
scalable computers such as multicomputers.  Scalability here refers to the ability of 
the operating system, seen as a whole, to support any number of processors without 
alteration.  This, however, differs from the above in that it is scalability from an 
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external viewpoint only:  the operating system can scale across a range of hardware 
configurations without changing qualitatively to users, programmers and 
applications, although quantitatively it will have changed to provide more processing 
power, more memory et cetera. 

This is a good illustration of the emergent nature of scalability:  such an 
operating system is only scalable because all its components are themselves scalable, 
in isolation and in conjunction. 

There is clearly an incremental dimension to all these forms of scalability.  It is 
important to be able to vary the system at an arbitrary rate, without any “jumps.”  A 
scalable system must support the range of possible scales continuously and 
gradually. 

1.1.2. Précis:  Scalability for Programmers and Users 

If a system may transparently accommodate changes in problems sizes, the size 
of problem to which the system is applied has effectively been abstracted away from. 

For the programmer, having a scalable system means that the same software 
system may be used on problems of arbitrary size, since the system will scale to deal 
with the problem without programmer intervention.  For users a similar benefit 
accrues: a scalable application may deal with any problem which the user sets, 
regardless of its complexity. 

A good example of a scalable application would be a “sort” command.  There 
are a great many sorting algorithms, but their efficacy often depends upon the 
problem size being tacked:  bubble sort is more efficient than quick sort on small 
problems, but less so on large data sets.  Therefore a scalable sort command would 
choose the most appropriate algorithm for the job being requested, and would appear 
to users as a perfectly scalable system able to respond to the demands being placed 
upon it. The alternative is to offer either a command with unpredictable (and possibly 
unacceptable) performance or a selection of commands from which the user must 
choose the correct one. 

Another example would be a parallel system in which the degree of parallelism 
varies depending upon run-time conditions.  The selection of how much parallelism 
to use on a problem, and how much distribution, is a complex one, and is further 
complicated by systems whose capabilities may be scaled.  A scalable application 
must be able to take advantage of whatever resources are available at run-time. 

However, for the programmer this view of scalability also introduces problems, 
since it implies that all applications software must be scalable.  The familiar view of 
software components as “black boxes” exporting a functional interface must be 
extended with the notion of scalable black boxes which may be used on problems of 
any size. 

1.2. A Scalable Machine 

The purpose of this chapter is to review the current state of the art in 
constructing highly parallel systems, with a view towards the scalability of existing 
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techniques.  We shall begin our examination of scalability by looking at the hardware 
platform being used. 

1.2.1. Hardware 

The construction of a scalable machine involves building a computer system 
which is capable of extension to provide additional resources and processing power.  
Ideally one would like to be able to scale a machine's capabilities incrementally, so 
that it may be expanded gradually to meet changing requirements.  Indeed, this might 
be seen to be the major advantage which scalable machines have over more 
traditional centralised systems:  they may be extended as requirements – and finances 
– allow. 

The classification of machine architectures due to Flynn[46] divides machines 
into four categories: 

 
• single instruction, single data (SISD), where a single 

instruction stream is applied to a single data stream; 
• single instruction, multiple data (SIMD), where instructions 

are applied to many data items in parallel; 
• multiple instruction, single data (MISD), encountered only in 

some advanced digital signal processing chips;  and 
• multiple instruction, multiple data (MIMD), where separate 

sets of instructions act on separate data streams. 
 

The SISD category thus encompasses all the traditional single-processor 
systems;  SIMD and MIMD are both (potentially) highly parallel, and are both 
candidates consideration as scalable machines. 

SIMD systems such as the Connection Machine[58] usually exhibit a massive 
amount of parallelism – often over eight thousand simple processors are used, far 
more than in any current MIMD machines.  It is not usually possible to add either 
memory or processing elements to such machines – although there is no theoretical 
reason preventing this – and they will not be considered further.  

Processors and Memory 

Prior to the introduction of systems with multiple processors the only way to 
increase the performance of a system was to purchase a new central processor:  an 
expensive and often frustrating business. 

Multiple-processor systems allow an easier upgrade path:  processors and 
memory may be added incrementally to the system, without altering its essential 
characteristics.  For example, a multiprocessor having eight processors is 
qualitatively the same as a system having four processors – but faster, with more 
memory, and able to support more users, more complex problems, or both.  Such 
systems are therefore, by the preceding definitions, scalable with respect to their 
processing capacity;  they are not, however, scalable indefinitely, as contention for 
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the shared memory and shared buses place an upper-bound on the number of 
processors which may be connected to the system (typically around twenty1). 

Multicomputers tend to offer better processor scalability in this respect, since 
they have no shared memory over which contention can occur.  It is thus possible to 
add processor-memory pairs without affecting the access behaviour of other nodes:  
in many respects the nodes act as independent computers (hence the term 
“multi(ple)computer”) with peripheral inter-node communications capabilities. 

Interconnection 

In a multiprocessor, nodes communicate via the shared memory;  
multicomputers require some extra communications mechanism to connect nodes 
together.  Adding more processors introduces more communications traffic into the 
system, and it is now well-recognised that it is communications bandwidth – and not 
processing capacity – which is the limiting factor in building massively parallel 
systems. 

The processor interconnection may take the form of a shared communications 
medium (such as a broadcast network), but such an architecture acts as a brake on 
scalability:  as the number of nodes on the network increases, so does the network 
traffic, but the amount of communications bandwidth remains the same:  hence 
eventually the network will become saturated[87]. 

The alternative is to provide a “sparse” network and (possibly) software support 
for complete connectivity using channels, capabilities et cetera.  The usual approach 
is to associate communications capabilities intimately with processing nodes, with 
each node being a processor-memory-communications triple.  This allows the 
amount of communications in the system to scale alongside the increase in 
processing elements. 

Hypercubic networks are often presented as the epitome of scalable networks:  
nodes are arranged to form the vertices of a hypercube (typically between a three- 
and a nine-dimensional hypercube), with network links forming the edges.  An n-
dimensional hypercubic network has the property that exactly n links are incident on 
each node, and that the average distance between any two nodes (the communication 
distance) is log2 n  links.  By comparison, a mesh-based network has a 
communication distance of n , which is considerably more complex (and hence less 
scalable). 

However, this idealised view of routing is less than perfect when considering the 
other aspect of scalability, incremental development.  In a hypercube, the dimensions 
of the network is directly visible at each node in terms of the number of links:  
increasing the number of dimensions impacts upon every node in the system, since 
more links will need to be added to maintain the topology.  By contrast, a mesh-
based system is more scalable in this respect.  Nodes may be added at the edges of 
the mesh without affecting, in hardware terms, nodes in other parts of the network. 

                                                
1Multiprocessors such as the Monarch[102] allow thousands of processors to be connected, but only at 
the cost of greatly increased memory access times. 
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1.2.2. Operating Systems 

Many parallel computers are run “naked,” without any operating system support.  
The rationale behind this decision is that use of an operating system inevitably 
introduces overheads which may be avoided by direct-access by applications to the 
hardware.  Frequently the only supporting software provided is a communications 
harness such as Tiny[38]. 

Such approaches are acceptable only in limited circumstances:  when only a 
single application is running on the machine, and when the programmer is competent 
to deal with low-level details.  If wider access to parallel computers is to be achieved, 
it is necessary that the parallel system presents a similar interface to that of a 
“standard” machine:  this implies allowing applications to co-exist on the platform, 
the existence a filing system, a shell – in short, an operating system. 

A distinction may be drawn here between distributed and parallel operating 
systems, echoing the conventions of terminology from the introduction.  A 
distributed system tends to have the goal of increased reliability, increased 
availability and the like;  a parallel system's main rationale is to increase 
performance.  A scalable operating system is in many respects a fusion of the two:  it 
may use the availability of multiple processors to increase its reliability and to 
improve performance for applications.  Many of the techniques of distributed 
systems – especially those involving failure management, filing systems and name 
spaces – are also applicable to scalable parallel systems (see especially the work on 
Plan 9[15][97][99]).  A good overview may be found in [92][110]. 

Helios 
Helios is a commercially-available operating system for networks of 

Transputers.  It is POSIX2-conformant, and supports load-balancing through the use 
of specialised tools. 

Helios is composed of six elements:  a kernel, several libraries, a processor 
manager and a loader.  The system supports several advanced Unix ideas such as 
shared libraries, mountable file systems et cetera. 

Programming in Helios closely follows the Occam model of communication:  
processes may declare a number of channels which are then attached to the channels 
of other processes using a configuration script.  The channel abstraction is fused with 
the Unix notion of file streams, so applications may use the standard Unix notations 
to access other processes via their channels. 

Wisdom 
Wisdom[8][10][90][91][92] is a micro-kernel operating system nucleus for 

mesh-based systems, currently implemented on Transputers. 
The Wisdom nucleus is composed of three modules:  a load balancer, a namer 

and a router.  The same nucleus runs on every node in a Wisdom system. 
Parallelism comes in two forms:  tasks and processes.  A task is the smallest unit 

of true parallelism, and may be composed of several processes executing in a shared 
                                                

2POSIX is the international standard definition of a Unix programming interface (IEEE 1003.1-1990 
or ISO 9945-1).  
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address space.  The load balancer allows tasks to be moved at their creation onto any 
less-loaded neighbour of the process which creates the new task.  This forms a load 
balancing “ink blot” of tasks spreading out from the user's initial log-in task. 

The router allows any pair of tasks to communicate using capabilities[88].  A 
capability is a user-space object which may be passed freely between tasks:  any task 
holding a copy of a capability may use it to communicate with the task which created 
the capability.  Message routing is unreliable, with zero-or-once delivery. 

The namer is analogous to the Unix file name space, but maps textual, user-
friendly names onto capabilities rather than onto files.  Any task may “register” itself 
with the namer by supplying a capability:  any other task may then obtain this 
capability by making a request to the namer. 

The modules of all the nuclei in the system co-operate to present the illusion of a 
single computer, but additional nodes may be added to the mesh to increase the 
system's capabilities without changing any software. 

A more complete description of Wisdom may be found in Appendix B. 

1.3. Programming for Scalable Systems 

We shall begin by defining the issues which set scalable programming systems 
apart from other parallel or distributed environments, before addressing the issues 
raised – memory, concurrency and configuration – by a survey of the literature.  
Inevitably some systems fall into several categories:  in this case, a system has been 
placed in the category to which it makes the biggest contribution.  Object-oriented 
systems span categories to such an extent that discussion of them is contained to its 
own section. 

1.3.1. Issues in Scalable Programming 

A scalable application is an application which is able to take advantage of 
whatever computational resources are available at run-time, and is able to tailor its 
resource utilisation and organisation according to the problem in hand.  In other 
words, a scalable application is extremely responsive to its environment when 
dealing with a problem. 

Such responsiveness implies that a very flexible approach is taken towards all 
those features of the system which may be changed by scalability.  In particular, a 
scalable applications must deal with the fact that the amount and distribution of 
memory and the amount of usable parallelism may change between runs. 

Memory 
Memory in a multicomputer is divided between the processing nodes.  A 

memory is private to the node to which it is connected, and only processes executing 
on that node may access its memory directly. 

This partitioning of the system's address space has several effects.  The most 
beneficial effect is that bottlenecks caused by several processors competing to access 
memory are eliminated.  The processing nodes of a multicomputer each behave like 
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independent computers – with the addition of communication links and the removal 
of most or all peripheral devices. 

The disadvantages, however, are severe.  An application must constantly 
consider the location of data items and processes, in terms of the node on which they 
reside.  This need for location-management adds considerable complexity to the 
programming task and introduces overheads:  since a process may only manipulate 
data held in its node's memory, any data not residing there must be acquired from the 
remote node where they reside. 

Scalability means that an application cannot know, a priori, exactly what 
memory resources will be available:  additional nodes may be added, local memory 
sizes may be increased, other applications may be running et cetera. 

Concurrency 
Parallelism is the sine qua non of scalable computing.  Without parallel 

execution, an application is limited in its performance and memory to what can be 
accomplished on a single processor. 

Concurrency may be seen in two lights:  one the one hand, it may be used to 
improve performance by allowing several parts of a computation in parallel;  on the 
other, it may be used to provide a degree of redundancy in processing, so as better to 
tolerate partial failures.  Both these aspects are important in a scalable system. 

The fact that processors may be added – that is, the processing resources scaled 
– means that applications must take a very flexible view of these resources if they are 
to be scalable.  It is unacceptable to define a priori the number of processes which 
will be created by an application, as this limits the scalability of the system:  less 
processes than processors may result in less-than-optimal performance, whilst too 
many processes may cause contention and time-slicing problems.  There is a difficult 
line to be walked between the programmer's involvement in generating concurrency 
and the potential scalability of the system. 

Configuration 
Configuration is the arrangement of elements of a program in memory, and their 

interconnection.  In a system in which the number of processors and their topology 
may vary, this is obviously a difficult task. 

There are essentially three approaches to configuration: 
 

• “hard-wiring” an application's configuration into it at compile-
time; 

• separating an application's functionality from its configuration, 
and specifying configuration using a separate tool;  and 

• allowing configuration to occur automatically at run-time. 
 

The first approach means that changing an application's configuration requires a 
complete re-compilation – not a viable option in a scalable system.  The second 
allows configurations to be changed with only minimal changes (possibly re-writing 
the configuration description, but not the application itself).  The third allows an 
application to decide itself upon its configuration, relegating the programmer's 
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involvement to the specification of “hints” to help the mapping.  This last is the most 
appropriate to scalable systems, since the programmer is never called upon to specify 
directly the resource utilisation of the application. 

1.3.2. Memory Models 

There are several ways in which memory may be presented to the programmer.  
These range from the visible partitioning of the machine's address space to the 
complete abstraction of all notions of data location. 

Explicit Data Mapping 

The most primitive form of memory model for a multicomputer system is one 
which allows the partitioning of the system's address space to be seen by 
applications.  Another way of looking at this is that any system address is composed 
of a pair (node, addr) which defines location addr on machine node (which may 
itself be a structured name).  This is rather reminiscent of the segmented address 
space found in some processors, and has the same disadvantage:  there is an arbitrary 
upper limit to the size of the largest contiguous block of memory which may be 
allocated.  A further disadvantage is that the system's memory is not random access:  
addresses on a different node are more expensive to access than local addresses. 

The single advantage of this form of memory model is that it allows the most 
precise control possible over the placement of data and code.  In order to achieve the 
best possible performance, some programmers are willing to accept the penalty of 
increased application development and debugging times as a trade-off against better 
speed of execution in the final application, which will not be incurring any penalties 
from supporting a more high-level memory model. 

The best-known explicit data mapping system is undoubtedly Occam[86], which 
is covered in more detail in §1.3.3.  Other systems, such as Concurrent C[51] and 
Joyce[27], also use the same model. 

Data Structure Mapping 

As an alternative to such explicit mapping, some systems allow data structures 
to be mapped automatically onto processors.  This has the great advantage that many 
applications – particularly in the engineering community – are based around 
manipulating large arrays or other highly structured data collections, so the mapping 
concerns the central constructs of an application. 

  Different systems have differing degrees to the transparency with which they 
perform their mappings:  some perform it completely automatically, or with the 
addition of annotations, whilst others allow the structure of the mapping to be visible 
to (and exploited by) applications. 

Parallel Fortran 
Even after forty years, Fortran is still the lingua franca of the scientific 

community.  There is a vast amount of Fortran software in existence – both as 
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applications and as libraries of sub-routines for common calculations – much of 
which is in the form of “dusty decks” of code which it is impossible (or impractical) 
to translate into another language.  For all these reasons, there is a great deal of 
interest in running Fortran code without modification (or, more realistically, with 
only trivial annotation) on parallel systems.  Many of the common sub-routine 
libraries have been ported to the new dialects[3]. 

There have been a great many attempts to create a parallel Fortran, mostly 
concerned with introducing parallelism into nested loops.  The usual mechanism is to 
perform a data dependence analysis on the Fortran source code to determine how the 
values of one loop iteration affect other iterations, and then to use this information to 
construct a suitable parallel version of the loop and a suitable distribution for data 
and processes. 

The recent High Performance Fortran (HPF) proposal[57] contains directives to 
specify application-defined topologies of processors coupled with mappings of arrays 
(the only applicable data structure in Fortran) onto these processors.  Parallelism 
comes from “forall” statements and directives specifying that certain loop segments 
are independent and may proceed in parallel.  There is also the notion of a “pure” 
function having no local state dependence, which may safely be applied in parallel. 

Topologies 
Topologies[104] are an operating system construct which allow a single object 

to be distributed across the nodes of a network.  Each topology is an object having a 
well-defined interface, a list of “vertices” at which portions of the object (both code 
and data) may reside, and a connection topology for the vertices. 

A topology is instantiated by specifying a mapping of its vertices onto 
processors.  When communicating with the object, processes may specify a particular 
vertex to which they wish to bind, and all their communication will be directed 
directly to this vertex. 

Each vertex must be equipped with a procedure which can determine whether 
the portion of the object being accessed is located at that vertex, and must forward 
the request if this is not the case.  The internal organisation of the topology is visible 
to its clients. 

Kali 
Kali[71]  separates the description of a program into three parts:  a description of 

the processor topology, some data structures which may be distributed, and a 
collection of parallel loops over the elements of those data structures.  Programs are 
written under a shared-memory model, but the distribution of slices of data structures 
onto the processor topology is specified explicitly.  The compiler than transforms the 
program into a collection of message-passing processes.  In essence, the system is a 
forerunner of HPF. 

Parallelism comes from “forall” constructs which allow a command to be 
executed over all (or a sub-set of all) the elements of an array.  The site at which 
execution occurs may also be given, and may change with each iteration. 
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Distributed Shared Virtual Memory 

Distributed shared virtual memory (DSVM) is an increasingly popular model of 
memory3.  It attempts to provide the abstraction of a single globally-shared memory 
on a distributed-memory machine by using the techniques developed for virtual 
memory[110], extended into a wider domain.  In the following discussion, we shall 
use the DSVM system described by Li[76] as representative of a wider class of such 
systems:  a comparison of various DSVM systems, with each other and with other 
models of memory, may be found in [114]. 

Memory is represented by fixed-length virtual pages.  Each page may be 
resident in memory or may be temporarily paged-out onto disc.  The physical 
memories of the processing nodes are divided into page frames, each of which may 
hold a single virtual page.  Address translation is used to map the virtual addresses 
generated by processes into physical addresses:  different processes may have 
independent virtual address spaces, just as with standard virtual memory systems. 

The chief characteristic of DSVM is its ability to migrate and replicate pages in 
different physical address spaces.  Since there is no fixed mapping between virtual 
pages and physical addresses or locations, it is possible to move a page between page 
frames on different processors in response to requests for addresses on that page – a 
page fault.  If a process generates a page fault, the DSVM manager determines where 
the required page is located and either moves or copies it into a page frame on the 
processor which generated the fault.  In order to do so a page frame may need to be 
freed:  this may be accomplished by (for example) discarding the least-recently-used 
replica of any page. 

There is a problem of memory consistency, however.  The definition of DSVM 
states that it will be strongly consistent:  the value which a process reads from a 
memory location will be the value last written by any process into that location.  If 
two processors were to be allowed write access to a single page, consistency 
problems would arise. 

DSVM solves this by associating an access permission with all pages.  A page 
may be marked as read-write or read-only.  There may be many read-only replicas of 
a page, but at most one read-write replica (known as the master copy).  If any replica 
of a page is written to, all the read-only replicas of that page are invalidated:  nodes 
holding these replicas throw them away, so the next attempt to read data from that 
page causes a page fault which will acquire the updated data on that page from the 
master copy.  A typical sequence of accesses is shown in figure 1. 

                                                
3Unfortunately known by a variety of names, another common one being virtual shared memory 
(VSM). 
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Li investigated several strategies for managing pages and replication, and 
derived a fully distributed scheme which ensured consistency between replicas of 
pages[77].  He also investigated the overheads involved in implementing a DSVM 
system practically on a hypercube architecture[78], drawing the conclusion that the 
system was practical on networks with a high dimensionality:  it is doubtful that his 
methods would function as well in systems with a low-dimensional interconnection. 

DSVM seems to be an ideal candidate for a scalable system:  it successfully 
allows applications to abstract-away from details of data location, since all pages are 
accessible from all nodes.  It has a number of shortcomings when examined more 
closely, however. 

Firstly, there is the question of allocation of data to pages.  Consider a pair of 
processes A and B which are communicating using a shared variable:  A is a 
producer and B a consumer.  A writes values into the variable which B reads and 
processes.  The processes reside on different processors, with the variable being 
mapped into a virtual page.  Communication then occurs as follows.  A owns a read-
write copy of the page, while B owns a read-only copy.  When A writes a value to 
the variable, B's replica of the page is destroyed;  when B next attempts to read the 
variable, it will cause a page fault and acquire the value from A's master copy. 

Now consider another pair of processes, C and D, which are interacting with 
each other in exactly the same way as A and B using another variable, and which are 
located on another (different) pair of processors.  C and D do not interact with A and 

 

a b

c d

a b

c d

a b

c d

a b

c d

1

2

1

21

2

1

2

1 1

1.  a and d own read-write
pages 1 and 2 respectively

2.  b and c make read-only requests
for page 1, and receive copies
through page faults

3.  c writes to its copy, causing
the other copies to be invalidated:
c becomes the new page owner

4.  a writes to page 2, causing
it to be moved:  a becomes the
new owner  

Figure 1:  Page faulting in distributed shared virtual memory 
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B in any way, as long as the shared variable used by A and B is located on a different 
virtual page to that used by C and D:  otherwise, when A writes to its copy of its 
variable it will not only invalidate B's copy (as above) but also C's and D's as well;  
the same applies when C writes to its variable.  Each write by either pair causes the 
other pair to cause a page fault at the next access to its variable – even though the 
processes are unrelated! 

This phenomenon, known as false sharing, mandates that the variables used by 
unrelated processes are mapped onto different pages, using a very sparse allocation 
of data to pages.  This is quite acceptable using the assumptions of DSVM, which 
(tacitly) assume that there is always a sufficient amount of memory available.  This 
assumption may be challenged in a scalable system. 

If a DSVM system is to be scalable, it must be possible to increase the number 
of virtual pages available along with the number of processing nodes, otherwise the 
number of processors will eventually be left without enough virtual memory.  This 
implies that it must be possible to add new paging discs, and this in turn implies that 
a page which is paged-out onto disc may be placed onto one of several paging discs.  
There is an additional decision to be made as to exactly which disc a page is 
swapped-out onto:  it may always be the same disc, or the nearest, or the least loaded 
et cetera.  This introduces more complexity into an already complex algorithm. 

This problem may be avoided by doing away with paging discs and always 
holding all pages in memory.  At least one copy of every page must always exist at 
some node in the system (for example the master copy is always be preserved), and 
discarding a page to free a page frame moves its data to some other node.  This may 
result in a page fault giving rise to a cascade of page movement, which is almost 
certainly unacceptable.  It may, however, be practical if the number of pages virtual 
pages in the system  is much smaller than the number of available page frames. 

Munin 
An interesting variation on DSVM is the Munin system[16].  Munin offers an 

object-oriented form of virtual memory, performed on a per-object basis. 
The basic observation is that the general case of access to objects – reads and 

writes occurring with equal frequency – is only rarely encountered.  Munin identifies 
nine categories of access pattern: 

 
• write-once – the object is written to only during initialisation, 

and is read frequently thereafter; 
• private – the object is accessed only by a single thread; 
• write-many – writes occur frequently between reads; 
• result – all writes are completed before any reads occur; 
• migratory – the object is accessed by only one thread at a time, 

although the thread changes with time; 
• producer-consumer – the object is used as a channel between 

two processes; 
• read-mostly – the object is read frequently between writes;  

and 
• the general case of read-write. 
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No single virtual memory scheme can support all these patterns efficiently (Li 

and Hudak recognise two of the above cases – write-many and producer-consumer – 
which are inefficient under their DSVM[78]). 

Munin addresses this problem by implementing virtual memory in software on a 
per-object basis.  The system uses a different memory management scheme for each 
category, and can change the category of an object dynamically as patterns of access 
change. 

Munin applications are written using Presto (see later, §1.3.5), which is usually a 
shared-memory system but which can function in a distributed-memory environment 
when coupled with Munin. 

 

The Kendall Square Research KSR1 
A recent entrant into the DSVM arena is the KSR1[82].  The machine uses a 

caching system called ALLCACHE[49], coupled with a very high-speed optical bus 
to offer massive parallel performance using virtual shared memory. 

The ALLCACHE scheme is closely related to that described above, but makes 
good use of the speed of the machine's communications to update copies of data 
items cached on other processors as changes occur.  This reduces the number of page 
faults.  The bus system is hierarchical to avoid contention. 

In programming terms, the KSR1 deliberately separates programming from the 
machine's physical construction:  as with other DSVM system, it is necessary for the 
programmer to understand the sizes of caches et cetera in order to maximise locality 
of reference and performance, but these vital figures are hidden.  An approach of 
“incremental parallelisation” is advocated, where parallelism is gradually added to 
existing sequential code. 

The major problem with the existing KSR1 is its susceptibility to failure.  The 
crash of a single memory board in the system is enough to bring the entire machine 
down, since the operating system cannot sustain the loss of a piece of itself, and 
mean times between failures of 24 hours have been reported[82].  This may be 
contrasted with a more distributed multicomputer architecture where the operating 
system nuclei on each node are separate, so the failure of one node – whilst it may 
render data unobtainable – is not catastrophic to the other nodes.  The machine is 
also based on custom processor and communications technology, which makes it 
vastly more expensive than systems constructed from “off the shelf” components. 

Linda 

Linda, also known as the generative communication paradigm[2][34][52], is 
another shared-memory abstraction running on distributed-memory hardware.  
Rather than use the traditional model of memory as a collection of untyped words, 
Linda implements its shared memory in a novel,  strongly-typed way. 

The fundamental element of Linda is the tuple space, which is a bag of tuples.  
Each tuple is a typed, ordered sequence of values:  for example, 
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{ 1 } 
{ "Hello", "World" } 
{ "Hello", "World", 22 } 
{ "World", "Hello" } 
( "Hello", 1.0 } 
{ "Hello", 1 } 

are all valid, distinct tuples.  There may be many copies of a single tuple in tuple 
space at any time. 

Tuples may be inserted into tuple space using the out primitive, which places a 
tuple into tuple space atomically.  The statement 

out( "Hello", "World" ) 

places a tuple composed of two strings into tuple space. 
Once placed into tuple space, a tuple may be accessed by any other process in 

the applications (or the system) using the in statement4, which removes a tuple from 
tuple space.  Tuples are retrieved using associative matching:  a pattern, or template, 
is provided which is unified against all tuples in tuple space.  A template may contain 
values and formal parameters, which are variables which will take on values from the 
selected tuple.  For example, the statement 

string s 
in ( "Hello", ?s ) 

would match the tuple inserted above:  after the statement, s would have the value 
World.  The associative matching algorithm respects the types and arities of tuples, 
so the statement 

int x 
in ( "Value", ?x ) 

would match the tuple ( "Value", 10 ) but not the tuples ( "Value", 
10.1 ) or ( "Value", 10, 1 ). 

Linda provides two other operations.  The rd statement acts exactly like in but 
does not remove the tuple from tuple space.  It also defines an eval statement which 
generates “active” tuples – tuples which have functions as values.  An active tuple is 
the Linda abstraction for a process:  when inserted into tuple space, the functions are 
evaluated to turn the tuple into an “ordinary” passive tuple containing the results of 
the functions.  The functions may access tuple space in the course of their evaluation. 

Linda is a sometimes described as a co-ordination language.  It is not a language 
in its own right, but shares something in common with DSVM or communication 
models like CSP[59].  Linda is intended to be inserted into another, “host” language, 

                                                
4Some people contend that this use of in and out is rather paradoxical, since in takes tuples out of 
tuple space.  The convention is to view all tuple activity from the process' point of view, so in brings 
a tuple into the process. 
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which performs all computation but uses the Linda primitives for all shared data and 
inter-process communication.  This allows Linda to be implemented as a library and 
linked into a program:  indeed, the most common Linda system is an embedding of 
the primitive operations into C[19][33]. 

In many respects, Linda suffers from the same deficiencies as DSVM:  by hiding 
distribution of data so completely, it makes it impossible to optimise applications 
when a “good” data distribution is known. 

There is a dual abstraction between the way in which data is structured internally 
and the way in which it is communicated to other processes.   process may hold data 
as (for example) a tree internally, but must “flatten” this tree into tuples in order to 
communicate it with another process – and the receiving process must reverse this 
operation in order to manipulate the tree.  This may be a complex procedure for 
realistic data structures. 

The semantics of the eval statement are stated only very vaguely, and it is 
difficult to find a really satisfactory answer to the question:  in an active tuple such as 

eval ( "squaring", f(10), g(20) ) 

what are the semantics of the execution of f and g?  One might interpret the 
statement as either evaluating the functions in parallel, or sequentially.  If the answer 
is the former, then there may be strange and unpredictable interactions between the 
functions if they both access tuple space in the course of evaluation;  if the latter, 
they may deadlock, and it becomes difficult to determine how much concurrent 
activity occurs in a program. 

There is also the question of matching an active tuple:  is this possible, and if so, 
what are the semantics?  There are at least three possible semantic meanings for 
removing an active tuple from tuple space – delete the process, suspend the process 
or reverse all its actions up to the point at which it is removed – and without a proper 
definition it is impossible to reason about a Linda system without knowing the details 
of its implementation. 

Some more recent Linda implementations include more comprehensive features, 
such as multiple tuple spaces and languages well-integrated with Linda[30]. 

Strand 

Strand[48] is a language based around the ideas found in Prolog[39] and the 
concurrent logic languages[121]. 

The shared memory in a Strand application is a database of logical assertions.  
An assertion may be a simple statement of fact or a rule of inference for processing 
other assertions, in much the same way as in Prolog.  A Strand clause may be 
guarded by an expression which must be true for the clause to be evaluated. 

A typical Strand program is the following set of clauses: 
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twice ( X, Y, Status ) :- 
 integer(X), X>0 | 
  Y is 2*X, Status := []. 
 
twice ( X, Y, Status ) :- 
 integer(X), X=<0 | 
  Y := 0, Status := []. 
 
twice ( X, Y, Status ) :- 
 otherwise | 
  Y := 0, Status := error. 

(This and other examples are taken from [5].)  These clauses evaluate Y to be 2*X 
when X is an integer greater than zero;  0 if X is less than zero;  and raise an error 
otherwise.  The guards on the clauses ensure that only the appropriate clause fires. 

Parallelism comes from the evaluation of clauses concurrently in the satisfaction 
of goals.  For example consider the function: 

quad ( X, Y ) :- 
 twice(X, W, S1), twice(W, Y, S2). 

This definition is read as two processes communicating through the shared unit 
buffer W.  Initially this variable is undefined.  Both clauses begin execution 
concurrently, but the second blocks on attempting to acquire the value of W (which 
will be unified with X in the definition of twice).  The first process will evaluate 
2*X and place the result into W, unblocking the second process and allowing it to 
proceed to evaluate 2*W and place the result into Y. 

From this example, it may be seen that Strand's view of shared memory is as a 
collection of clauses coupled with single-assignment variables.  Two processes 
accessing the same variable are essentially communicating using a unit buffer:  for 
more advanced communications, Strand provides lists:  the clauses 

par_twice ( [N | LX1], LY ) :- 
 Temp is 2*N, LY := [Temp | LY1], 
 par_twice(LX1, LY1). 
 
par_twice ( [], LY ) :- 
 LY := []. 

map the function 2*X across a list in parallel. 
Strand also allows multiple languages to be used in writing the functions which 

appear in clauses.  Thus functions may be written in any suitable language, but must 
communicate using the Strand database.  The Strand system handles the unification 
of shared variables, the scheduling of clauses which may execute, and the assignment 
of evaluating clauses to processors.  Strand itself is designed to be highly portable 
across a range of architectures and languages[31]. 
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It is impossible to avoid comparisons between Strand and Linda.  Both 
implement shared memory using a novel memory model (Strand's being less novel 
than Linda's) and deal with the problems of access, matching (using different 
associative matching algorithms) and process creation and location.  Strand also 
handles process scheduling, in the manner of an OR-parallel logic language (e.g. 
[83]),  using single-assignment variables for communication, whereas the Linda 
programmer defines the execution order;  Linda is (potentially) strongly statically 
typed, whilst Strand is weakly dynamically typed. 

As a memory model for a scalable system, Strand suffers the same benefits – 
and the same deficiencies – as Linda.  The abstraction of execution order, however, 
gives Strand a slight advantage in the management of concurrency, since there is no 
explicit parallelism in a Strand program. 

1.3.3. Concurrency 

The concurrency found in applications is often very tightly tied to the intended 
hardware architecture, although this is not always the case.  For scalable systems, we 
obviously require a scalable model of concurrency, in which the concurrency used in 
an application may scale according to the number of processors which are available. 

We shall consider concurrency in terms of whether it is extracted automatically 
from a program's text or whether the program must express its concurrency explicitly  
(a third method, using object interactions, will be deferred until later). 

Implicit Parallelism 

“Implicit” parallelism refers to the situation where the language compiler 
extracts automatically any parallelism latent in a problem.  The programmer writes 
the program without any concern for its execution structure, and the compiler 
automatically generates the necessary concurrency generation and synchronisation 
primitives.  There have been two main threads in automatic parallelisation:  
extraction of parallelism from sequential languages, and the use of non-procedural 
languages. 

The most popular choice for automatic parallelisation is undoubtedly Fortran.  
As mentioned above, §1.3.2., parallel Fortran dialects frequently use data structure 
mapping to distributed elements of arrays and then perform operations on these 
arrays in parallel.  The Fortran program is still essentially a sequential one, but the 
compiler is free to optimise array operations using parallelism:  an SIMD approach 
which may be implemented on either SIMD or MIMD hardware. 

Parallelism extraction in imperative languages is constrained, however, by the 
implicit flow-of-control information embedded into applications:  the order of 
statements, sub-routine calls and the like has a strong semantic meaning which 
cannot be altered by program transformations.  Non-procedural languages, which 
(largely) remove the semantic importance of statement ordering, offer another, more 
tractable route to automatic parallelism.  The compiler is free to evaluate functions in 
parallel at the granularity appropriate to the architecture being used.  Hudak makes 
the point that 
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“An often heralded advantage of functional languages is that 
parallelism is implicit;  it is manifested solely through data 
dependencies and the semantics of operators[61]” 

but harnessing this advantage has proved to be more difficult that might have been 
expected:  the same is true of logic languages. 

At the risk of generalisation, it might be said that automatic extraction of 
parallelism – both in imperative and declarative languages – without programmer-
supplied hints and annotations has largely been unsuccessful in the general case, 
although certain important special cases (such as some parallel Prolog systems) have 
exhibited interesting potential for the future. 

Explicit Parallelism 

Explicit parallelism is undoubtedly the most common form of code written for 
parallel machines, and is also the easiest for the language implementor. 

We may further sub-divide explicitly parallel systems into those in which 
parallel structures exist within the language and those in which parallelism is added 
to a purely sequential language. 

In the first category fall languages such as Concurrent Pascal[26], Joyce[27], 
Concurrent C[51] et cetera.  All these languages have (for example) a 
cobegin...coend construct,  which allows statements to be specified for 
concurrent execution, coupled with the ability to perform synchronisation.  There 
are, of course, variations in syntax and type security between these languages, but 
they are overwhelming similar semantically. 

Occasionally one encounters explicit statements of parallelism within functional 
languages – a recognition of the difficulties encountered in extracting parallelism 
from even the most tractable frameworks.  A good example is Concurrent ML[101], 
in which the spawn function (which is not referentially transparent) generates new 
threads of control. 

Embedding parallelism into a purely sequential language is accomplished by 
creating libraries of functions which interact with the underlying operating system to 
create and control parallel activity.  The best-known examples are the fork and 
wait system calls found within the Unix standard library[12], where each process 
executes in its own address space.  Systems such as Mach also provide “thread” 
calls, where processes may share an address space[65].  Problems may occur with 
this approach, however, as the introduction of concurrency subtly alters the 
semantics of the host language, introducing the need for shared variables, protected 
regions et alia.  This is especially true with languages allowing global variables. 

Occam 
The Occam language[86] is derived closely from Hoare's CSP[59].  It models 

concurrent systems as a collection of sequential processes which communicate via 
bi-directional channels.  It has had a major effect on thinking regarding parallel 
languages, and deserves to be treated in detail. 
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Occam offers very fine-grained parallelism – processes may be created from 
arbitrary statements or blocks of statements, so it is possible to express problems in a 
maximally concurrent fashion.  Processes do not share memory, at any level, so all 
communication proceeds by passing data values along channels – there is no pass-
by-reference mechanism, and no pointers.  The lack of shared memory in Occam 
means that it encourages a pipelined approach to parallel processing[64]. 

Occam does suffer from some fundamental disadvantages, however.  The 
language has a very weak type system and almost no encapsulation facilities.  The 
weakness in the type system means that there are type- and syntactically-correct 
programs which nevertheless cannot be compiled – or, worse, compile by generating 
incorrect code.  The language forces an application to have a completely static 
structure in terms of the number of processes it contains and their interconnections.  
Current implementations are also very flimsy:  the most common use of Occam is in 
programming Inmos Transputers, but the Transputer does not support some of the 
Occam constructs and makes the configuration of Occam programs very difficult.  
(For example, a single channel must be mapped onto a single hardware link, which is 
a significant constraint:  it is necessary for programmers to perform their own link 
multiplexing in software. 

From the point of view of scalability, the fixed number of processes and the 
fixed channel network means that an Occam application cannot re-configure itself to 
different hardware arrangements. 

The Occam model of processing is also found in other systems, notably those 
such as Concurrent C which are really embeddings of Occam-style constructs into a 
sequential language.  Occam's communications model is also found in some 
rudimentary parallel processing toolkits, as procedure calls for sending data down 
channels. 

1.3.4. Configuration 

Changing the processing elements in a system inevitably affects the optimal 
configuration of applications running upon that system.  The search for an “optimal” 
configuration for particular programs is thus complicated by scalability.. 

Helios CDL 
For the current purposes, the most important feature of Helios is its method of 

load balancing and configuration of multi-process programs.  The system implements 
concurrency at the granularity of the Unix process (which is identified with a  
Transputer process), and allows processes to be composed using a Component 
Description Language (CDL).  A CDL script defines the links between processes:  
when executed, a compiled CDL program is passed to the Task Force Manager on 
the node at which it is started, which attempts to map each process onto the system's 
nodes in a near-optimal manner using various heuristics. 

The Helios shell has been modified so that, for example, a request to connect 
processes using “pipes” will result in a CDL object file to achieve the appropriate 
load balance. 
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Conic and Darwin 
Both Conic and Darwin share the view of CDL, that processes are described 

using a sequential language augmented with the provision of ports which may be 
connected together. They differ from CDL in the level at which configuration is 
performed. 

Darwin (the successor to Conic) is intended for use alongside the MP 
language[84].  A Darwin program defines a set of components which in turn define a 
collection of ports.  The ports of each component may be linked together to construct 
an application. 

Darwin allows its components to be either executable modules or collections of 
modules:  a collection of modules may be made to behave as a single component for 
configuration purposes. 

The current MP/Darwin combination is targeted at Transputer systems.  A 
component may be assigned to a particular node;  it is also possible to define the 
connection topologies of the nodes by treating each Transputer as a Darwin 
component having four channels (its links).  This allows Darwin to configure both 
the multicomputer network and the application running upon it. 

Performing Configuration Automatically 

It is perfectly possible, in principle at least, for an application to be written 
without any information being supplied about its configuration.  It is then the 
system's responsibility to determine the best locations for elements of the application, 
and to ensure that they can communicate. 

Any system which completely removes notions of data and process locality 
(such as Linda) is effectively performing automatic configuration.  The evidence 
suggests, however, that such systems are considerably less efficient than a skilled 
programmer. 

A compromise is to allow the programmer to provide “hints” to the automatic 
algorithms.  With care, the programmer may provide enough information for the 
system to determine a near-optimal configuration.  Such an approach is ideal for a 
scalable system, since no hard-wiring of components occurs but the programmer still 
retains a residue of control over configuration. 

1.3.5. Object-oriented Systems 

Object-oriented systems are currently very popular in computer science, offering 
good encapsulation, typing and re-use.  They offer a good abstraction for all the 
facets of programming systems considered above, and may be used to implement a 
distributed memory model, a concurrency model and a method of configuration, all 
rolled into one. 

Fundamentals of Object-oriented Programming 

An object is a named, persistent instance of an abstract data type[6] which may 
be manipulated only through an exported interface.  The operations (called 



 

- 26 - 

methods[54] or member functions[108]) may manipulate the state of the object on 
which they are called, and may initiate method calls to other objects. 

The basic intention in creating a distributed object-oriented system is to utilise 
the encapsulation properties of objects as a basis for controlling the location of data.  
The underlying system is constructed so as to make object names valid throughout 
the network, so that two objects may interact via method calls, no matter where they 
are located.  An object-management system deals with marshalling and transmitting  
a method call to the appropriate processor and with returning any reply.  Such 
systems are often called virtual object spaces[81]. 

Objects may also be used as an encapsulation mechanism for concurrency, 
introducing concurrency at either the object or the method level.  Some systems 
provide special “active” objects which have a thread of control, acting like a process 
in a more traditional language.  Others allow some (or all) methods to be executed 
without blocking the caller, or to unblock the caller before they complete.  If only a 
single method can be executing within an object at any time, the objects present a 
single-threaded concurrency model;  if many methods may be executing 
concurrently, then the object model is multi-threaded but requires some additional 
concurrency control mechanism. 

Configuration is a matter of deciding which objects reside on which processors.  
This may be performed explicitly, by creating objects at a particular location, or 
implicitly by allowing load balancing or migration. 

Some Sample Distributed Object-oriented Systems 

At the risk of generalisation, it might be said that most systems concentrate 
either on managing concurrency or on managing distribution, but seldom both.  We 
shall examine some of the more important distributed object-oriented systems below. 

A Gossip of Smalltalks 
Smalltalk[54] is the archetypal object-oriented programming environment.  

Everything in Smalltalk – integers, data items, data structures, class definitions, 
method definitions, blocks of code, files et alia – is an object with the same 
privileges and properties.  This makes Smalltalk an exceptionally clean language. 

A major criticism of Smalltalk in a concurrent environment is that processes are 
not objects, but are created from blocks using the fork method.  This leads to 
programming occurring on two levels – objects and processes – which is a little at 
odds with the Smalltalk philosophy[72].  ConcurrentSmalltalk[122] is an attempt to 
solve this dual standard.  It provides a small set of language extensions for creating 
asynchronous methods (which do not block the caller), CBox objects (which behave 
rather like futures[56][79]), acknowledgement replies (which reply to and unblock 
the caller without terminating the method) and atomic classes (on which all method 
calls are serialised). 

A further extension to ConcurrentSmalltalk is provide by DistributedConcurrent-
Smalltalk[93], which provides “secretary” objects to manage concurrency constraints 
more complex than the total seriality of atomic classes.  Secretary objects allow 
methods to be related so that they will only execute in mutual exclusion, and allow 
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guards to be placed on methods which must be true for the method to proceed.  The 
secretary is accessed through the meta-class hierarchy. The system also allows 
objects to be distributed.  Objects are collected into name spaces, and users may 
select a hierarchy of name spaces (rather like the “path” variable[25] used to find 
executable files in Unix). 

These Smalltalk variants all suffer from the disadvantage that they scrupulously 
maintain Smalltalk-80's semantics.  Smalltalk was never designed as a parallel or 
distributed language, and certain aspects of its semantics and built-in classes (which 
must perforce be considered part of the language) are not amenable to extension into 
the parallel domain. 

Emerald 
The Emerald language[20][21][63] is an object-based language (to use Wegner's 

terminology[116]) which is chiefly concerned with the implementation of a virtual 
object space in which objects may migrate between nodes. 

An Emerald object is created using a prototype, rather than a class.  An object 
resides on a single node, but this node may change with time – a process called 
migration[67][68]. 

The run-time system tracks the patterns of activity occurring to every object in 
the system.  If it notices that two objects are interacting heavily, then it will migrate 
one of them towards the site of the other (usually  it is the receiving object which 
moves).  This migration reduces the communications distance between the objects 
and hence improves performance.  Various heuristic methods may be used to decide 
when to move an object. 

Single method calls may also result in object migration.  Usually values are 
passed either by reference or by value:  Emerald supports a third parameter type, by 
move, which suggests that the object named be migrated to the site of the target of 
the method call. 

It is possible to get into pathological situations with migration, such as when two 
widely-separated objects  share the use of a third.  The shared object may then be 
migrated from one side of the network to the other, causing a decrease in 
performance. 

Object names must be maintained when objects are migrated, and Emerald 
performs this by using forwarding.  An object name contains the node on which the 
object resides:  if that object subsequently moves, the name will become invalid.  
Emerald stores a forwarding address at the node from which an object moves, so that 
any messages targeted to its old location may be forwarded.  This may result in a 
cascade of forwarded messages if the object migrates often, which can degrade 
performance. 

“Shared Objects” 
The notion of “shared” objects comes from Tanenbaum et alia's work on the 

Orca language[14][112], but is also found in other projects such as the work of 
Mallon and Dew[85]. 

Shared object systems emphasise the use of objects for communication, at the 
expense of their use as processes.  In Orca, for example objects are completely 
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passive, and are complemented by active processes which perform computation.  An 
object cannot have an independent thread of control:  processes provide the active 
parts of the system, and may make method calls onto objects.  All method calls are 
completely synchronous, and objects are single-threaded. 

Mallon uses a similar system, where passive data objects reside in an address 
space common to all processors – not a DSVM despite the similarity in addressing.  
Processes may use the objects to communicate, and a migration mechanism similar 
to that in Emerald is used to reduce communication by migrating objects without 
changing their addresses. 

One could argue, with a certain degree of truth, that shared objects are not 
object-oriented systems in the usual sense, as they separate processing from data 
encapsulation.  Processes and process descriptions are not first-class, and require 
separate mechanisms for their implementation (processes are not first-class in 
Smalltalk, either, but process descriptions – blocks of code – are). 

Actor Languages 
Actors[1] are a model of computation based loosely on object-oriented systems 

– indeed, they have been described as a formal description of object-oriented 
programming – but which also bear a resemblance to functional and other state-free 
languages. 

An actor is composed of a mailbox and a behaviour.  Actors communicate with 
each other using asynchronous messages sent to mailboxes and queued (the model 
makes no guarantees of arrival times of messages, but does guarantee reliable 
delivery).  Each mailbox has an associated behaviour, which may change with time. 

A behaviour is a procedure which accepts a single message from the mailbox   It 
processes this message and then dies:  in dying, it nominates a replacement 
behaviour which is to process the next message in the mailbox.  Behaviours must 
have a finite execution time, and no state information is maintained between 
behaviours. 

A little refection will show that actor systems are massively parallel.  Since 
behaviours must be finite, they cannot contain loops:  all loops must be implemented 
by sets of actors communicating using messages.  Since there is no state information, 
and no explicit ordering in the delivery of messages, it is possible for an actor to 
nominate its replacement before it processes its own message, thus overlaying the 
processing of the next message with its own actions.  In general, a behaviour will 
give rise to a number of messages to other actors and the creation of new actors – all 
these actions are asynchronous and may occur in parallel. 

This is both a strength and a weakness of the actor model.  Parallelism is so 
widespread and so fine-grained that it is can be difficult to contain, and this often 
leads to actor systems being extremely slow on available processors. 

Concurrent Aggregates 
Concurrent Aggregates[36] (CA) is a language based loosely on Lisp, but which 

also bears a significant resemblance to the actor formalism. 
An aggregate is a collection of objects which may be manipulated using a single 

name.  The aggregate acts as a concurrent front-end to incoming messages, allowing 
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the aggregate to be internally concurrent.  The aggregate delegates messages to the 
appropriate objects as they are received. 

Messages (which are first-class in CA) are targeted at aggregates, rather than 
objects.  The run-time system directs such messages to a particular member of the 
aggregate (a representative) selected non-deterministically.  The representative may 
process the message itself or may delegate it to another object or aggregate. 

The main claim for CA is that it allows hierarchies of abstractions to be created 
without introducing unnecessary synchronisation – a problem with some other 
object-oriented languages, in which the object is the unit of synchronisation. 

Presto 
The Presto tool kit[17], described as “a system for building custom concurrent 

programming environments,” is a library of C++ classes targeted at shared-memory 
multiprocessors. 

Presto's basic mechanisms are built around objects providing threads and 
synchronisation.  The semantics of these classes are deliberately left quite weak:  the 
intention is that they be used as base classes which are then specialised to provide 
application-specific objects.  The justification for this approach is that Presto can be 
used to implement any concurrent processing paradigm, and so can be used to 
construct environments which are targeted closely at a particular domain. 

The “openness” of the system means that adding new objects need not 
compromise efficiency.  The scheduler, processor, thread and synchronisation 
objects may all be customised and may replace the default system objects (such as 
the system scheduler) dynamically. 

Arjuna 
Arjuna[43] is a tool kit for creating reliable applications in a distributed 

environment.  However, a sizeable amount of work in the project concerned the 
management of concurrency[96], and reliability is a major concern for scalable 
systems. 

The basic construct in Arjuna is the transaction:  an atomic action performed on 
an object which either completes successfully or fails completely – there is no 
possibility of a partial failure and consequent inconsistencies.  A successful 
transaction commits itself, whereupon the state of the object is written to stable 
storage[42];  a failed transaction causes the previous state of the object to be restored 
from storage.  Transactions may be nested when one transaction starts another as part 
of its function, and Arjuna guarantees that such nested transactions also behave 
correctly. 

1.4. A Scalable Programming System 

Scalability introduces into applications the need to be able to cope gracefully 
with changes in the computing resources which underlie the application's definition.  
This implies that the actual available resources used by an application are only 
determined at run-time:  to do otherwise, fixing the amount of parallelism and 
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distribution of data at compile-time, means that unnecessary constraints are placed 
on the ability of the application to cope with resource changes. 

The “ideal” scalable parallel application will make optimal use of the resources 
which it finds available when it is executed, and will evolve its resource demands to 
fit changing system conditions.  Depending on the nature of the overall computing 
environment, applications could optimise in such a way as to maximise their own 
performance, or to maximise the throughput of the system as a whole.  Hence adding  
resources to the system will have a direct impact on the performance of all 
applications. 

Given this, we may see the form of a programming environment for creating 
scalable applications.  Such an environment has aims similar to those of the 
environments encountered traditionally in the construction of highly parallel 
applications, as surveyed in the preceding section.  The needs of scalable systems 
are, in many ways, identical to those of other distributed-memory parallel systems, 
involving the regulation of concurrency and the distribution and control of data. 

The main difference in a scalable system, however, is that there is no a priori 
information available to guide the programmer in distributing data or regulating 
concurrency:  this information only becomes available at run-time.  Therefore the 
identifying characteristic of a scalable application is that it must defer until run-time 
all decisions relating to the exact distribution of data and its concurrent processing.  
That is not to say that a programmer cannot indicate which parts of an application 
should execute in parallel, or how data should be distributed:  merely that such 
descriptions are “slack.” 

The systems surveyed tend to take too rigid a view of their resource utilisation to 
be completely suitable for scalable programming.  Linda, Strand and the DSVM 
systems offer an appropriate memory model, but at significant cost to performance – 
there is often a need to involve the programmer, however peripherally, in the 
assignment of elements to nodes.  The model of parallelism presented by non-
procedural languages is similarly suitable, but again the programmer must become 
involved if an application is to run efficiently.  Both these factors reflect on the 
approach taken to configuration, which essentially concerns the way in which 
processors are assigned work in terms of storage and processing:  none of the 
systems offers a suitably flexible model. 

1.5. Résumé 

Any new course of study must first review and analyse the work which has gone 
before.  In this chapter, we have presented a review of the extant literature 
appertaining to the construction of highly parallel machines and applications, with a 
view to identifying important factors for scalable systems. 

A definition and analysis of the term scalability was first presented.  Scalability 
was seen to be a phenomenon emerging from the interconnection of groups of 
components in such a way that the power of the system thus created may grow in a 
useful way.  A scalable computing system was thus seen to be a computer whose 
capabilities may grow incrementally and (effectively) without limit, to accommodate 
the needs of changing application and user communities.  The essential feature of a 
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scalable system is its ability to address problems, regardless of their size, in an 
externally uniform way. 

The creation of scalable machines was then discussed, from the point of view of 
their hardware and operating system support.  The “best” architecture was argued to 
be an extensible, low-dimensional network of processor-memory pairs, coupled with 
an operating system which abstracts-away (at the application and user levels) from 
concerns about exactly what computing resources are available. 

Systems for creating applications to make best use of scalable machines were 
then analysed.  The consensus was that applications need to take a very abstract view 
of their computational requirements – the distribution of data onto processors and the 
regulation of the concurrency used to process that data – in order to be free to take 
advantage of scaling in the underlying machine.  A form of “ideal” scalable 
application was identified, along with the form of a programming environment 
through which such applications may be created. 

 
 





Chapter 2. 

   

An Abstract Machine View of Scalable 

Parallel Programming 

When anything really new begins to germinate around us, we 
cannot distinguish it – for the very good reason that it could 
only be recognised in the light of what it is going to be.  Yet if, 
when it has reached full growth, we look back to find its 
starting point, we only find that the starting point itself is now 
hidden from our view, destroyed or forgotten ... Beginnings 
have an irritating but essential fragiliy. 
 
  Pierre Teilhard de Chardin, The phenomenon of Man 

We shall begin our search for a scalable parallel programming system by 
developing an abstract model of scalable programming as a whole, to form the basis 
of a programming environment. 

Firstly we shall describe the notion of an abstract machine, and draw a 
generalised picture of computer systems as layers of abstraction, with each layer 
being an abstract machine.  We shall then focus on one particular aspect of 
abstraction – that of memory representation – and consider the ways in which the 
various layers of abstraction treat memory.  From this we shall conclude that 
conventional data structuring may be seen as an abstract memory model. 

We shall then introduce the concepts of distribution and parallelism, and argue 
that the data structuring notions are perfectly suited as a programming framework for 
scalable parallel distributed systems.  We shall draw all these ideas together into a 
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uniform model for a scalable abstract machine, to be used as the basis for a 
programming environment for scalable systems. 

2.1. Abstract Machines 

Abstraction and abstract machine models are frequently seen as something of a 
panacea within computing:  if the view taken of a problem is sufficiently abstract (so 
the argument runs) then its expression will be elegant and its solution simple.  The 
reverse of this argument is that abstraction is an expensive luxury in terms of 
machine resources. 

Viewed in its proper perspective abstraction is undoubtedly an extremely 
powerful tool, allowing the programmer to focus on the task in hand whilst avoiding 
uninteresting details.  The use of abstraction often incurs a performance penalty, 
however, as the “uninteresting” details may in fact have a major effect on a 
program's run-time performance unless they are dealt with correctly. 

There is thus a tension between the desire to abstract (and hence gain elegance) 
and the desire to achieve maximum performance (by tweaking low-level details).  
Nowhere is this tension more evident than in parallel programming, whose very 
raison d'être is to increase the speed of execution of programs made complex by 
parallelism and distribution. 

Characteristics of an Abstract Machine 

A physical machine is composed of three broad elements: 
 

a) a set of processing elements to perform operations upon data; 
b) a set of memory elements to store (and possibly manipulate) 

programs and data;  and 
c) an interconnection network connecting (a) and (b) in some 

manner. 
 

The typical “Von Neumann” computer is an extremely pathological case:  a 
single processor connected to a single memory via two buses5.  A more modern case 
is the MIMD multicomputer, using processor-memory pairs connected by point-to-
point links. 

An abstract machine may be seen to have a similar structure: 
 

a) a set of processing structures defining data transformations; 
b) a set of data constructs to hold data;  and 
c) a notion of communication between structures. 
 

                                                
5The existence of modern computers, following this pattern in the main but having dedicated 
peripheral buses, instruction and data caches and the like, does not invalidate the argument which 
follows. 
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Thus each physical structure has an abstract analogue, although the latter are 
likely to be more powerful than the former. 

An abstract machine may hence be described as being an interesting 
computational model having capabilities not necessarily reflected directly in any 
particular physical realisation. 

There are sequential and parallel abstract machine models, just as there are 
sequential and parallel computers.  At the risk of generalisation, whilst current 
sequential models have sought to simplify tasks such as constructing type-correct 
programs, parallel models have been concerned with increasing efficiency and co-
ordinating the actions of parallel threads of control6. 

Some Parallel Abstract Machine Models 

The most famous model of parallel computation is undoubtedly Hoare's 
Communicating Sequential Processes (CSP)[59], which served as the basis for the 
Occam language.  This views computation as being performed by a (large) number 
of simple sequential processes which communicate with each other using named uni-
directional channels.  Processes and channels form a fixed topology when the 
program is defined – it is not possible to reconfigure a set of processes while the 
system is running, since channel names are not first-class and cannot be passed 
between processes. 

Functional programming has often been hailed as the perfect candidate for 
parallel computing, as functional languages may be seen to be inherently parallel.  
Church's λ-calculus[37] is the theoretical basis for functional languages, and may be 
viewed as an abstract computational model holding the same position as does CSP 
with respect to Occam.  The chief distinguishing feature of λ-calculus is its lack of an 
explicit memory system.  Programs are composed from collections of (side-effect 
free) functions which return a value based solely on their parameters, and the values 
within functions (and indeed the functions themselves) are identified by bindings of 
names to values rather than by named storage locations.  The “memory” for such a 
system is provided implicitly by the nesting of function evaluations rather than by 
variables. 

Closely related to functional programming is logic programming, where 
programs are expressed as logical predicates working on a database of known logical 
assertions.  The most common example of this style is Prolog[39].  A program 
unifies assertions and sub-goals within the clause database, which may grow to be 
extremely large as the program progresses.  The abstract model for this style of 
programming is the first-order predicate calculus. 

A final category of abstract machine are the object-oriented and actor models.  
Both regard programs as being built from collections of objects, which are named 
entities encapsulating state information and a set of operations which may 
manipulate that state.  Such systems are often seen as being a hybrid between 
message-passing and shared-memory models:  although objects may be seen as the 

                                                
6There is evidence that this difference is being eliminated – witness parts of the current work, and that 
of Bruce[28]. 
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unit of (visible) memory within a system, all operations are invoked by sending 
messages to target objects.  Parallelism in such models comes by allowing several 
objects to have active threads of control (sometimes abetted by allowing multiple 
threads concurrently within a single object).  Actor models generalise even further by 
making all communication asynchronous and encouraging the construction of 
extremely parallel systems of communicating agents. 

2.2. Programming Environments as Abstract Machines 

Consider the case of the simple Von Neumann computer, such as a typical 
personal computer.  The Von Neumann model specifies a single processor accessing 
a single block of memory composed of a number of named locations of equal size.  
The processor itself implements a small set of instructions which may be used to 
perform computation by accessing memory and control registers.  Call this the level 
0 or physical machine layer. 

The level 0 machine is hardly ever encountered by programmers:  it is a “bare” 
machine in every sense.  The vast majority of programmers will work with some 
form of operating system, which will provide extra services over and above those 
provided by the bare machine.  A typical example would be Unix, which provides 
notions of processes and file storage.  Indeed, Unix' process abstraction seeks to 
provide the illusion of a number of independent processors dedicated to particular 
tasks, and implements this abstraction using a single real processor.  Such an 
operating system also aids portability across hardware platforms.  Call this the level 
1 or operating system layer. 

2.2.1. Programming Languages as Abstract Machines 

Portability and re-usability are aided if programs are written in a high-level 
language rather than in the machine code of a particular platform.  Some high-level 
languages also support generalised views of services such as filing systems so that 
the language view may be ported between several different operating system views – 
take as an example the FILE construct of Pascal.  However a high-level language 
will also usually define its own data and processing models.  This may be neatly 
summed-up as “algorithms + data structures = programs”[120] – the language 
provides a set of computational structures together with a set of data structures, and 
the two interact to perform processing.  Neither element need correspond too closely 
with the related elements at levels 0 or 1, although a close correspondence may lead 
to superior performance. 

This leads to the following question:  if the programming language is seen as 
providing structures (both computational and storage) which are superior to those of 
the naked and operating system machines, is the programming language also an 
abstract machine model in its own right?  The answer to this is a tentative “yes.” 

It is easy to see that a very high-level language – such as Prolog or Haskell – is 
in some sense “more abstract” than an operating system;  it may be more difficult to 
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justify a systems language such as Ada or C as being so.  However there are grounds 
for this supposition. 

Pascal, for example, views memory in a manner completely different to that 
provided by the bare hardware – as variably-sized and strongly-typed.  Similarly 
Pascal allows procedures to be written at a high level and to manipulate these large 
structures en bloc – a clear departure from the simple instructions and addressing of 
the processor.  The “machine” being programmed is clearly different from that at 
level 0.  What is more, Pascal's (and more especially C's) interface to operating 
system services is through a standardised procedural interface which may be ported 
between operating systems, so these languages are also different to the level 1 
machines.  It seems quite appropriate, therefore, to suggest that any programming 
language is ipso facto providing an abstract machine model:  call this the level 2 or 
language layer. 

Beyond Programming Languages 

An abstract machine allows interesting computational structures to be easily 
expressed, without overburdening the user with too much detail.  By their very 
nature, abstract machines are minimalist creations – they provide the "bare bones” 
functionality needed for their purposes.  Good programming languages are no 
exception to this rule:  they allow programmers to write a wide variety of 
applications without providing syntactic support for every possible contingency.  On 
the other hand, there is sometimes a need for syntactic support to avoid an 
uncomfortable proliferation of unstructured procedure calls – try supporting 
exception handling without additional syntax! 

Minimalism is undoubtedly a virtue, in that a simple system is far easier to learn 
and reason about than a larger one.  However, in writing realistically complex 
applications, a simple language inevitably requires a great deal of functionality to be 
layered on top of the its basic structures in order to solve the problem.  An ideal 
example of this problem is the Turing machine:  powerful, but so minimal as to be 
unusable for any but the most trivial of tasks. 

Our discussion so far has illustrated the important point that abstractions may be 
layered:  each new layer of abstraction uses the layer(s) below it to present a new 
abstraction to the user.  The advantage of layering is that layers may be done away 
with if necessary – the additional layers are optional, and the programmer may still 
use the lower layers – and different layers may be adopted as appropriate for 
different applications. 

Taking Occam as an example:  Occam allows users to write a wide variety of 
parallel applications, and does not mandate any particular coding style.  This has not 
stopped the emergence of a number of programming “idioms”, such as multiple-
worker, process farm, pipelines et cetera, and several libraries and support 
environments exist to provide support for structuring applications around one of 
these idioms. 

The layers added to languages are frequently termed toolkits, as they provide 
programming tools beyond those provided by the base language.  A toolkit may be 
used, for example, to provide graphics capabilities within a language.  It is usually 
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presented to the programmer as a collection of data structures and procedures, 
together with a run-time library to be linked into the finished program;  it may also 
include auxiliary tools such as pre-processors, code generators et alia.  By using the 
features of procedural and data abstraction provided in the host language, the toolkit 
can produce a more-or-less seamless abstraction over its chosen domain. 

A well-thought-out toolkit shares many features in common with a programming 
language.  It provides computation and data structures not found in the basic 
language, together with compositional mechanisms.  It should be fairly minimalist, 
so that the programmer can easily assimilate its basic ideas and use them 
productively.  In many ways, a toolkit should also be closely married to the language 
in which it is implemented, to reduce the intellectual effort needed to learn it.  The 
creation of toolkits also places some demands upon the host language, in terms of its 
abstraction and encapsulation features. 

Returning to the definition of an abstract machine, it should be clear that a 
toolkit is also an abstract machine:  a level 3 toolkit abstract machine layered onto the 
level 2 programming language and making use of all the layers below.  Toolkits may 
also communicate with other toolkits, or with applications running independently.  
Using the graphics toolkit as an example:  it adds structures for the creation and 
display of graphic images which are not present in the base language.  Many toolkits 
are extremely sophisticated, providing large amounts of extra functionality without in 
any way restricting the use of the host language.  In a similar vein, many parts of the 
C standard library are level 3 entities:  the FILE structure and its associated 
functions allow files to manipulated at a far higher level than is possible using the 
Unix system calls. 

2.2.2. Toolkits in Scalable Programming 

There are clear advantages to be had by taking the ideas of toolkit design and 
using them to construct a toolkit for parallel applications.  The host language may be 
kept minimal whilst common idioms may be supported by the layered toolkit abstract 
machine. 

The major complexity in parallel programming, over and above sequential 
programming, comes from the introduction of large amounts of concurrent activity.  
The task of the language designer, therefore, is to help programmers to master this 
additional complexity.  As mentioned above, there are a number of programming 
“idioms” which have been developed to address this task.  These idioms tend to 
focus on the large-scale structuring of processes – into pipelines, farms, collections 
of workers et cetera – allowing them to be viewed abstractly as a single entity. 

In scalable systems, of course, the concerns of “normal” parallel processing are 
still present:  in addition to them, there are issues of regulating concurrency in the 
face of uncertainty about the processing resources available, and of managing data 
location in the face of uncertain distribution.  It is this uncertainty – not present in 
other fully-configured, ready-to-run parallel systems – which sits at the crux of the 
problem of managing and exploiting scalability. 
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2.3. Memory as an Abstract Structure 

We shall now focus our attentions more closely on a single facet of scalable 
programming – the way in which memory is represented – and explore the ways of 
dealing with its challenges using layered abstraction.  In doing so, we shall develop a 
framework for constructing scalable applications using memory as the central 
structuring theme. 

Memory in General 

The most pervasive programming tool is the chosen programming language.  As 
a rule, imperative languages enforce a strict delineation between program and data;  
in other languages this separation blurs to the point of invisibility.  In general a 
language defines a model of memory which it both presents to the programmer and 
(more or less) transparently maps onto the underlying storage architecture.  Thus it is 
vital to realise that memory in a programming language sense differs markedly from 
memory as seen in hardware. This is a result of the view of programming languages 
as abstract machines, and it has important consequences. 

Bruce[28] has argued that all elements of a program – its data, code, working 
storage, source code, execution information et alia – are conceptually stored in some 
memory unit.  Different categories of program element are stored in different sorts of 
memory:  procedures, for example, are accessed from an associative memory keyed 
on their name (at least at source code level);  data is stored in variables as real 
numbers, records, objects, lists, enumerated types and the like, which are accessed 
associatively but manipulated using their own interface.  All these categories are a 
far cry from the traditional (hardware-supplied) Von Neumann view of memory:  
elements are variably-sized, can be arbitrarily large, are scoped, and are accessed 
using different protocols.  This last is the key feature. 

The use of different access protocols to access different elements essentially 
means that memory is typed, since the memory defines both its contents' 
arrangements and the operations through which they may be accessed.  From the 
programmer's viewpoint it is normally irrelevant that all these types are mapped onto 
the same physical architecture:  it is the application-level abstraction which is 
important. 

2.3.1. Object-oriented Memory 

Of particular interest are object-oriented systems, since objects encapsulate both 
data and procedural interfaces.  Distributed object systems are particularly 
fascinating, as they allow the features of object-oriented memory to be deployed 
against the problems of distributed parallel computing. 

Systems in which objects form the sole unit of programming are sometimes 
referred to as object spaces.  Objects form the unit of storage, with object names 
being equated to storage addresses.  These names are then the unit of data naming, as 
communicated between objects.  Objects may maintain a small amount of local state, 
consisting of name-value pairs:  these may be communicated by value but not by 
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name, since such a pair is a binding, not an object, and hence has no name to 
communicate.  An application's shared storage is then represented solely by objects. 

An Overview of Object-oriented Memory 

A basic object-oriented computer consists of some physical memory and 
processing elements:  it may be a simple personal workstation, a shared-memory 
multiprocessor or a distributed multicomputer.  The operating system on this 
machine implements a distributed object space in which all operations take the form 
of method calls to objects using a capability to name and access the object.  There is 
no semantic notion of an object's location – all objects may freely interact through 
method calls, providing the caller holds a capability to identify the callee. 

All elements of a program are notionally represented as objects.  Hence all 
storage is represented by the creation and deletion of objects, whilst computation 
occurs through communication between objects using method calls.  Possession of an 
object's capability may be equated with possession of the object, so that the 
acquisition of a capability effectively retrieves the object from object space 

Variations 

Consider the case where a fixed number of objects reside in the object space, 
none of them possessing a capability to any other object.  Each object is then 
essentially independent of all the others.  This situation cannot be called memory.  
Although the objects are retained within a single object space, and may be added and 
removed, they cannot communicate:  moreover, they cannot retrieve data from the 
space as they do not have the necessary capabilities and have no mechanism by 
which they can acquire them since they can have no communication with any other 
object. 

Now consider the case where objects do possess capabilities to other objects, 
either fixedly or via the creation of new objects.  They can now communicate using 
method calls, as defined by their interfaces. 

If we impose the restriction that capabilities cannot be communicated in method 
calls, we have essentially defined a special form of CSP – for object read process and 
for capability read channel.  The objects in the system are in a fixed topology, 
defined by the possession of capabilities:  since capabilities cannot be exchanged, the 
communication topology cannot change.  Objects can only exchange data values.  
What we have effectively done is introduce the notion of data streams, which brings 
with it the idea of stream-parallel processing as found in Occam. 

If we relax the restriction on communicating capabilities, we allow objects to 
pass data (represented in other objects) by reference.  Doing so involves the caller 
passing the capability to the data object in a method call to the callee:  the callee can 
then interact with the named shared object.  A piece of storage known to the caller is 
made known to the callee via an explicit exchange of names, in the manner of 
Milner's π-calculus[115]. 
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This scheme could be regarded as object-oriented memory:  objects share data 
by exchanging the names of storage locations.  This is the type of memory found in, 
for instance, the Sloop[81] and Orca[14] languages.  Objects are created private, 
essentially as new pieces of storage known only to their creator:  permission to share 
them must be given explicitly by passing the shared object's capability.  Retrieval of 
information is represented by the passing of a capability, either as a parameter to a 
method call or as the result of one. 

This may be shown more clearly in figure 2.  Initially, object B may interact 
with object A by making method calls, but nor vice versa as A does not hold a 
capability to B.  If B now creates an object C, B can interact with both C and A as it 
holds capabilities to both:  A, however, can interact with neither B nor C.  If, 
however, B passes to A the capability of C through a method call, then A can interact 
freely with C independently of B:  in effect, the storage represented by C is shared 
between A and B. 

Data Structuring and Memory 

Although this scheme is workable, it seems a little too restrictive.  There is a 
single level of naming – capabilities – with all exchange of data being explicit.  This 
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Figure 2:  The workings of object-oriented memory 
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means that if an object wishes to create and then share many objects it must 
explicitly pass the capabilities to the shared objects to all objects with whom it would 
share them. 

In Pascal – to choose an example language – there is the notion of structured 
data, where a number of primitive data items are coalesced to form a larger item 
which may then be manipulated as a unit.  Although Pascal is not object-oriented, 
this idea is an important one.  In one sense, objects provide exactly this form of data 
aggregation, as an object collects together its local state under a single name;  in 
another sense, there is still something missing. 

Pascal allows arrays of data items to be built.  These arrays may then be passed 
en bloc to a procedure.  In our current object-oriented memory there is no equivalent 
of the array. 

The common solution to this problem is to view an array as abstract data type 
and encapsulate its behaviour into a class, which may then be instantiated as required 
to build arrays of objects.  An array object's internal state is then the elements 
composing the array, and as an object it may be communicated and shared by passing 
its capability.  An array may be accessed using whatever (programmer-defined) 
interface is seen to be desirable. 

There are two important ramifications of this approach.  Firstly, the array 
keyword in Pascal acts as a (privileged) type constructor, generating array types from 
other, more basic types:  in the current system, the array class is simply a generic or 
polymorphic class defined within the host language's framework, which thus has the 
same flexibility as any other class – specifically, it may be sub-classed to provide 
specialised interfaces and encapsulation.  Secondly, the approach can be used to 
generate many different forms of data aggregate which may not be present in the host 
language – if the host were ML, for example, there would be no in-built notion of an 
array.  Hence aggregation sits firmly at the application level. 

The same argument holds for any language-defined structuring mechanism: 
pairs, lists, records et cetera.  This is a great benefit of object-oriented programming, 
as it allows many features which were previously hard-wired into a language to be 
moved to the application level, with a corresponding increase in their flexibility. 

This solution is completely workable as far as it goes, and raises an interesting 
point about the nature of memory.  To recap:  we have argued that in object-oriented 
systems memory is represented solely by the object population, and data sharing 
occurs by the exchange of capabilities to shared objects.  Thus the only way to access 
memory is to be passed their capability explicitly.  However, in creating an array 
object another form of memory has been introduced. 

The sole purpose of the array is to act as a single name for an aggregate of other 
objects.  The component objects may be accessed via method calls to the array, 
which will return (or assign to, or whatever)  the various elements.  We thus have a 
new mechanism by which objects can be addressed:  they may be placed into an 
array and accessed by element name (presumably a small tuple of numbers).  The 
object has acquired another name:  it still has its capability, through which all 
interaction must eventually occur;  but it also has another name reflecting its position 
in some programmer-defined space.  Given that another object knows the name of 
the abstract space (the array) it may access the object using a meaningful protocol. 
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We have thus introduced a new notion of what it means to retrieve an item from 
memory.  The array object acts purely as a “namer,” in the sense that it maps 
meaningful names onto capabilities.  Although acquisition of a capability still occurs 
via method calls, there is now a special form of object whose sole task is to supply 
these capabilities. 

In order to share a new object, it has only to be placed into a data structure in 
order to be accessed by all other objects who share that structure.  Thus the array is a 
form of shared memory:  and since it is simply an object, it is a memory which is 
typed and instantiable. 

The essential difference between this approach and the encapsulation of arrays 
within objects (rather than as objects) is one of information hiding.  An object may 
use an array internally and not present an array-like interface;  conversely an array 
interface need not actually be stored as an array.  Using the explicit approach makes 
the storage architecture being used more explicit:  by weakening the level of 
abstraction, we gain the ability to reason about the storage structure being used. 

The abstract nature of such structures is obvious – they present very high-level 
characteristics to the programmer, being (in principle) of infinite size and having 
tailorable interfaces.  On the other hand, they are evidently realisable as they are 
simply generalised versions of well-understood data structures, albeit in an 
uncommon guise. 

We have introduced nothing essentially new in postulating collections of data as 
the aggregates of memory, but we have certainly made explicit some features of 
memory and data structuring which were hidden beforehand.  In doing so we have 
altered the regular Von Neumann notion of what memory is, replacing it by a more 
flexible and larger-scale abstraction7. 

Typed memory allows the direct expression of patterns which may be hidden by 
a less flexible memory model.  By regarding such structures as memory themselves, 
rather than as entities built on top of memory, it is possible to simplify a 
programmer's conceptual view of the machine being programmed.  Since the 
memory interface is typed, it is possible to build intelligent memories tailored to 
specific applications. 

2.3.2. Distributing Abstract Memory 

The basic object-oriented computer described above was discussed without 
reference to its hardware architecture, and the view of memory just propounded 
similarly makes no reference to hardware issues.  We shall now discuss a more 
restricted target machine – and object-oriented multicomputer – and consider the 
effects which distribution has on the memories discussed.  Having illustrated the 

                                                
7This whole argument is rather reminiscent of part of John Backus' Turing Award lecture from 
1977[13], in which he argues that the “Von Neumann bottleneck” comes largely from the treatment of 
data as small units – a view prescribed more by the underlying architecture than by any high-level 
goal.  In using large structures as memory, we are effectively advocating the processing of data in 
large blocks and the utilisation of certain application-level scoping constraints – the effects of which 
will become more apparent when we come to consider the effects of distribution and parallelism. 
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principles, we may now show how these ideas may be used to provide a 
programming environment for a highly parallel distributed system. 

The main effect of distribution is to introduce data partitioning and parallelism.  
Since nodes do not share a common address space, an object in one address space is 
not directly visible to objects in other spaces.  The virtual object space technique 
effectively implements a virtual shared memory, using complex network-valid object 
names and a parameter marshalling system in order to allow remote objects to 
communicate. 

Having more that one processor allows one to obtain true parallelism, providing 
an application is written with this in mind.  Distributing data onto a number of 
processors allows these processors to access the data in parallel, providing no global 
bottlenecks to access exist, and this in turn introduces the possibility for large 
performance gains. 

The partitioning of a system's address space between component processors is 
probably the most noticeable effect of distribution.  This disadvantage is an 
immediate departure from the more familiar flat shared memory model. 

The advantage of our proposal comes from the fact that such a memory has no 
direct correspondence to any architectural feature in a system.  There is no notion of 
object location and objects may be co-ordinated into meaningful structures of any 
size.  In advocating the use of abstract typed memory modules (AMM's), we must 
address the effects which distribution has on these memories and vice versa. 

The first case presents an obvious problem:  we place no size constraints on our 
memories, so how can a memory larger than a single address space be implemented?  
Stated differently:  if objects are the unit of memory, and abstract memories are 
simply special-purpose objects, is it not the case that the largest memory is limited to 
the size of the largest physical memory in the system in which a single object might 
be represented?  The second case is a juxtaposition of the normal problems:  can we 
use our new memory model to harness distribution in order to achieve a benefit? 

2.3.3. Concurrency Regulation and Memory 

Ideally it should be possible to solve both the distribution and concurrency 
regulation  problems within the same framework, using the distribution management 
ideas to solve the concurrency problems. 

Concurrency paradigms essentially fall into two categories:  data-based and 
stream-based.  In the former, a set of elements are accessed and processed in parallel;  
in the latter, a set of values is passed between processes.  The difference is evident 
from figure 3:  processes in a data-based system access a shared pool of elements, 
whilst processes in a stream-based system pass values between themselves. 

Let us consider again the basic structure of our abstract memory modules.  A 
collection of data, structured according to application- rather than machine-level 
concerns, is composed of a number of component objects which act as a single 
resource from the programmer's view.  Each component holds a small amount of the 
collection's data locally, but has some mechanism for accessing transparently any 
elements which are held in other components of the collection. 
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The population of the AMM – in terms of elements and components – may vary 
with time.  Presumably adding elements will produce more components:  an AMM 
with more elements will have more components. Therefore the number of 
components is, to a large extent, a measure of the number of elements within the 
collection. 

Furthermore, each component is a single object – the unit of memory – and so 
may be distributed.  The components of an AMM may reside on different nodes in 
the multicomputer, co-ordinated through the virtual object space.  Therefore a large 
collection, having more components, can potentially be more distributed than a 
smaller collection. 

Let us now consider what is meant by processing.  In general, a “process” 
accesses “memory” in order to obtain and store values upon which it works, 
transforming values according to its function.  In our model, memory is represented 
by AMM's, so a process is simply an entity which accesses a data structure:  a data- 
rather than a stream-based view of structuring concurrency. 

For the data-based case, the concurrency regulation problem now reduces to  
how many processes should be deployed to access a memory, and where should they 
be located.  Our model gives us a way to answer these questions.  One may create 
one process per component of an AMM, and co-locate the process with the 
component which it is to access.  The number of components is related to the size of 
the collection, so a larger collection will generate more concurrency;  but equally a 
large collection is more widely distributed, occupying more processing nodes and 
providing scope for more true concurrency. 

The stream-based case may use memory modules as sources and sinks for data 
(as in figure 3) but cannot use the size of the source as a guide to the number of 
stages in the pipeline:  this is determined by functional decomposition, not by the 
amount of data to be processed.  Although the model discussed above cannot directly 
aid this decomposition process, it can be used to construct such process structures:  
since processes are object, they may be placed into an AMM.  It may also be used 
where replicated pipelines are applicable:  each “process” accessing the shared data 
set may be a pipeline, with the number of replicas being governed by the size of the 
source collection. 

2.4. The Scalable Abstract Machine 

We have now arrived at a point from which we can see the shape of our scalable 
abstract machine.  We shall attempt to draw together the threads sketched above – 
abstract machines and memory architectures – to create an abstract description of a 
programming environment for scalable computing. 
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Scalable Memory 

The central features of a scalable system is its resource utilisation:  scalability 
implies that processing, memory and communications resources may be added to a 
system as required. 

Our abstract model is built on top of the object-oriented approach to computing.  
A system is composed of objects, each of which resides at exactly one node.  Objects 
are the unit of memory, with all shared storage being represented as one or more 
objects.  An object is a “black box” whose internal state may only be accessed 
through its exported procedural interface.  Objects exist independently, and an object 
may only communicate with those objects whose name (capabilities) it knows.  This 
scheme is essentially that found in the common object-oriented languages. 

We now introduce the notion of AMM's, which are objects which represent what 
are normally described as data structures.  A single AMM is composed of a number 
of objects acting so as to present the abstraction of a single large resource.  The 
objects forming an AMM may reside on different nodes in the system.  Each object 
holds a part of the AMM's elements, and can access any other element:  it is 
irrelevant where an element of a collection is stored, as it may be accessed from any 
component object. 

The scalability of this solution is obvious:  there is no explicit statement of the 
number or distribution of the components which form an AMM, and so an 
application cannot be written to rely upon any particular arrangement.  This leaves 
“the system” (or, more precisely, some underlying theorem of the abstract machine) 
to determine the exact configuration of an AMM – fixed or variable – according to 
run-time conditions.  For any AMM there will exist some policy for deciding which 
elements are assigned to which component of the collection, and this mapping may 
change with time as conditions warrant. 

 

(a)  collection accessed by several worker tasks

(b)  pipeline with replicated stage

source sink

 

Figure 3:  Two paradigms for concurrent processing 
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Scalable Processing 

Concurrency in the scalable abstract machine comes in two flavours.  The first 
comes from the basic definition of the object model:  any object may give rise to a 
thread of control, and there may be several threads running concurrently within a 
single object.  This makes task parallelism – where threads perform logically 
separate tasks – easy to express.  Moreover, since activities are simply objects, they 
may be placed into memory:  this implies that the structuring features provided by 
scalable memory may be used to build and interact with “active” objects. 

The second form of concurrency comes from the attachment of activity objects 
to components of an AMM.  Since the AMM is distributed, there is scope for true 
parallelism when processing it's elements using a multiple worker, data-based and -
regulated style.  Each activity is responsible for processing the elements held by the 
component to which it is attached.  This relationship is shown in figure 4. 

Therefore the policy by which AMM's are created – especially the policy by 
which the number, size and location of components is decided – is used as a metric 
for concurrency regulation.  There is no notion of exactly how many components 
will exist, or where, and hence no notion of exactly how many processes will be 
deployed to process a particular AMM.  From the point of view of scalability, this 
architecture has the desirable feature that applications must be written so as to be 
able to use an unknown number of activities in the processing of a memory.  The 
processes themselves may be simple objects or more complex structures of 
processes, themselves constructed using the AMM tools. 

 

(a)  an abstract collection (b)  concurrency regulation in a collection

component of a collection activity or process
 

Figure 4:  Collections and concurrency in the scalable abstract machine 
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Programming Practice 

An abstract machine inevitably has an impact on programming practice, and it is 
natural to wonder how applications written under the scalable abstract machine 
would be written. 

The basic architecture of such an application is as a set of AMM's to which are 
attached activities running in parallel. The distribution and internal structure of each 
AMM is managed by the underlying compiler and/or run-time system, and it is this 
distribution which is used to regulate and locate concurrent activities.  The model 
might be described as one of indeterminate parallelism:  an application determines 
when parallel activities are to be created, and which AMM's they are to access, but 
has no control over exactly how many activities are created.  This indeterminism 
allows the system to scale itself according to the available resources. 

In order to see the form of an application built around scalable memory8, 
consider the case of a logic programming interpreter using a dictionary-associative 
AMM.  The clause database itself may be created and clauses added, with the exact 
distribution of clauses and the database being hidden: 

type database = ... ;; 
val newDatabase : unit -> database ;; 
val assert : database -> string -> unit ;; 
val retract : database -> string -> unit ;; 
 
let cd = newDatabase () ;; 
assert(cd, "man(simon)") ;; 
... 
retract(cd, "lives(simon, York)") ;; 
... 

The distribution of the database may change as clauses are added, and might be 
affected by external control factors such as suggestions about the decomposition 
used.  Each component of the database is a database object in its own right, 
related to the other components of the AMM in a manner not apparent to clients.  
The population of components may be fixed, or may vary with time. 

A query of the database consists of generating a set of unifications of variables 
against clauses in the database. 

type 'a binding = {  var : string ; 
         val : 'a } ;; 

Queries may occur in parallel by creating a “query processor” activity and attaching 
it to the database.  Each query processor performs the actions involved in the query 
on a part of the database to which it is attached, with the results of the complete 
query being the amalgamation of the results of all the query processors. 

                                                
8In this example we shall use a pseudo-code notation modelled on ML.  More concrete examples are 
deferred until we introduce the Phœnix prototype, chapter 5 et sequitur. 
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Functions are needed to attach activities, synchronise on them and retrieve their 
results: 

type 'a activity = Activity of 
        (database -> 'a) ;; 
val attach : database -> activity -> 
       activity list ;; 
val waitFor : activity list -> unit ;; 
val resultsOf : activity list -> 'a list ;; 

The query may run in parallel, with the creating thread either continuing execution or 
blocking until the results of the query are obtained 

val unify : string -> database -> 
      binding list list ;; 
 
let s = "man(?x)" in 
 let q = Activity ((fn c cd = unify cd c) s) in 
  let al = attach cd q in 
   waitFor al ;    (* block *) 
   flatten (resultsOf al) ;; 

resulting in a list of all the possible sets of bindings which satsfy the query. 
Notice that nowhere is there any reference to the number of activities created 

(although it might be obtained by the length of the list returned by attach):  the 
application has no need of this information.  Similarly any activity (or any other 
piece of code) may access any element of the database:  the application has no need 
to be aware of the element's location within the distributed structure. 

We shall return to this example in §6.4.3. 

2.5. Résumé 

We began this chapter by considering the nature of abstract machine models as 
applied to programming systems.  We developed a view of a programming 
environment as a layered abstract machine, with each layer building upon the layer 
below.  This approach led to the contention that both programming languages and 
toolkits implemented within them constitute abstract machines, as they provide 
important, well-defined computational and storage structures which are not 
encountered in lower layers. 

We considered one important feature of languages and toolkits:  the way in 
which they allow data to be stored and manipulated.  We argued that any system 
which provides data aggregates – data structures such as arrays, lists and the like – is 
essentially providing a memory model, as these structures alter the way in which 
programs treat their data.  The analogy was drawn between accesses to memory and 
accesses to data structures, with the result that a data structure was seen to be an 
abstract typed memory whose elements could be accessed using meaningful names.  
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We introduced the notion of distribution, and considered the effects which a 
data-structure-oriented view of memory would have on scalable programming for 
multicomputers.  We showed that the use of abstract memory, if it can be 
implemented, hides certain important facets of the underlying machine – notably its 
local memory sizes and parallelism.  It is possible to create applications which can 
utilise the scalable platform – rather than be hindered by it – by writing programs 
around the framework of scalable memory modules.  This allows the application to 
defer until run-time – when the memory modules are actually instantiated – those 
features of its execution which are affected by scalability:  its distribution and use of 
parallelism being the two main variables. 

 
 



Chapter 3. 

   

Implementing Scalable Typed Memory 

Knowledge is simply a kind of fuel;  it needs the motor of 
understanding to convert it into power. 
 
  John Wyndham, The Midwich Cuckoos 

Having derived an abstract model of scalable memory, it is now necessary to 
consider the ways in which it might be implemented.  In this chapter we shall 
consider some methods for implementing scalable storage architectures in an object-
oriented fashion, while deferring the exact details of such an implementation until a 
later chapter. 

We shall first determine the requirements of any implementation, derived from 
the abstract model, and discuss some possible implementations.  We shall then 
present the partitioned object model as a particularly suitable architecture for 
representing memory in scalable systems.  Using this model, we shall present some 
storage architectures representing a kernel of basic memory types.  The architectures 
derived are the most general for the structures being considered, and alternatives are 
described which may be useful in particular cases.  From these architectures, the 
process of deriving user-level data structures will be illustrated. 

3.1. Requirements 

The previous chapter presented a form of scalable abstract memory modules 
composed of object communities, with each member of the AMM residing in a 
single address space.  The AMM implements the abstraction of a single, scalable 
resource:  the membership of the community, its size and distribution may change 
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across its lifetime, but each component may at any time be used to access any 
element of the AMM to which it belongs.  The task of implementing such a model of 
memory may therefore be summarised as follows: an implementation must provide 

 
• a single-object abstraction so that collections appear to clients 

as a single entity whilst being implemented as a community; 
• transparent distribution of elements, so elements may be 

accessed from any member of the collection; 
• unbounded size to allow collections up to the size of the 

globally-available memory to be represented; 
• variable size, so a collection only occupies the storage 

necessary at any time; 
• concurrent access avoiding bottlenecks which would mitigate 

against highly parallel access; 
• strong typing to avoid the abuse of data and structures;  and 

finally 
• extensibility, to allow application-specific intelligent memories 

and distributions to be constructed. 
 

The implementation of transparently-distributed, unbounded and variably-sized 
strongly-typed structures is the subject of this chapter;  concurrency will be deferred 
until chapter 4, whilst extensibility will be addressed in chapter 5. 

3.2. Partitioning:  Representing Scalable Memories 

Implementing AMM's requires the development of a technique for co-ordinating 
all components of the AMM into behaving as a single resource.  The technique has 
been termed partitioning, as it involves the (largely) automatic partitioning of an 
AMM's elements amongst a number of nodes. 

3.2.1. Overview of Partitioning 

Scalable memory is represented by partitioned collections, which presents 
AMM's as high-level, strongly-typed data structures.  These structures may be treated 
as single resources, regardless of any internal distribution.  They are implemented as 
communities of objects which co-operate to support the single-resource abstraction. 

Given that distribution of elements in a partitioned collection is essentially 
invisible to clients, control of data manipulation and data distribution within the 
collection may be separated.  This separation allows these tasks to be specialised 
independently of one another, with a corresponding (beneficial) effect on re-use.  
The partitioned object model provides this separation in the form of two parallel 
class hierarchies:  one provides an access protocol through which client tasks access 
the collection; the other controls the manner in which elements are distributed and 
new storage created.  The interface between these two hierarchies is well-defined, 
allowing easy modification of either party. 
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The details of the strategy for implementing collections in this way will now be 
discussed, together with the trade-offs and important parameters which affect the 
method's efficiency. 

3.2.2. Managing Data Access 

A data access protocol must allow clients to access a collection's elements in the 
appropriate manner – using a key for associative memories, for example.   The exact 
details of the protocol are obviously specific to the particular class of collection 
being implemented – this is especially true of the user-level protocol – but a few 
features are common across categories. 

The partitioned model calls classes providing data manipulation collection or 
component classes.  A component class has three duties within the model:  it must 

 
• provide local storage for some elements of the partitioned 

collection to which it belongs; 
• provide an interface through which elements of the collection 

may be accessed; and 
• implement functions to perform data manipulation on any 

elements which it holds locally. 
 

The management of local storage means that it is the components which control 
all local memory accesses and allocations, hiding “real” memory from client tasks.  
The provision of an interface means that the components define exactly what 
operations may be performed upon data within the collection.  The interface will (for 
the abstract base classes) be quite minimal, but it may be specialised in sub-classes to 
provide arbitrary functionality.  The manipulations need only be defined on locally-
held elements, however, as remote elements will require the intervention of the 
partitioned collection's distribution management objects:  this implies that there 
exists some way of determining whether a particular request may be serviced locally. 

3.2.3. Managing Distribution 

Since partitioned collections are composed of object communities, some way 
must be found to co-ordinate components of the collection into behaving as a single 
resource.  This is the function of distribution management objects, which the 
partitioned model terms partition objects. 

Like the component classes, partition classes serve a well-defined function.  In 
fact they have better external independence, as they do not have to deal with user-
defined access protocols.  A partition serves three functions:  it 

 
• defines what elements of the collection are held by which 

component; 
• creates and destroys components as required;  and 
• resolves requests for data onto the component which holds that 

data locally. 
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Although components create and manage local storage, the contents of that 

storage, relative to the complete collection, is defined by the partition objects.  
Components may have their storage responsibilities re-defined as new components 
are created or old components destroyed.  The extent to which a partition is involved 
in data manipulation is restricted to its ability to locate components which hold data:  
what is performed to that data is irrelevant;  the partition is only concerned with 
where the action takes place. 

Component and partition classes interact, then, through a very narrow interface, 
limited to the following: 

 
• the ability of partitions to assign and re-assign local storage to 

components;  and 
• the ability of components to forward requests referring to 

remote data via the partition to the appropriate component. 
 

This narrowness means that it is relatively straightforward to use a novel 
distribution manager with an existing data class.  However, the exact interface used 
varies depending upon the type of collection which is being distributed, and this also 
affects the way in which elements are retrieved from the components of the 
collection. 

3.2.4. Resolution 

Resolution is the name given to the process of locating an arbitrary element of a 
partitioned structure from a particular component.  Since, as mentioned above, all 
components of the structure allow all elements to be accessed – they all act as first-
class pseudonyms for the entire collection – resolution occurs whenever a component 
receives a request which it cannot service locally. 

The basic process is as follows.  A component (the receiving component) 
receives a request from a client object for some data.  If this data is held locally, then 
the request is serviced locally;  otherwise a request for resolution is made to the 
receiving component's partition.  The request for resolution will contain the name of 
the element(s) required and the service to be performed, and the partition maps the 
element name onto the component which holds the requested element (the servicing 
component).  It then forwards the request which was made of the receiving 
component in toto to the servicing component, which will perform the request and 
return the result to the client. 
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The method by which resolution is performed is defined internally by the 
partition classes.  It may involve intermediate steps through other partitions as the 
request percolates through the partition tree. 

3.2.5. Parameters Affecting the Distribution Architecture 

The partitioned model effectively hides from clients the exact inner workings of 
scalable memory, and implementors of new (or derivative) memory structures and 
distributions may use the architecture provided for their new, application-specific 
tasks.  However, there are several important trade-offs and parameters which must be 
understood if the partitioned model is to function effectively: 

 
• the arrangement of the partition tree; 
• the sizes of components; 
• the degree of automation in the management of a collection's 

distribution;  and 
• the manner in which applications are configured for execution. 
 

It is important to realise that the parameters to be discussed affect the efficiency, 
not the semantics, of applications.  An application is shielded from the details of 
distribution:  although some distributions are more efficient than others in particular 
cases, all distributions are equal in terms of correctly accessing elements of a 
memory. 

The Partition Tree 
Several trade-offs occur in the organisation of the partition tree.  Its major 

parameters are its degree – how many child components and partitions a particular 
partition has – and depth. 

In a flat distribution, all components of a collection are managed by a single 
partition.  This is shown in figure 5. 

This architecture has the advantage of simplicity.  Knowledge of the structure 
resides in the partition object.  Resolution of any element from any component can 

 
partition object

component objects  

Figure 5:  Flat distribution management 
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occur in a single step – from the receiving component, through the partition, to the 
servicing component. 

However there are disadvantages, as might be expected from so simple a 
solution.  The prime problem is exactly the centralisation mentioned above:  since all 
resolution requests pass through a single partition, that object is a hot-spot in 
computational and communication terms.  Distribution of components may also be a 
problem, depending upon the load balancing scheme used:  in some schemes objects 
may tend to cluster around the partition which created them.  If this problem is 
overcome, and components are more widely distributed, then the communications 
costs implied by making resolution requests will increase due to the distance.  The 
single partition is also a single point of failure – a point to which we shall return in 
§3.5. 

In a hierarchical distribution, management of components is performed using a 
tree of partitions, as shown in figure 6.  The major difference apparent between this 
figure and figure 5 is the existence of partition objects as intermediate nodes of the 
tree – the tree has a depth greater than one. 

Since no single partition object has a complete view of the structure, resolution 
is complicated.  Several steps through several intermediate partition objects may be 
needed to resolve a request, and the complexity of a request varies depending upon 
the relative positions of the requesting and servicing components. 

However, this very complexity allows us to introduce desirable features.  
Although resolution is now a distributed algorithm, several concurrent resolution 
requests may progress without interference and without generation of hot-spots:  the 
computation and communication are distributed throughout the structure.  
Furthermore the architecture lends itself to better control of distribution of 
components, since the partitions (which perform the creation of new components) are 
themselves distributed.  The single point of failure in the flat partitioning scheme has 
also been removed, which may allow better tolerance of faults in the network. 

Routing through the partition tree has logarithmic complexity.  On average, one 
might expect 50% of all requests for data to be resolved through the root of the tree:  
however, one goal of the partitioned model is to exploit locality of reference, which 
should significantly reduce the possibility of such pathological circumstances arising. 

 
root partition object

component objects

sub-partitions
root component

 

Figure 6:  Hierarchical distribution management 
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Component Sizes 
The unit of distribution for a partitioned collection is the component.  The size 

of components – and therefore the number of components, and hence their 
distribution – is the major factor controlling the manner in which partitioned 
collections are represented in memory. 

The size of components is not, a priori, important to a collection, in that exactly 
which component holds a particular element is semantically irrelevant.  However, 
there are a number of lower-level pragmatic issues which do constrain the size of a 
component. 

The first constraint is local memory size:  a component cannot be larger than the 
physical memory in which it resides.  This places a hard upper-bound on component 
size:  in a non-partitioned object-oriented system, this limit fixes the maximum size 
of a collection. 

It may not be desirable, however, to make use of all the available physical 
memory:  there may be advantages to making components smaller than they actually 
have to be.  Using the entire memory of a node means that no other objects may 
reside on that node.  If the component contains (the names of) other objects these 
objects must be placed on different nodes, which introduces a communications 
overhead.  Equally importantly, the component's partition object may be farther away 
than is desirable, and this means that extra communications delays may be incurred 
at every resolution step.  Indeed, it may be advantageous to have more than a single 
component per node, for reasons discussed in the next chapter. 

Load Balancing 
Load balancing is a well-studied field (a good overview may be found in [92]), 

and the current work does not attempt to expand upon it.  What is assumed is the 
existence of a load balancing component within the underlying operating system 
which chooses the site for a new object at its creation. 

Load balancing has several aims, amongst which are to achieve: 
 

• low overhead, to avoid the load balancing process impacting 
on performance; 

• low remote communications, so that the gains in improved 
processing speeds are not offset by increased remote 
communications overheads; 

• high processor utilisation, to avoid wasting available 
processing capacity;  and 

• even load distribution, so that all processors have roughly the 
same amount of “work” to perform. 

 
We may examine the partitioned model to determine how it interacts with these 

aims.  The first, third and fourth goals are essentially operating system concerns of 
general impact to any programming system;  the second, however, is a major 
concern.  Object-oriented systems by their very nature are communications-intensive, 
so it is vital that objects are not placed too far away from the other objects with 
which they interact. 
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It may be noted that there is a location structure implicit within the partitioning 
process:  components are assumed to reside close to their partitions, and sub-
partitions to their parents.  Notionally there is a “one hop” communication between 
these pairs of objects, and it is desirable to make this logical distance the physical 
distance also. 

If this assumption is not respected – if, for example, a component is placed a 
long way from its partition – then a resolution request may involve far more 
communications that is apparent from the logical structure of the collection.  In the 
worst case, such a request might be sent great distance only to be resolved back to a 
node close to that which originated the request! 

The partitioned model will function best in situations in which the logical 
distance between two objects is related closely to their communications distance in 
the network.  A good example of this is the “ink blot” style of load balancing, where 
objects are load-balanced onto nodes neighbouring that of their creator.  A collection 
occupies a number of neighbouring nodes (initially a single node);  as it grows, new 
components and partitions load balance onto nodes along the periphery of this 
neighbourhood.  A larger collection thus occupies a larger neighbourhood, with 
components which are farthest from the root logically being distributed furthest 
physically. 

A topic closely related to load balancing is object migration (or adaptive load 
balancing), which can result in substantial gains in performance over statically load-
balanced systems[68].  It would be difficult to respect the assumptions given above 
in a system providing general object migration;  moreover, resolution may 
exacerbate the pathological cases possible under migration (§1.3.5). 

The other aims of load balancing may be aided by the partitioned model's fin-
grained decomposition of large structures.  Since objects are the unit of distribution 
(and hence of load balancing), ensuring high utilisation and even load is much 
simplified   A consequence of this decomposition is that the load balancing system 
must have an extremely low overhead, since more entities will need load balancing 
than in coarser-grained systems. 

Automatic versus Manual Distribution 
It must be recognised, however, that in many cases a knowledgeable 

programmer may achieve better load balancing for his application than can an 
automatic system.  Thus there is often a need – or at least a desire – to circumvent 
load balancing and place elements of an application manually.  Scalability makes this 
aim almost an impossible one, however. 

On the one hand, a programmer would like to be able to specify the distribution 
of program items according to knowledge which are not readily available from the 
program's code (often termed meta-knowledge, although Wilson[119] prefers the 
term clichés) in order to improve its performance;  on the other, a highly parallel 
application, unless it has a very regular structure, may prove beyond a programmer's 
capacity to manage effectively, and even regular applications may change their 
computational requirements dynamically.  The partitioned model takes the view that 
the actual distribution management policy should be encapsulated into a class, which 
may then be changed and customised if required.  This has several advantages, the 
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primary one being that the method used for distribution is completely separated from 
the methods used to access data.  

In the general case, it is desirable to allow placement to occur through the load 
balancer, since this module may make use of information to optimise the load across 
the entire system rather than across a single application. 

 Configuration in the Partitioned Model 
It should be obvious by now that determining the optimal configuration for a 

partitioned collection involves balancing several, possibly contradictory factors, and 
this may only be performed at run-time.  This implies that factors such as component 
size, tree depth and other parameters which have no real semantic importance should 
be set only at run-time:  they should not be hard-wired into the compiler or into an 
application.  It should be possible for the programmer (or indeed the end-user) to 
“play” with the values to achieve best performance.  This has the additional 
advantage that tools might be employed to modify the exact configurations of 
partitioned-model applications. 

Fortunately an obvious method exists for supplying these values:  the use of a 
mechanism such as Unix' shell variables, which may be set per-user at run-time and 
accessed by running applications.  Even more flexible are the property sheets 
encountered in systems such as X Windows[103] which provide a more structured 
name space. 

The exact properties used may vary per structure, and indeed may be varied 
according to what distribution policy – e.g. which partition class – a collection is 
using.  At the risk of getting ahead of ourselves, the arrayed collections of the 
Phœnix prototype (as described in chapter 5) allow properties such as the maximum 
and minimum number of elements in a component, the minimum dimension of a 
component, the depth and composition of the partition tree et cetera to be set at run-
time from the property sheet.  There is no reason why these values should be 
provided directly by the user:  they may be generated by some form of automatic 
configuration tool whose results are stored in a suitable format.  This means that the 
partitioned model has potentially the same levels of efficiency as other, less flexible 
and lower-level systems. 

3.2.6. Generic Structure of Partitioned Collections 

For clarity, we shall summarise the structure and features of the partitioned 
collection architecture.  The generic form of collections is shown in figure 79. 

 

                                                
9The symbols for component, partition, activity et cetera in the key will be used consistently for the 
rest of this thesis, and will not appear in future diagrams. 
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The community of objects form a tree structure, the branches being formed by 
partition objects and the leaves by component objects.  Note that, in this diagram, 
there is no indication of the location of objects:  the objects may be created and 
located by the system, not necessarily by the programmer. 

The process (or activity) creating the collection (marked P in the diagram) holds 
a handle to one component (called its root component), through which it may access 
all elements of the collection, held in any component, without exact knowledge of 
the component with which it interacts.  Other activities may be passed either the 
handle of the root component, or some other component, and may similarly access 
any element without knowledge of distribution.  The resolution process ensures that 
such accesses occur correctly. 

There are two general cases for resolution.  In the first (shown occurring from 
activity P in figure 8), the item being requested is held locally by the receiving 
component and may be returned directly.  In the second case (initiated by activity Q) 
the data is held remotely and must be resolved by one of more resolution steps. 

All algorithms used within the partitioned collection must be distributed, using 
only local knowledge.  This prevents bottlenecks occurring in the face of highly 
parallel access:  only those activities which access the same part of the partition tree 
will interfere with each other.  Similarly, concurrency control should – as far as 
possible – occur on a per-component basis. 

The generic architecture, and the properties required of the algorithms used, is 
presented formally in Appendix A. 

 

Component object

Partition object

Element

Activity  

Figure 7:  A generic partitioned collection 
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3.3. A Kernel of Partitioned Storage Architectures 

No programming environment can hope – or, indeed, should hope – to provide 
all the computational objects which might possibly be required in applications.  The 
essence of programming language design is to select a small number of common, 
powerful structures together with mechanisms for composing them into new 
structures. 

In proposing a programming environment based around the partitioned model, 
this principle manifests itself in the following question:  what memory structures 
should be provided “as standard” within the environment, and how should 
programmers be able to extend these structures? 

A survey of the literature – especially Knuth's seminal work[70] – indicates that 
three basic storage architectures predominate: 

 
• arrayed storage, where elements are stored at points in a 

discrete high-dimensional space; 
• associative storage, where elements are accessed using 

complex keys or partial matching;  and 
• directed storage, where elements are stored relative to one 

another. 
 

These three architectures may be used to form the kernel of a partitioned object 
programming environment.  Other architectures are also possible, as described in 
§3.3.4. 

As an aside, it should be mentioned that in this section we shall only deal with 
the architecture of memory, not the programmer's interface.  It is perfectly possible, 
for example, to implement an array using an associative memory architecture rather 

 
 

 

Figure 8:  The general case of resolution 
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than an arrayed architecture.  From the programmer's viewpoint, it is the interface, 
not the implementation, which determines the properties of a structure;  internally, 
the high-level programming interface is largely irrelevant for the efficient 
implementation of the memory.  We defer discussion of the programmer's interface 
and the ways in which it may be developed until §3.4. 

For each architecture, we shall first describe the properties of the architecture 
and a basic approach to its implementation.  A prime factor in assessing any such 
approach is the manner in which locality of reference may be exploited within the 
structure to reduce communications.  We shall then discuss the manner in which the 
elements of the architecture may be decomposed for partitioning purposes, and 
finally give an overview of the structure and algorithms used in its implementation. 

3.3.1. Arrayed Storage 

Arrays are one of  the most common structures in parallel computing, although 
this is largely attributable to the current engineering bias in parallel applications.  
Consequently it is important to provide a usable arrayed storage architecture. 

An array is a dense collection of elements, each being uniquely identified by an 
indexing n-tuple (usually of integers or some other discrete type).  The degree of the 
tuples also defines the number of dimensions in the array, and reflects the fact that an 
array may be viewed as a discrete n-space:  in fact, representing areas of space (such 
as wind tunnels) is a common application of arrays. 

The space represented by an array is a metric space, as there is a relationship 
between the various possible index tuples.  This relationship defines a distance 
between two tuples, and allows one to speak of two elements of an array as being 
“close together” or “far apart.”  This may be best seen by considering an array with a 
small number of dimensions, say two:  such an array defines a part of a plane, and 
the distance function may then be seen as the usual straight-line distance between 
two points on the plane (or may be taken to be the Manhattan distance).  This notion 
of distance is shown in figure 9. 

Basic Approach 

The basic approach to decomposing arrays is to observe that any single array 
may be seen as a collection of smaller arrays whose origins are displaced.  By 
suitable computation it is possible to map any element in the original array onto an 
element of one of the smaller component arrays. 

This observation allows us to suggest how arrays should be distributed within 
the partitioned model:  first determine the origins and bounds of the small arrays and 
then distribute them, performing the appropriate mapping whenever an element is 
accessed. 

It is a matter of policy, determined mostly by application-specific 
considerations, how the origins and extents of the small arrays are determined.  Many 
policies might be used, some if which are explored further below.  There are two 
important aspects to any chosen policy: 
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• how does the policy chosen interact with the principle of 
locality? and 

• can the policy deal with arrays of arbitrary size and 
dimensions in a scalable manner? 

 
A third, lower-level concern must also be addressed: 
 

• how does the policy lend itself to distribution on a large scale? 
 

Since we are considering scalable structures, this is a very real concern:  one 
may reasonably expect a scalable system to make good use of its available resources. 

Resolution must occur through the indexing tuple of the element being sought:  
there must exist some means of mapping an arbitrary tuple onto the component 
which stores it.  Different decomposition strategies will require different resolution 
strategies, having different timing properties. 

Locality of Reference 

The principle of locality, as it applies to arrayed memories, may be stated as 
follows:  given that a task accesses a point (x, y) at time t, it is likely that the same 
task will access a point ( , )x x y y+ +δ δ  at some time ( )t t+ δ .  In other words:  if a 
point is accessed, other points which are close to it in space will be likely to be 
accessed in the near future.  Exploitation of the principle requires that accesses 
following this pattern are made as cheap as possible, on the assumption that they will 
predominate over accesses which do not conform. 

Within arrays it seems to be relatively easy to define “close together:”  we may 
use the metric space view of arrays described above.  By storing elements in clusters, 
or locales, the principle of locality may be exploited:  if any point in a locale is 
accessed, most of the other points close to it are available directly from the same 

 
 

Manhattan distance = a + b = 7 units
Straight-line distance = c = 5 units

a

bc

 

Figure 9:  Arrays as metric spaces 
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locale.  Although edge effects will occur – when neighbouring points lie in different 
locales – these effects may be minimised by careful choice of locale size.  This 
optimal size is very much an application-dependent quantity, so it is vital that it be 
easily alterable to achieve best results. 

Decomposition Strategies 

The key factor affecting the representation of an array is the way in which its 
elements are decomposed into sub-regions, which will then be used to form 
components.  The strategy chosen will be used internally by the partition class in 
order to create and organise the components:  the code of the components themselves 
is independent of the strategy chosen. 

Dimensional Decomposition 
Dimensional decomposition divides an array according to its dimensions, acting 

so as to reduce the dimensionality of locales.  An n-dimensional array may be seen as 
a one-dimensional array of (n-1)-dimensional arrays, which may in turn be seen as a 
one-dimensional array of one-dimensional arrays of (n-2)-dimensional arrays, and so 
forth.  Alternatively, the same array might be seen as a two-dimensional array of (n-
2)-dimensional arrays:  there are many possibilities. 

The great advantage of dimensional decomposition is that it essentially reduces 
all arrays to one of a number of simple forms having a low dimensionality.  This 
means that the base-level storage management and access routines may be written for 
simple cases, as more complex cases are automatically built up from these simpler 
units. 

 

a = array (0..2, 0..2, 0..1) of T
each component = array (0..2) of T

0,?,? 1,?,?

0,0,? 1,2,?

0,0,0 - 0,0,2

 

Figure 10:  Distribution and resolution in dimensional decomposition 



 

- 65 - 

Furthermore, a structure thus decomposed has a simple resolution strategy 
associated with it.  The first level of storage is simply a set of pointers to other 
arrays, and form the first level of distribution.  This is shown, for example, in figure 
10, where a two-dimensional array is represented in exactly this way.  Resolution can 
occur simply by stripping-off the first element of the addressing tuple and 
descending to the corresponding sub-array, until an array containing data elements 
(rather than further pointers) is encountered.  For a d-dimensional array, such an 

approach has a complexity o d
dstep

F
HG

I
KJ, where dstep represents the number of dimensions 

stripped at each step until a component is reached. 
There are three disadvantages, however.   First and foremost, reducing an array 

in this manner alters its essential spatial properties:  two points which are close 
together in the original array may not be close together in the decomposed structure 
if the decomposition takes place across the dimension in which they are close.  This 
makes the principle of locality break down in the general case, as a locale of points 
may be separated. 

The second problem is one of the size of the intermediate storage.  It may be that 
an intermediate array is generated which is too large for a single node memory – or, 
at least, is too large for comfort.  There is no recourse within the strategy to deal with 
this case. 

The final disadvantage is that this strategy does not make good use of the 
available resources.  The intermediate arrays are simply pointers to “real” storage.  
All the storage will occur on the fringes of the structure's distribution, with the effect 
that remote requests will be very expensive. 

Regional Decomposition 
To counter these disadvantages, we may take the view that an array should be 

decomposed regionally:  that is to say, each component should hold a small part of 
the array having the same dimensionality as the original.  This preserves locality of 
reference within the metric space of the original array. 

Two points may be made about this approach.  Firstly the dimensionality of the 
original array is preserved by the decomposition, so any locality properties are also 
preserved.  Secondly, the distribution is “flat” rather than progressive as in the 
dimensional decomposition.  This has the advantage that all the resulting component 
are available from the first and may be distributed evenly throughout the resources 
used by the structure. 

The disadvantage is that, as the decomposed components of the structure may 
have arbitrary dimensionality, the component classes must be able to store data in 
this form. 

Resolution takes the form of locality tests performed in each partition.  Every 
partition must contain references to all components held below it – with the result 
that the root partition holds a reference to all the components of the structure, which 
may make it very large.  From each stage a single resolution step is performed 
according to which region the requested point lies. The step will result in either a 
sub-partition or the holding component.  This resolution strategy is evidently o(n) for 
an array with n elements. 
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Hierarchical Decomposition 
Hierarchical decomposition is the most “geometric” of the resolution strategies, 

taking its cue from the idea of oct-trees[47].  The space of the array is divided into a 
number of smaller arrays – usually eight in a three-space, hence the name oct-tree – 
which are then recursively sub-divided until a suitably-sized region is created. 

Such a strategy has much to recommend it:  in particular, the access complexity 
of a structure distributed in this way in o n(log ) , which is perfect for a scalable 
system.  A disadvantage, however, is that correctly-sized regions only appear at the 
leaves of the distribution process.  If implemented naïvely this would mean that data 
is only stored at the fringes of the data structure, which would be rather unacceptable 
from the point of view of load balancing. This problem may be solved by using a 
slightly more complex creation algorithm, re-broadcasting some of the final regions 
back up the tree. 

N-fold Decomposition 
One further important decomposition method should be mentioned:  dividing the 

array into a particular number of sub-arrays.  In fact, this method may be 
successfully applied to both hierarchical and regional decompositions, rather than 
being a completely new distribution method, but is particularly suited to regional 
decomposition when the programmer wishes to control accurately the distribution of 
data onto processors. 

 

a = array (0..7, 0..7, 0..1) of T
each component = array (0..3, 0..3, 0..1) of T

(0,0,0) - (3,3,1)

(0,4,0) - (3,7,1)

(4,0,0) - (7,3,1)

(4,4,0) - (7,7,1)

 

Figure 11:  Distribution and resolution in regional decomposition 
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Consider the case of an application wishing to create an array, where the 
programmer knows that the applications exhibits a certain pattern of access which 
makes it especially suited to being distributed onto a rectangular grid of processors.  
The programmer may wish to control very precisely the way in which the elements 
are mapped onto the processor mesh.  A partition may be created which divides the 
array into a number of smaller regions – where the number is the same as the number 
of processors onto which the array is to be mapped – and map them onto the 
processors. 

It may be difficult to divide an arbitrary array into exactly a given number of 
sub-regions, to the number required may be taken as a hint, a lower bound or some 
other suggestion rather than as a “hard” number. 

Structure 

The creation of an arrayed storage module involves three stages:  the 
decomposition of the array space into manageable units, the distribution of these 
regions, and the creation of storage for their elements. 

Decomposition may proceed according to any of the strategies mentioned above.  
For convenience we shall use regional decomposition. 

The root component creates a partition of the appropriate type and passes it the 
region representing the entire array's space.  The partition decomposes this into 
smaller regions.  One of these regions will be assigned back to the root component;  
others will have components created for them;  others will be passed to additional 
partitions which are created for them.  The exact numbers used to determine how 
many components and how many sub-partitions are created may be varied to alter the 
exact structure of the collection.  The process of creating components and sub-
partitions proceeds until a stage is reached when all the sub-regions have been 
assigned to components.  At this point the collection is ready for use. 

(Usually, arrays are created “eagerly:”  storage is allocated for them at their 
creation.  However, this may be very expensive in the case of a large array, and 
especially so if the array is destined to be sparse.  Rather than perform eager creation, 
the partitioned model allows storage to be created “lazily,” as it is demanded. The 
advantage is that any region which is never accessed will never consume storage;  
the disadvantage is that accesses to element may cause storage allocation, which will 
introduce an overhead.) 

The basic action of the array components in use is to accept requests from client 
objects for an element and return this point's value (or assign it, or some other 
operation).  Since each component knows its own bounds – the elements which it is 
responsible for holding – it may quickly determine whether an element requested is 
held locally and, of so, may perform the requested operation.  If the element is not 
local, the request is forwarded to the partition for resolution.  The partition will 
accept the request, resolve it onto the component holding the requested point, and 
forward the request to that component.  The component can then return the result (if 
any) to the originating client.  Hence a component only performs significant 
processing on requests which it can service:  its involvement in remote-request 
processing is limited to a locality test and a forwarding operation. 
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Within the partition tree, resolution proceeds as follows.  A partition examines 
the regions which it knows about:  depending on the decomposition strategy used, a 
different matching mechanism must be used.  For regional decomposition, the 
regions will map either to components or to sub-partitions. In the former case, the 
resolution process has succeeded, and it may be passed the processing request; in the 
latter, a request for further resolution is passed to the selected sub-partition.  If a 
suitably-matching region cannot be found, a request for further resolution is passed 
to the parent of the partition, on the assumption that eventually a partition will be 
encountered (the root in the worst case) which will be able to perform a resolution 
downwards. 

3.3.2. Associative Storage 

Associative memories, though less common in practice than arrays, are in many 
respects more powerful. Such a memory holds a collection of objects having no 
explicit relationships between them.  An object is simply held within the store, where 
it may be accessed or removed:  there is no notion that any object is related to any 
other in any way.  This may be contrasted with the metric space conception of arrays. 

Unlike arrays, associative memories have no fixed size:  elements may be added 
and removed as required. 

The principle use of associative memories is in storing objects which must be 
accessed through partial matching.  An application may construct a template of the 
object which it wishes to retrieve and present this to the memory, which will then 
match the template against its elements to find one or more matching objects. 

Basic Approach 

The basic approach to constructing an associative memory is through the use of 
a hashing algorithm. 

Hashing is a technique whereby an indexing key is used to access a large set of 
records.  The key need not be unique, so a given key value will be shared by many of 
the structure's records.  The keys are used as indexes into a table, each entry of which 
contains those records sharing the given key.  Thus a simple look-up operation may 
be used to reduce quickly and dramatically the number of records which need to be 
searched. 

“Standard” hashing algorithms require a set of keys C c c cn= { , ,..., }1 2  which are 
mapped onto a set S s s sm= { , ,..., }1 2  of buckets holding records.  The records in each 
bucket each share a common key, and a hash function h C S: →  maps each key onto a 
single bucket.  In general, m n<< , with S and h being fixed before the algorithm 
begins executing. 

This means that a hashing algorithm can, given a key for a record, locate the 
bucket containing the record in o(1) time by applying the hashing function.  The 
records in the bucket thus selected may then be searched using linear search, binary 
split et cetera, depending on the internal structure of a bucket, so that the exact 
record being sought is located.  The complexity of these intra-bucket searches may 
be o(b), o b(log ) , or some other function of bucket size b:  if this intra-bucket 
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complexity is represented by the function j(b), then the overall search complexity of 
the hashing is o(1+j).  For best results, the hashing system should attempt to make 
the j component negligible so that the system tends towards o(1) searching. 

Since buckets are usually of a finite size, there may come a time when a bucket 
overflows.  In this case some overflow method is required to re-hash the record 
which caused the overflow onto a new bucket, together with a corresponding 
modification of the search algorithm to search for overflowed records if necessary.  
In order to avoid these complications, buckets are sometimes implemented as linked 
lists or some other dynamic structure. 

The main problems with hashing, for the current purposes, is that it is non-
scalable.  The set S is fixed at the creation of h, so it is not possible to vary the 
number of buckets to accommodate dynamic changes.  The use of unbounded 
buckets is unacceptable:  for one thing, it can require a large amount of local storage 
and may thus cause distribution problems;  for another, the time taken to search such 
a bucket degenerates towards the complexity of the intra-bucket search, as the j term 
become dominant. 

What is required is a structured, scalable hashing system which retains the 
desirable ≈ o( )1  search complexity.  Fortunately a number of methods have been 
proposed for extensible hashing system[45][73][80], and these have been examined 
for suitability in the current context.  The “ideal” scalable hashing algorithm would 
have the following characteristics: 

 
• unbounded size; 
• a simple distribution strategy 
• regularity, in the sense of using the same algorithm under all 

circumstances; 
• decentralised control;  and 
• scalability, so the distribution of a structure reflects its size. 
 

It was found that no completely suitable algorithm was described in the 
literature, but the existing systems were found to be suitable as a rubric for creating a 
distributed extensible hashing algorithm. 

A Guide to Extensible Hashings 

All the extensible hashing considered here were developed in the 1970's to 
manage secondary storage in large database systems.  A particularly pertinent 
comment is made by Fagin et alia in discussing their hashing: 

“Over the past two decades, schemes for structuring large files 
have evolved by merging concepts and techniques from two 
areas that were initially perceived as requiring distinct 
approaches:  data structures appropriate for central memory, 
and access methods appropriate for slow, high-capacity 
secondary storage.  The distinction is becoming more and 
more blurred[45].” 
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We have examined three of the most promising extensible hashing methods:  the 
virtual, dynamic and extendible hashings. 

Virtual Hashing 
Virtual hashing[80] works by altering the hash function whenever an overflow 

occurs.  The definition given for virtual hashing – as any hashing which may change 
its hash function over its lifetime – is very vague, but a concrete example may be 
found by considering hash-by-division. 

The hash function in this case may be defined as h c c S0 ( ) mod= , which defines 
a ”classical” hashing with a fixed number of buckets each of which is identified by 
the remainder of dividing the key c by S .  When a bucket overflows (assuming 
buckets of a fixed size, rather than chained buckets) the collision is usually resolved 
by calculating a new key value for that record and re-inserting it into another bucket.  
In virtual hashing, a new hash function is generated which re-maps all the records in 
the full bucket, leaving them in the existing bucket or mapping them into newly-
created buckets (rather than onto existing buckets as was the case before).  A 
definition of the virtual hashing is given by h c c Sj

j( ) mod= 2  where hj  is the 
function applied to resolve the j'th collision.  Initially j will be zero.  When a bucket 
is full and is split, any hash keys which, when transformed under h0  target that 
bucket will be re-hashed using h#1.  If further buckets become full they will be re-
hashed using h1, and so forth. 

This particular hashing doubles the number of (potential) buckets at each split, 
and has the additional property that the “new” buckets are always empty (which 
avoids a possible cascade of splits).  Its disadvantages are that there are constraints 
on the forms of hi+1  compared to hi which must be guaranteed, and a new function 
(satisfying these constraints) must be supplied at each level.  This leads to a lot of 
functions. 

Dynamic Hashing 
Dynamic hashing[73] uses a hash function h to identify a tree which is used to 

contain records.  Instead of a single structure, a collection is represented by a forest 
of binary trees T t t tq= { , ,..., }1 2  with the hash function being defined as h C T: → .  
Once the correct tree has been identified, it is searched.  Navigation of the tree uses a 
secondary function b C: {( , ) }→ +0 1  from this key to an infinite series of bits.  This 
sequence is used to traverse the tree by using each bit to indicate a left/right branch.  
Traversal continues until a leaf node is encountered, which contains records. 

If a bucket overflows, it is split and re-arranged according to the values of b.  
This is illustrated in figure 12. 
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Dynamic hashing may be especially efficient if indexing data is held locally  
The secondary hash function b may seem complicated, but may be implemented very 
simply using a pseudo-random number generator seeded from the key.  The initial 
hashing – from key to tree – suffers from the usual disadvantage of hashings that the 
size of the forest is fixed at creation-time, so essentially the scheme is a mechanism 
for structuring buckets internally in an efficient manner.  The algorithm is distributed 
in the sense that intermediate nodes are used for navigation. 

Extendible Hashing 
The most promising candidate is extendible hashing[45], which builds on 

Fredkin's work on tries[50].  In trie10 memory, a search tree is constructed from a set 
of records whose keys are sentences in some alphabet Σ.  For some (possibly 
complete) prefix of a key, a tree is constructed:  from the root node, a branch exists 
for every σ ∈Σ, and so on recursively until the key has been completely parsed.  The 
result is a tree having a path corresponding to every possible key prefix within the 
alphabet. 

For each leaf node a bucket is constructed to contain records whose keys have 
the leaf's identifying path as prefix.  Such a system is naturally scalable:  if a bucket 
overflows, the leaf node is split into a new branch node which consumes the next 
symbol of the key (extending the prefix by a single letter of Σ), with new buckets 
being created at the end of each new edge and the values within the original bucket 
being re-distributed according to the new trie. 

Special cases are the binary trie using the alphabet Σ = +{( , ) }0 1 and the n-
dimensional binary trie using the alphabet Σ = +{(( , ) ) }0 1 n . 

A trie may easily be seen to be wasteful of memory, as a path is created for 
every possible prefix of a given length.  To improve this, branches may be created 
“lazily” when a symbol is encountered.  Levels may also be compressed so that 
several symbols are consumed at each branch in the manner of the n-dimensional 
binary trie.  It is this latter observation which is used to create extendible hashing. 

                                                
10The name rhymes with try. 

 

(a)  tree from the initial forest (b)  splitting a bucket  

Figure 12:  Dynamic hashing:  splitting a bucket 
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Several alternative extendible hashing schemes may be considered in which an 
additional level of dictionary look-up is provided between the hash function and the 
buckets – the hash function maps onto a set of dictionaries, which themselves map 
onto a set of buckets (if D d d dr= { , ,..., }1 2  is the set of dictionaries, then h is defined 
by h C D S: → → ).  A specific extendible hashing may be defined using a pseudo-key 
c h r' ( )=  where c' is large and of fixed length (say sixty-four bits).  A certain prefix 
of c' (of, say, three bits) is used in the first hash routine, with each combination 
mapping onto a bucket.  Thus all records whose pseudo-keys have the same prefix 
will hash into the same bucket.  The buckets themselves may have an internal 
structure as required. 

When a bucket overflows, another bit is added to the pseudo-key in the primary 
table – splitting a prefix causes all prefixes to be split.  Most of the new prefixes will 
be redundant, mapping onto “overloaded” buckets:  the bucket which caused the 
overflow, however, will be re-arranged so that a new bucket is created.  This is 
shown in figure 13. 

Extendible hashing hence requires that the splitting of a bucket is recorded in the 
master hash table:  it is not a distributed algorithm, in the sense that all information is 
concentrated within a single table.  However, it guarantees that the bucket containing 
a record may be acquired using a single probe, as with standard hashing. 

Distributed Extensible Hashing 

None of the schemes discussed was designed with distribution in mind, so they 
have an essentially centralised nature.  It is common practice, for example, to assume 
that the entire index is held centrally – not a viable proposition in the current context, 

 

h = 00...

h = 010...

h = 011...

h = 10...

h = 11...

000

111

0000

1111

(a)  initial hashing (b)  splitting the 010,,, prefix  

Figure 13:  Extendible hashing:  splitting a bucket 
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where it would constitute a bottleneck, a limit on the maximum size of the structure 
and a single point of failure all rolled into one. 

The table in figure 14 summarises the properties of the methods reviewed.  All 
the systems satisfy the constraint that the structure be able to vary its size in response 
to changing membership.  Regularity is a feature of extendible hashing, so the code 
used to implement the structure need not change for varying depth.   Distribution 
control is aided by the use of intermediate points, such as those of dynamic hashing, 
rather than the use of a logically centralised table. 

Thus, while none of the systems exhibit all the desired characteristics, together 
they satisfy the needs of a scalable parallel implementation.  It would be attractive, 
therefore, to synthesise the required algorithm from a combination of the three 
systems. 

The dynamic hashing of Larson uses index tables at intermediate branch nodes, 
which is reminiscent of the generic partition tree in figure 7Error! Bookmark not 
defined.;  Fagin's extendible hashing uses a variation on the trie concept without 
such intermediate look-up.  These two schemes may be amalgamated to form a new 
algorithm in which intermediate nodes are based around tries.  This means that the 
same search algorithm may be used throughout the structure.  The new scheme is 
completely regular, scalable and distributed. 

A basic table is first built using a prefix of the key value c.  Call this prefix c', of 
(say) three bits in length.  This table will initially point to buckets – eight for a three-
bit prefix.  When a bucket overflows, it is replaced by an intermediate node which 
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Figure 14:  A comparison of extensible hashing schemes 
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uses a prefix of the remaining key (say c'') in the same manner as the initial table.  
The contents of the split bucket are re-distributed between the new buckets (and the 
original bucket may be re-used as a bucket at the deeper level).  Thus each lookup 
descends one level of the tree by stripping a prefix from the key being sought and 
forwarding the rest to the object identified by the stripped prefix.  Eventually a leaf 
node – bucket – will be encountered, which will hold all records containing the given 
key.  This structure is shown in figure 15. 

The splitting of a bucket generates an intermediate node, rather than adjusting a 
master table.  Indeed, there exists no master table:  the information needed to 
maintain the structure is distributed between the branch nodes of the tree.  Each split 
has only a local effect, so no information need be propagated to the rest of the 
structure.  Each intermediate node uses a prefix of the key to cascade the search, and 
may do so using purely local information.  The fan-out from a branch node may be 
arbitrarily large. 

A similar approach may be taken if the membership of the structure should 
shrink.  If, for example, all the child buckets of an intermediate node become (nearly) 
empty, they may be joined to form a single bucket and the unnecessary intermediate 
node removed:  an exact reversal of the procedure used to split a bucket. 

In the current context, the most important feature of the algorithm is its 
regularity.  The same function is used at each branch – master or intermediate – as 
was the case in the basic trie.  In addition, however, hashing may proceed from any 
intermediate node to the correct bucket, by the following argument:  if an 
intermediate node knows its own prefix (the prefix which is common to all its 
descendents, then it can determine for a given key whether the bucket for values with 
that key occurs below it in the hashing (i.e. if the key is prefixed by the node's prefix) 
or whether it must lie above it, down some other branch (if the key has a different 
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(a)  initial hashing (b)  splitting the 100... prefix by one bit
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Figure 15:  Distributed extensible hashing:  splitting a bucket 
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prefix).  In the limiting case, a key will pass through the master table, which has no 
prefix. 

However, access to a record may require many sub-hashes, rather than the 
guaranteed one of the original extendible hashing.  This is less of a problem that it 
might appear since, in the current system, all items will be in memory (albeit on 
different nodes) so it is more important to emphasise distributed control and 
scalability.  There is a one-to-one correspondence between intermediate nodes and 
partitions. 

Locality of Reference 

The bucket in which an element is stored within a hashing algorithm is defined 
by its hash key (or a prefix thereof):  it is not implicitly defined by semantic 
considerations, as was the case in arrayed storage, but by a hidden (and rather 
complex) value generator – the hash function.  We must therefore consider the effect 
which extensible hashing has on applications wishing to exploit locality of reference. 

There are two alternative approaches to this question.  The first would allow an 
application to define, at some high level, that objects inserted into associative storage 
should be stored together;  the second forces applications to work within the locality 
framework imposed by the memory architecture itself. 

In the first case, an application might define that (for example) all Linda tuples 
with a particular type signature will be hashed to the same (or very similar) values 
and will hence be stored in the same or closely-neighbouring buckets.  An 
application wishing to process all tuples of this type would then be able to assert that 
they are stored together, and would be able to locate its processing activity so as to 
minimise the access overheads (by accessing the correct bucket(s) directly).  The 
disadvantage here is that the amount of parallelism may be reduced, as only a small 
number of buckets will be used in processing. 

Using the same example, the second case would distribute tuples according to 
some hidden mechanism.  Processing all tuples with a given type signature would 
involve potentially accessing all the buckets in the structure, but each activity need 
only access the tuples held locally by the bucket to which it is assigned:  in other 
words, each activity would iterate through a single bucket of tuples, filtering-out 
those in which it was interested.  This scheme is maximally parallel (within the 
partitioned object framework), but may result is activity to no purpose if there are 
buckets with no suitable tuples within them. 

We have here another example of a trade-off, between increasing parallelism 
and increasing the programmer's knowledge of and control over the associative 
structure.  The partitioned model allows applications to be constructed at either 
extreme, and at any point in-between. 

Structure 

We shall briefly make clear the mapping between distributed extensible hashing 
and the partitioned model. 
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Referring back to the generic partition diagram (figure 7Error! Bookmark not 
defined.), the correspondence is as follows:  each component represents a bucket in 
the hashing algorithm, whilst every partition represents an intermediate trie node.  A 
bucket holds records having a certain key prefix:  the partitions holds mapping tables 
which can strip a prefix from a key and either return the bucket matching the prefix 
or forward the remainder of the key to the appropriate sub-partition.  Partitions must 
also know the prefix which identifies them from above. 

Hash keys are composed of long unsigned numbers.  In principle, of course, a 
limit on scalability is imposed by the length chosen for hash keys;  in practice a 
number of (for example) 64 or 128 bits will be sufficient for all but the most 
demanding applications.  It is possible, in any case, to generate infinite keys by using 
a smaller number as a seed to a pseudo-random number generator. 

On receiving a request for a particular key, a bucket compares it against its own 
local prefix:  if they match, then the record sought may be acquired locally.  (Of 
course there may not be such a record – the bucket may be empty, or later matching 
may fail.  This is unlike the arrayed case, where an element will always be present.  
An associative store must provide a failure case.) 

If the prefix does not match, it may be forwarded to the receiver's partition for 
resolution.  The partition performs an action depending upon the key value. 

If the key has a prefix which matches that of the receiving partition, then the 
sought-for record must lie below the partition in the tree.  It may therefore strip the 
next part of the key, match it within its table of descendents, and forward it 
appropriately. 

If the key has a prefix different to that of the receiving partition, or is shorter 
than it, then the sought-for record must lie either in another branch or above the 
current partition: in either case, it must be resolved up the tree by passing it to the 
partition's parent. 

Adding an element to a component may cause it to split.  The split operation 
generates a new partition object and a set of additional components:  the new sub-
partition tree is linked-in to the partition tree in place of the split component.  The 
contents of the split component are re-injected into the structure to distribute them 
into the new buckets.  (There is a slight danger that all the elements might be re-
hashed into the same bucket, causing a ”split cascade."  Allowing buckets to expand 
more than usual deals with this case.) 

3.3.3. Directed Storage 

Graphs – directed and undirected – seem to be the most ubiquitous structures in 
computer science.  It is common, for example, to see a problem which may be treated 
simply as a problem in graph theory (most search problems fall into this category), 
and many applications have data structures which are based around the notion of a 
graph or tree. 

A graph is a set N of nodes and a set E of edges.  A node represents a “place” in 
the graph, whilst an edge represents a “route” between two nodes.  Hence an edge 
may be represented by a pair ( , )n n1 2  where n n N1 2, ∈ .  If the order of the pair is 
irrelevant, i.e. if ( , ) ( , )n n n n1 2 2 1= , then the graph is said to be undirected;  if order is 
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significant, the graph is said to be directed.  Edges may be traversed from one of 
their nodes to the other:  in a directed graph, traversal is only allowed in the direction 
of the edge, whilst edges in an undirected graph may be traversed in either direction.  
Variations on the basic theme allow nodes and edges to be labelled to identify them. 

There is a sizeable body of knowledge on the mathematics of graphs, including 
algorithms for traversing all nodes and detecting cycles of edges.  In particular, it is 
common for an edge's label to be interpreted as a weight designating the “cost” of 
traversing the edge, and an important class of problems involves minimising the cost 
of moving between a pair of nodes. 

An important special case of the graph is the tree, which is an acyclic graph in 
which there is a single node, called the root, which is not the target of any edge. 

Basic Approach 

The basic approach to creating a graph is to store a node and its label (if any) 
alongside the set of edges which leave it:  thus a node A would be stored with the 
edges (A, B), (A, D) et cetera, but not with the edge (B, A) (for which A is the target) 
nor the node (B, D)  (which does not affect A in any way). 

A graph may be seen as being composed of a number of smaller sub-graphs, in 
much the same way that an array is a collection of smaller arrays.  In the graph's 
case, the edges leading out of one sub-graph will be related directly to the edges 
leading into another sub-graph.  This means that the sub-graph may be used as the 
unit of distribution, with a single sub-graph being stored in a single component. 

From the point of view of navigation, a graph is the simplest of the partitioned 
architectures.  All navigation between nodes must proceed on the basis of local 
information – the set of edges leading out of the current node.  Therefore 
“resolution” – it can hardly be termed this in so simple a case – is simply a matter of 
looking-up the name of the target node of the edge to be traversed. 

However, there are a number of complexities in representing graph structures.  
The first is the sub-division of a graph into sub-graphs.  Since there may be no 
general rule as to where new nodes are added, a sub-graph may grow unpredictably:  
like an associative memory, but unlike an array, the bounds of a component cannot 
be fixed at creation-time.  This means that identifying a sub-graph, and deciding 
when to create a new one, may be complicated.  Furthermore, there is the issue of 
naming and deleting items from a graph. 

Fortunately there are a number of special cases for which simple solutions exist.  
The most important is the tree, in which sub-graphs are actually sub-trees, which 
have well-defined properties. 

Locality of Reference 

A graph has a very well-defined notion of locality of reference.  If an edge is 
seen as representing a single “step,” then two nodes are close together if the number 
of edges which need to be traversed in order to move between the nodes is small. 

The problem is complicated for the general case of graphs, however, as there 
may be many distinct paths between two nodes.  This makes the problem of deciding 
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whether two nodes are metrically close together a difficult task:  in the limit, it is one 
which can only be solved by an exhaustive search.  The case is somewhat simpler for 
trees, however.  In a tree, one may count the number of  levels by which two nodes 
differ as a metric of the distance between them. 

The locality of reference in a graph is vitally important.  Any application 
manipulating a graph can only move between nodes by traversing edges:  if such 
traversal results in a remote reference – as the target node of the edge is located in 
another component – then applications will incur a severe performance penalty.  In 
spite of the complexity it is important that components contain sub-graphs as far as 
possible.  There is a trade-off to be made between the penalty in finding sub-graphs 
against the penalty of remote accesses if applications make remote references out of 
a sub-graph which could be avoided. 

Distributing Nodes 

Distributing a graph, as mentioned above, may be seen as simply being a matter 
of dividing-up the nodes into a number of sub-graphs – not necessarily connected – 
which are then used as the basis for decomposition.  This scheme is complicated by 
the fact that the node population of a graph may vary with time, with nodes being 
created and (possibly) deleted.  This could lead to some convoluted distributions. 

Consider a graph consisting of a single node, held in a single component.  As 
new nodes are added as children11 of this node, the contents of the component may 
grow until it is necessary for it to be split.  This split then generates one or more new 
components, possibly re-injecting the existing nodes in order to balance the load.  
Unless care is taken, the nodes will end up being split in such a way as to destroy any 
possibility of locality of reference within the graph. 

The first option would be to split nodes temporally:  all new nodes are placed 
into a new component.  For example, ten nodes are created in a component, but the 
eleventh causes a split to be made and is placed into a new component.  A moment's 
reflection indicates that this will be unsatisfactory, as the distribution is completely 
unrelated to the topology of the graph. 

Locality may be maintained, however, by ensuring that nodes which are 
metrically close – are centred around a common node, for example – remain in a 
single component.  This would imply, for example  that all immediate children of a 
node A would be located in the same component. 

It is possible that in an arbitrary graph there are edges between arbitrary nodes, 
without any respect for the creation order.  However, there is no simple solution for 
the arbitrary case short of exhaustive search, and creation-respecting distribution is a 
good solution for many of the special cases of graphs (trees and some commonly-
encountered types of directed graphs in particular).  If required, the exhaustive search 
technique could be used by re-defining the partition being used. 

                                                
11The term child is, of course, rather inappropriate for a general graph, as all nodes are in some senses 
at the same level in such a heterarchy.  The terms is apposite only for graphs like trees, with a well-
defined sense of hierarchy.  It is used here for convenience. 
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Naming Nodes 

The most obvious naming scheme is to use the name of the object representing a 
node as the node's name.  This is a direct translation of the traditional scheme for 
creating graphs into the partitioned environment:  an edge is essentially a pointer to 
the target node.  Such a solution has two main problems. 

The first is the problem that, as objects in their own right, nodes can exist apart 
from directed collections.  Related to this is the fact that, by giving clients handles 
onto objects which are part of the internal arrangement of the collection, it might be 
possible for clients to induce state changes pathologically.  Allowing access to 
internal objects also weakens the collection's encapsulation. 

In addition to these, passing out handles to nodes means that the collection is 
severely restricted in the ways in which it can re-arrange its internal structure.  This 
is because the collection cannot safely destroy an object to which another, external 
client may hold a handle:  to do this would result in a “dangling” pointer12. 

The alternative approach is to create some other form of naming for nodes which 
does not suffer from the above difficulties.  In effect, this involves creating a naming 
scheme is which nodes are named by indexing values, in the same way as associative 
memories and arrays.  For our current purposes, there is a restriction that such names 
lend themselves to simple distribution and resolution (since the names will be an 
integral part of the resolution process). 

There are several possible naming schemes, but the most attractive is to name a 
node according to its position in the graph;  or, alternatively, to name a node 
according to a path between it and some other node.  In a general graph, there may be 
a number of paths between two nodes, but what can be guaranteed to be unique is the 
nodes' order of creation. 

We shall make the assertion that all nodes except one (the first) are created as 
children of some other node which already exists in the structure.  That is to say:  a 
node may only be created by connecting it to an existing node using an edge.  This 
has the corollary that a directed structure must always be connected.  A node may 
then be named by taking the name of its immediate parent and affixing a unique 
identifier for it:  for example, a sequence number in the creation of children for that 
node.  A simple recursive argument shows that such names will always be unique.  
Essentially a tree structure built from the order of node creation is superimposed onto 
an arbitrary graph structure, as shown in figure 16. 

                                                
12In most systems, anyway.  There is no reason for not having objects which are garbage collected 
rather than explicitly destroyed, but few curent object-oriented systems take this approach, which is 
particularly tricky in distributed systems. 
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There are obvious similarities between this naming scheme and the distributed 
extensible hashing.  Node names are prefixed by the names of their parents, and 
occasionally the mapping of prefixes to components changes in order to re-order the 
collection.  The differences are mainly at a higher level:  node names are generated 
by node creation, not intrinsically from their value, and several “prefixes” may be 
held by a single collection. 

Creation and Management 

The creation of a directed structure is superficially closely related to the 
techniques described for associative memories above, §3.3.2. 

Each component contains a particular set of nodes in the graph which have a 
small set of common parent nodes (the size of this set may vary).  Nodes are created 
by providing them with an explicit parent node, and are identified by an abstract 
value.  Internally, this value describes the creation path of the node – its parent, its 
parent's parent et cetera back to the root. 

As nodes are created, the population of a component will increase.  If the 
component's population grows too large, it may be split to form a set of new 
components, and its nodes may be re-arranged.  The criterion controlling this is that 
all the direct descendents of a particular node will always reside in the same 
component:  this imposes the restriction that there is a maximum fan-out within a 
graph which is governed by the maximum number of nodes which may be held 
within a single component. 

Navigation in such structures is trivially easy.  A node contains a set of edges 
leading from it (which may be interpreted as being directed or undirected as 
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Figure 16:  A strategy for naming graph nodes 
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required).  The target of an edge is the name of its terminal node.  The set of edges 
defines the set of possible resolution requests which may be made, and the node 
names contain enough information to perform resolution. 

The actual resolution process is closely related to that of the associative memory.  
A nodes name to be resolved is compared with the set of node parents held by the 
current component and, if it does not match them, is forwarded to the partition.  The 
partition then maps a prefix onto a component or sub-partition, or forwards it to its 
parent.  Since the nodes names form a tree, the tree structure of the naming scheme 
may be matched by the partition tree structure, in much the same way as the 
distributed extensible hash space (but without the necessity of a hash function 
initially:  put another way, the hash function for graphs is based on node creation 
placement and ordering rather than on a node's value). 

3.3.4. Mathematical Structures 

There is a temptation, when discussing data storage architectures, to provide 
some the “standard” mathematical objects such as sets, bags, mappings and the like.  
There is, however, a danger of embedding such structures into a programming 
language.  Computing systems are not purely mathematical evaluators, and their 
needs sometimes conflict with those of the mathematics which they attempt to 
follow.  Providing an object calling itself a set which does not behave exactly like its 
theoretical counterpart of far worse than not providing a set at all. 

Some languages, notably Smalltalk, provide sets and bags as basic data types.  
There is, however, a subtle and (to our knowledge) previously unremarked problem 
with the Smalltalk implementation of these objects.  It may be illustrated with the 
following example.  Consider a Smalltalk set built from three Point objects: 

s ← Set new. 
s add: (1 @ 1) ; add: (2 @ 2) ; add: (3 @ 3). 

where (1 @ 1) creates a Point object representing the point (1, 1).  The set may 
be queried to see whether a given point is contained within it: 

s includes: (1 @ 1). 
--> true 

Let us now insert a fourth point into the set whilst retaining its name outside: 

p ← (3 @ 4). 
s add: p. 

Since we have retained the name of the object, we may still interact with it, and 
one of the possible operations is to induce a state change by altering one of its 
ordinates: 

p y: 3. 



 

- 82 - 

changing the point to represent (3, 3) instead of (3, 4).  The result of this is that the 
set s now contains two points with the same value, which violates the invariant of 
sets – but the set has no way of knowing this.  Enumerating the contents of the set 
will result in two values the same:  if, for example, we sum all the points in the set 

s inject: (0 @ 0) into: 
 [ :acc :elem | acc + elem ]. 
--> (9 @ 9) 

the result is incorrect – it should be (6, 6). By covertly changing the state of an object 
we can subvert the properties of the set.  The same is true for a bag.  The point is that 
it is difficult to import value-based abstractions into a state-based computational 
framework. 

The problem may be overcome, but not easily:  three possible remedies are 
sending “value changed” calls to all collections containing an object whenever its 
state changes, using copy-in semantics for objects in collections, or using invariant 
semantics.  The first solution incurs a large overhead, and requires that all objects in 
the system (both built-in and user-defined) follow this convention;  the second may 
be undesirable if it is actually a particular object, rather than a value, which is to be 
stored;  the third restricts the objects which may be placed into such collections to 
those which do not change their state. 

In choosing the array, associative and directed storage architectures for the 
partitioned model, we side-step these problems.  These architectures make no 
unworkable guarantees, but may be used to create any desired structure in a scalable 
and distributed manner.  A set, for example, can be implemented as an associative 
memory.  It is then the programmer's task to devise a suitable semantics for cases 
such as the one described. 

3.4. Creating User-level Data Structures 

Having discussed the infrastructures of scalable memory, the questions arise:  
how may these frameworks be used to construct “real” applications?  To what extent 
may users customise the memory access protocols and distributions whilst still being 
shielded from the low-level details of implementation?  This section addresses these 
issues. 

3.4.1. Customisation and Refinement 

For a programming environment, customisation is important:  the ability to 
extend or adjust features of the supplied software so that it better matches the task in 
hand. 

Refinement is the process by which something is “made better” in some sense.  
In computing, the term often denotes a method by which an abstract description of a 
program is converted, by successive steps, into a more concrete version of the same 
program.  In other words, refinement is a semantics-preserving program 
transformation.  An example of refinement is top-down design, where a program in 
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developed in terms of high-level structural components, each of which is 
decomposed recursively until an “atomic” stage is reached. 

The architectures discussed above provide a framework for particular kinds of 
storage, but will only provide a rudimentary interface to the programmer.  The great 
advantage of object-oriented programming, however, is the ability to encapsulate the 
functions of one class within the interface of another, using the sub-classing 
mechanism.  This allows the programmer to create data structures offering high-level 
interfaces whilst using the basic architectural implementations. 

Scalable memory, as observed before, essentially abstracts away from four low-
level details: 

 
a) where an individual datum is stored; 
b) which data are allocated to which local memory; 
c) how data values are accessed by clients;  and 
d) how data values are retrieved when requested (internally). 

 
The basic approach when creating a user-level structure is to provide an 

interface which is useful to the programmer in performing some task, masking the 
features of the selected storage architecture which are not relevant to its use. 

We shall here consider the reasons why customisation might be performed, and 
the sorts of things which might reasonably be customised in an environment based 
around the partitioned model.  We shall leave until later the issues of exactly how 
this customisation occurs, when we discuss a prototype implementation of a 
partitioned-model environment (chapter 5). 

Custom Access 

The partitioned model implements storage architectures, not data structures per 
se.  The programmer's interface to an architecture is derived from the architecture but 
is not intrinsically a part of it, so different interfaces to essentially the same 
architecture are perfectly possible. 

Why would different interfaces be needed?  The obvious answers concern 
functionality and grain size. 

Functional Interfaces 
A storage architecture provides only the most basic operations:  retrieve an 

element, store an element, remove an element, move an element et alia, depending 
upon the exact architecture being used.  An application might conceivably use such 
an interface, but only at the cost of a large amount of readability. 

An application in general builds structures to hold values of a given type, and a 
data structure will usually be constructed so as to hold values of only a single type.  
The exact type system used is a feature of the host language:  object-oriented systems 
usually provide inclusion-polymorphic type systems, but one might also consider 
type systems based around a more (or less) powerful base.  The storage architectures 
themselves make no explicit reference to the type of values which they store, 
although they may place a small constraint upon its type (such as the existence of a 
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hash function or an equality operator).  The same architecture may be used to store 
values of any type representable within the host language:  an application may 
require that a structure has its type (i.e. as an array of integers) fixed before its use.  
Thus there is an immediate need for a functional interface:  to restrict the types of 
object which may be manipulated by the basic access operations. 

A second need is when the memory performs more complex operations than 
simple accesses.  An example would be a database (represented as an associative 
memory with customised add and retrieve operations).  The database may need to 
perform (for example) a “project” operation, placing additional constraints on the 
elements' types. 

Grain Size 
Although we have tried to avoid discussion of effects which are purely caused 

by distribution, eventually these effects must be considered.  Since all requests for 
data may in principle cause communications to occur, it is desirable from a 
performance point of view to reduce the amount of communication incurred.  This 
may occur in two ways:  by transferring more data per communication, or by 
exploiting the principle of locality.  The latter will be dealt with later;  the former is 
the issue of grain size. 

In discussing their application which won the Karp prize (awarded for an 
application for exhibiting a large parallel speed-up), Gustafson et alia[55] identify 
several aspects of their application which contribute most to its success.  One of the 
most important is that the application transfers data in the largest “chunks” possible – 
tens of elements rather than single elements.  In terms of programming interface, this 
implies that the interface would allow access to several records simultaneously, 
through a single call, rather than forcing an application to perform the accesses 
individually. 

The grain size of accesses may be altered in two ways.  The first is to add a 
function to the architecture's interface which repeatedly calls the single-element-
access functions invisibly;  the other is to implement a function which accesses the 
inner storage mechanism of the structure directly, in the manner of the single-
element functions, to acquire several elements.  Both alternatives have their 
attractions in different circumstances.  The first method, by using the provided access 
methods, acts essentially as a client object:  it adds to the interface of the base class 
without subverting that which exists already.  The second method uses the same 
internal information used by the base class, and may be more efficient than the first 
method but only at the cost of weakening the abstraction of the basic memory 
module. 

In suitable circumstances, one might also consider the use of techniques such as 
pre-fetch caching of data without altering the external interface.  Internally all 
requests would be performed in large chunks, with those elements which are not 
immediately required being cached for later use. This opens up a whole new area of 
problems in terms of cache consistency, but illustrates the fact that a partitioned 
memory may be very flexible in its internal organisation;  moreover, it illustrates that 
the memory interface may become very intelligent without affecting the interface 
resented to client objects. 
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Custom Distribution 

Providing a custom distribution may involve changing several factors in a 
memory: the way in which storage is decomposed, the way in which resolution 
occurs, et cetera;  alternatively it may require quite trivial modifications.  This means 
that the distribution management routines must be decomposed to a very fine grain, 
to avoid the need to re-implement what is essentially common functionality. 

Parallel applications often have a distribution pattern which, in some sense, they 
“prefer:”  the application is highly efficient when its elements are arranged in a 
particular topology and is less efficient in other configurations.  If – as seems likely – 
this distribution cannot be inferred from the application's source code, it is necessary 
for the programmer to take a hand.  The two means of approaching this problem are 
to place elements explicitly, or to create an automatic distribution manager which is 
specialised towards the application's needs. 

Placed Distribution 
It is quite a simple task to create a distribution manager class in which it is 

possible to specify exactly the distribution of components.  The most obvious is a 
manager specialised towards distributing two-dimensional arrays which places 
components in a regular grid on a mesh-based machine.  This ensures that 
neighbouring locales of the array are on neighbouring processors.  The programmer 
has specified that a particular placement of data on processors is the most efficient 
for the application. 

This new distribution – whilst having no semantic effect on the application's 
behaviour – may have a profound effect on its performance.  It may be used to 
minimise the overhead incurred in the expected sort of resolution, that which is 
needed to acquire a value from a neighbouring locale. 

Indeed, it is possible to go a stage farther and inform components of the 
locations (i.e. component names) of the other elements of the array.  Essentially this 
involves using the partitioning infrastructure as a decomposition and configuration 
tool which is disposed of after setting up the structure.  Evidently this only works for 
structures which have a fixed size and distribution which may be determined 
“statically:”  the quotation marks here emphasise that the distribution may be fixed 
during the lifetime of the structure and may not vary afterwards, but does not 
necessarily have to be determinable when the structure is first created. 

All these approaches are completely scalable.  Using the example of the mesh-
based array distribution manager, it is possible for the manager to determine the 
maximum size of mesh which may be created at run-time, and to create a mesh of 
this size.  A further stage of placed distribution is when the programmer actually 
specifies the processors which will contain the various components, but this then 
restricts the application to execute on a system with (at least) the specified number of 
processors. 

Adding Factors 
Another approach is to create a more “intelligent” distribution manager by 

including new factors which affect the algorithm.  This is a slightly different 
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proposition to the above:  the system is still completely free to choose whatever 
distribution it determines would be best, but has more information available to make 
this decision. 

Such a system is particularly attractive in the presence of object migration, when 
components (and their elements) may be moved at run-time.  This would allow the 
distribution manager to observe the actual access patterns which occur at run-time on 
a particular run and alter the distribution of data dynamically in order to improve the 
locality of reference, communication overheads et cetera.  This is in many ways a 
generalisation of the traditional object-migration approaches which collect statistics 
on single object interactions:  a distribution manager may collect statistics on a 
multiple-object structure and re-distribute it. 

At its most comprehensive, it would be possible for a distribution manager to 
achieve a near-optimal distribution of the data in a structure, and to vary this 
distribution to maintain its optimality across different patterns of access. 

Caching 

Another possible refinement involves the use of caches. 
It may be observed that, when an application exhibits locality of reference, most 

of its requests will be sent to a small number of components in the collection – the 
ideal case being where all requests go to a single component with which the client is 
co-located.  In a less-than-ideal case, however, it may be advantageous if the 
resolution required to access remote components is avoided. 

A possible method is to cache the components which resulted from the last few 
resolutions.  If a request for the same component occurs again, then the request may 
be forwarded directly to the correct component without the need for resolution. 

There are obviously some additional requirements to this use of caching.  Firstly, 
the cache must be able to recognise requests for the same component, and this 
implies that the cache has access to the same information as the resolution algorithm 
as regards the component names which are cached.  In an array, for example, the 
cache must store the region held by a cached component alongside the component's 
name so that the necessary test for locality may be performed.  Secondly, the cache 
must be advised of the component which was the end result of each request.  Thirdly, 
the cache must be updated whenever a request is resolved to a different component 
(in associative and directed structures, this would occur when a component is split or 
joined).  For all these reasons, it is best to perform this form of caching within the 
partition class, rather than in the components. 

An important point about this form of caching is that cache entries are only 
hints.  To illustrate this, suppose that a cache entry is held to a component in an 
associative memory which has been split without the cache having been updated.  A 
request which is resolved using the cache will then possibly be forwarded to the 
wrong component.  However, the definition of partitioned collections states that any 
component may resolve any request, so this mistaken forwarding will at worst result 
in another, subsequent resolution of the request:  the use of an out-of-date cache 
entry is not disastrous, but will simply alter the time taken to service the request. 
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One might also suggest that recently-accessed values of requests are cached, 
although this introduces problems with cache consistency which cannot be addressed 
well in any general way:  they are of necessity application-specific. 

3.5. The Semantics of Failure 

One of the most common claims made for multicomputer systems is that they 
offer increased possibilities for the construction of reliable, fault-tolerant computers, 
since they have no single points of failure.  In a scalable system, with potentially a 
very large number of processors, the probability that some node will fail grows along 
with the system itself.  A point which we have not as yet addressed is the possibility 
of failure in a partitioned system, either from faults in implementation or faults in the 
underlying hardware.  Although the partitioned model – in common with most other 
systems for parallel programming – assumes that no failures occur, there are many 
features of the model and of scalable systems generally which make it well-suited to 
extensions to deal with such failures. 

The toleration of software faults is a commonly-occurring theme in dependable 
systems research, and is discussed extensively in (for example) [4][107].  It is usually 
addressed by techniques such as multiple-version programming, coupled with 
extensive testing before execution. 

Hardware faults can take two forms:  link failures and node failures.  A link 
failure results in the destruction of a communication path between two processors, 
while several concurrent failures may “partition” the network into two or more parts 
which have no communication paths to each other.  A node failure will result in the 
loss of any data stored and processes running on the node, and may also exhibit all 
the features of a link failure on all links to the failed node. 

In general an application has no control over the routing of messages:  hence 
link failures are essentially the domain of the operating system kernel.  The solution 
is to detect the fact that a message has not been delivered (using time-outs, sliding 
window protocols et cetera) and to re-transmit the message using a different route to 
bypass the failed link.  This may be implemented transparently by the kernel's 
routing module. 

Node failures present a more thorny problem.  There are many issues to be 
considered:  whether failure should be handled transparently or should be visible to 
client objects, whether data should be automatically or manually committed to stable 
storage, whether replication is worth the additional consistency overhead, and so 
forth.  Within the partitioned model, the problem is essentially concerned with 
maintaining both the contents of the memory and the structure of the storage 
architecture. 

Tolerating Faults 

Consider the case of a partitioned collection executing on a set of nodes.  If one 
of the nodes crashes – we shall assume that nodes are fail-silent – the result will be 
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the loss of one or more component and partition objects.  There may also be 
activities running in conjunction with the components. 

If a component is lost then all the data in that component will disappear and will 
need to be re-created somehow.  We shall defer this issue briefly.  Similarly, node 
crashes which affect activities will also require that the activity (including its 
context) is re-created and re-synchronised with the rest of the application.  Neither of 
these faults may be “tolerated.” 

If a partition node is lost, the result will be the isolation of part of the partition 
tree from the rest – the usual term for this is “partitioning,” a usage which we shall 
avoid here!  This is shown in figure 17:  the part of the tree below the crash site is 
isolated.  In the figure, the request from process P succeeds as it does not intersect 
with the crashed node;  the request from Q fails.  Local requests for components 
below the crashed partition – or remote requests for any sub-trees below it – would 
also be able to function providing that their resolution path did not intersect with the 
crashed node. 

However, it may be highly desirable to tolerate failure by allowing the disjointed 
trees to interact – allowing, for example, process P to access elements below the 
crashed partition.  Here a feature of the partitioned model comes to our aid:  the fact 
that any request may be resolved from any partition.  Conventionally a component 
makes a request for resolution to its own parent, which in turn interacts with its  own 
parent and direct descendents.  Another possibility, in the case of a partial failure, 
would be to choose a partition node at random and forward a request through it. 

An algorithm for this form of fault-tolerance is as follows.  A partition, on 
receiving a request, attempts to resolve it in the normal way.  If, in the course of 
resolution, a partition tries to interact with a crashed node, it detects this and takes 
remedial action.  It chooses another node from the tree at random and forwards the 
resolution request to that node.  There is a chance that this node will be able to 
resolve the request without hitting the crash site, and will then be able to service the 
request;  if it does hit the crash site, it make take the same steps. 

 
 

(request
succeeds)

(request
fails)

Extent of failure  

Figure 17:  The effects of a node failure on resolution 
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Such a Monte Carlo algorithm always has the possibility of never terminating – 
if, for example, the request being resolved is targeted at a crash site itself, or through 
a unfortunate sequence of random selections.  One might take the view that such 
behaviour is acceptable;  alternatively, a request may have a built-in threshold on the 
number of stochastic resolutions in which it may be involved, after which the request 
fails. 

The algorithm, it will be noted, is implemented purely within the partition 
classes, and so is simply a refinement within the partitioned model for a particular 
distribution strategy.  The only effect on component classes is that there must be 
some error-handling mechanism which is triggered if a request cannot be satisfied – 
an exception or an “empty” return value. 

It should also be noted, however, that the algorithm is incomplete:  it cannot by 
any means access components which are direct descendents of a crashed partition, as 
the necessary routing information is missing.  One might modify the algorithm so 
that it randomly interrogates components to see whether they can satisfy the 
outstanding request, but this seems a little too stochastic.  We shall content ourselves 
with the observation that a partitioned memory can tolerate a certain amount of node 
failure to the extent of degrading gracefully, but cannot completely hide the effects 
of the destruction of its internal structures. 

Recovering from Faults 

Fault recovery requires three linked steps: 
 

• the re-creation of any lost objects; 
• their re-integration into the remnants of the structure;  and 
• the re-creation or re-acquisition of information (including 

contextual information) which was lost. 
 

Although a partitioned collection can tolerate (at least partially) the loss of some 
of its distribution managers, it cannot re-generate a structure automatically;  nor is 
the tolerance of faults fully satisfactory. 

A partition object holds sufficient information to allow it at least partially to re-
generate any objects below it.  In an associative memory, for example it can identify 
the prefix of a sub-partition which has been lost, and then re-create this partition 
using the same mechanism as that by which the partition was originally created.  The 
difference is that the re-generated partition must be able to link in the partitions 
below it into its own routing tables, and must re-create the components (and their 
data) which were held by it. 

Although it is simple to create and assign storage for components, it is 
impossible to re-create their data:  for this, it is necessary that components have 
periodically persisted their data onto stable storage. 

The basic idea behind the use of stable stores is that data is placed onto a disc or 
other non-volatile storage medium and retrieved whenever it is necessary to recover 
from a failure.  Arjuna[43] is a good example:  all data manipulations are 
implemented as transactions which must “commit” before any permanent change is 
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made to an object's data.  This also means that, if an Arjuna object is lost, a 
consistent image of it may be recovered from disc. 

The partitioned architectures discussed in this chapter have not used transactions 
as their basic modus operandi:  there is, however, no reason why a transaction-based 
interface modelled on Arjuna might not be implemented.  This would then yield a 
scalable memory model which was highly resilient to failure:  it would continue to 
function in a degraded manner if a node failed, and could re-create itself from an 
image persisted onto disc in order to avoid loss of data. 

Replication 

An alternative to the reconstruction of data from disc is the storage of data at 
several points concurrently, in the hope that at least one replica will survive a failure. 

One could certainly implement some form of data replication within the 
partitioned model by replicating the components (and possibly the partitions) 
composing a partitioned memory.  A failure of a node containing one of the replicas 
could then be tolerated by activating one of the others. 

A possible amendment to the standard generic collection architecture is shown in 
figure 18.  All the elements of the structure are replicated by “shadow” copies.  There 
is always a single primary copy to which commands are sent, but the partition also 
forwards requests which alter the targeted object to all shadows.  For example, a 
request to add a node to a tree should be made to both the main and shadow copies, 
whilst a request to traverse a link need not be forwarded.  The result is that all the 
shadows remain up to date. 

Concurrent processing is not affected by this organisation:  if an activity is 
attached to the collection, replicas are generated solely at the primary components, 
not on the replicas. 

Suppose that the node containing the primary copy fails.  The partition will 
detect the failure when it attempts to resolve an element in the failed component, and 
will then select a shadow to become the new primary copy.  For this to make sense it 

 

 

Figure 18:  Generic collection with replicas 
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is essential that shadows reside on widely separated nodes to avoid a node failure 
destroying the shadows too.  Once a shadow has been selected, the interrupted 
request may continue. 

A similar argument holds for crashes involving partitions:  the partition's parent 
or one of its immediate children will detect the failure and activate a shadow. 

There is a considerable increase in the complexity of the partitioned structure to 
accommodate replication – it should be noted, however, that almost all of this 
complexity is encapsulated within the partition classes.  Some small changes are also 
needed in the handling of requests to local data:  these requests must also be 
forwarded to the component's partition for forwarding to the shadows. 

These are comparatively trivial changes, however:  the result is a partitioned 
collection containing a set of “hot” stand-by memory modules whose consistency is 
maintained automatically and which are activated when necessary to replace failed 
objects. 

3.6. Résumé 

This chapter has presented a set of techniques for implementing scalable 
strongly-typed memory modules of the type required for the scalable abstract 
machine.  The requirements of such an implementation were first discussed, along 
with some possible implementation strategies.  The most practical solution was 
determined to be the co-ordination of several objects to form a multiple-object entity 
which behaves as a single logical resource. 

An overview of the technique, called partitioning, was presented.  For the three 
most common memory architectures – arrayed, associative and directed – appropriate 
special techniques were derived based on the partitioned view of memory.  This 
involved a discussion of the ways in which such memory architectures can be 
decomposed, and the ways in which the internal details of the decomposition can be 
masked.  As part of this, a new hashing algorithm was developed which is 
completely distributed and scalable, in order to implement large associative 
memories. 

The storage architectures provide only the most rudimentary storage facilities, 
akin to the basic read/write operations of hardware memory.  In a programming 
environment, it is essential that higher-level interfaces are provided.  The issues 
involved in customising the data interfaces to partitioned memories were considered. 

In terms of performance, a tension was recognised between the needs of 
generality (for a programming environment) and the needs of efficiency (for 
particular applications) in terms of the distribution of components of a collection.  
The partitioned model allows distributions to be customised apart from the data 
manipulation classes, using either manual placement or an extended automatic 
approach to distribution. 

Some consideration was given to the effects which failures of nodes and links 
might have on a partitioned collection.  In general it was argued that a partitioned 
memory can tolerate failures and continue to operate in a degraded manner.  An 
algorithm was presented which, when failure occurs, attempts to route-around failed 
parts of the structure.  The loss of data implicit in node failure was recognised, but it 
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was suggested that this might be tolerated by importing some of the techniques used 
in distributed fault-tolerant systems.  The shadowing of components and partitions 
was argued to be particularly well-suited to the model:  such replication causes only 
small changes overall, although it implies the use of a suitable access mechanism 
such as one based around transactions. 

 
 



Chapter 4. 

   

Concurrency in Scalable Systems 

Obviousnes is always the enemy of correctness. 
 
  Bertrand Russell 

In the previous chapter we developed a collection of techniques for 
implementing scalable memory modules, as required by the abstract model of 
chapter 2.  We shall now consider the ways in which concurrency affects the 
construction of applications in this fashion, and the ways in which concurrency may 
be expressed. 

Concurrency confronts the programmer with two issues:  concurrency control 
and concurrency regulation.  The former deals with ensuring that processes do not 
malignly affect one another's operation by simultaneous (or interleaved) accesses to 
shared data, which may result in inconsistencies.  The latter addresses the manner in 
which the number and location of processes in an application are determined. These 
issues are closely related, and are both complicated by scalability. 

We shall begin by discussing the nature of concurrency in object-oriented 
systems, and then go on to discuss concurrency control.  We shall consider the 
effects which various forms of concurrency control may have on systems constructed 
using the partitioned model, and hence decide upon a suitable concurrency control 
model. 

We shall then discuss concurrency regulation, and consider the ways in which 
scalability complicates it.  It will be seen, however, that the partitioned model allows 
one particular form of concurrency – multiple workers accessing a shared data set – 
to be regulated very easily.  Furthermore, the model may be used to create process 
structures by creating scalable collections which are composed of processes. 
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4.1. Concurrency in Object-oriented Systems 

We shall first consider the nature of a “process” within an object-oriented 
system. 

Computation in object-oriented systems occurs through sequences of method 
calls.  Method calls behave like traditional procedure calls:  the caller blocks until the 
called method completes, whereupon it resumes computation.  In a distributed object 
system, method calls resemble remote procedure calls[94] and the analogy still holds, 
although the method call may be executed by different threads if the caller and callee 
are on different processors. 

A single logical locus of control, therefore, may be seen to animate several 
objects in the course of a computation:  when a method is called, the site of the locus 
shifts from the calling method (which blocks) to the called method (which executes).  
When the called method terminates, the locus shifts back to the caller to unblock it.  
By all conventional definitions, this locus is a process:  a single logical activity 
performing computation, albeit moving between processors in the course of its 
activities13. 

If we assume that there exists a single locus of control when an application is 
created, there is no way, in this scheme, to introduce new processes – a method call 
being simply a shifting of the focus of the same thread.  In order to generate 
concurrency, a mechanism for creating new loci of control is required. 

Some languages (such as Orca[14]) take the view that processes may be created 
only by creating a new object.  When created, some objects execute a method whilst 
still unblocking their creator:  the new method is thus a locus of control independent 
of the creating thread.  Whilst workable, this strategy seems a little at odds with the 
ideas of object-oriented programming:  rather than restrict the introduction of 
concurrency to specific methods, called in an object's constructor, it would seem 
more appropriate to allow concurrency to be generated by any method. 

Method-level concurrency may be obtained via two routes:  asynchronous calls 
or asynchronous returns.  In the former, certain methods are designated as being 
called asynchronously:  the caller does not block when the method is called, and both 
methods proceed concurrently.  In the latter, a method is called synchronously but is 
allowed to return a value (thus unblocking its caller) without terminating its own 
execution.  The difference between these two approaches is shown in figure 19. 

Problems arise when asynchronous methods are allowed to return values to their 
caller in the manner of a conventional function call, since the returned value will be 
undefined for the period before the called method returns.  This may be tackled in 
two ways:  by using a mechanism such as futures[56][79] to control access to the 
value prior to its resolution, or by disallowing asynchronous methods from returning 
a value.  The former is more flexible,  the latter simpler.  In any case, the 
functionality of futures may be implemented using objects without the need for extra 
syntax. 

                                                
13We are speaking here of logical processes, of course.  At the lowest level, calling a method on 
another processor will almost certainly utilise a different physical process to the caller. 
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A process is created whenever another process makes a call to an asynchronous 
or asynchronously-returning method.  The new process then executes independently 
of its creator. 

4.2. Concurrency Control 

Concurrency control – also known as ensuring sequentiality – is one of the 
classic problems of computer science, dating back to some of the first high-level 
languages.  The problem is to eliminate the danger that two or more processes, while 
accessing a single shared data structure, will interfere with each others' behaviours;  
at the same time, the overheads which this protection introduces must be minimised. 

Concurrency control began on the first shared-memory machines that 
implemented either lightweight processes (or threads) or co-routines.  In both cases, 
the logically separate activities composing an application share a common address 
space:  lightweight processes are scheduled pre-emptively, so that a process may be 
interrupted at unpredictable intervals, whilst co-routines are scheduled co-operatively 
and must voluntarily yield control to another co-routine. 

Co-routines avoid most problems of concurrency control, as they can ensure – at 
least in the absence of interrupts or other unexpectedly pre-emptive events – that any 
shared data structures are left in a consistent state whenever they yield control.  The 
price of this safety is that the programmer must explicitly place yield statements into 
algorithms to ensure that other activities are not locked out, and must ensure that 
these changes of control occur only at “safe” points. 

 

synchronous call

asynchronous call

synchronous call with asynchronous return

caller

callee

loci of control

communication

caller

caller

callee
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Figure 19:  Different styles of asynchronous method call 
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For threads, changes in control flow are caused by the underlying scheduler.  
They may occur when a thread becomes blocked on some event, exceeds its 
allocated time-slice, or when an interrupt occurs:  in other words, the scheduling of 
threads follows the familiar scheduling model adopted in most operating systems for 
“heavyweight” processes running in separate address spaces.  The use of pre-emption 
frees the programmer from placing explicit yields into code, at the price of having to 
ensure that shared data structures are protected from corruption if a context switch 
occurs in the middle of an update operation. 

The two most popular – and most studied – approaches to concurrency control 
are Dijkstra's semaphores[41] and Hoare's monitors[60].  Variations on these themes 
include path expressions, critical regions, protected records et alia[106].  These 
methods are all pessimistic concurrency control protocols, as they attempt to prevent 
interference from occurring:  an alternative is the optimistic or roll-back strategy 
which endeavours to repair any interference after it has happened by restoring a 
consistent state.  (These schemes are most commonly encountered in simulation and 
database systems.) 

4.2.1. Concurrency Control in Object-oriented Systems 

Object-oriented systems differ somewhat from traditional shared-memory 
systems in that they follow different rules of encapsulation.  Concurrency control's 
main effect is on the manner (if any) in which several methods may execute 
simultaneously within one object. 

Threading in Object Models 

Objects provide an obvious unit for concurrency control:  one must ensure that 
the internal state of an object remains consistent.  This means that there may be 
sequentiality constraints between the possible methods. 

 

Single-threaded Object Models 
The simplest concurrency controller imposes the restriction that at most one 

method may be invoked on a single object at any time. This ensures that at most a 
single thread of control is accessing the object's state at any time:  provided that 
methods always leave the object's state consistent across their operation, there can be 
no interference.  All concurrency control is implicit, so the programmer need not 
provide any additional information.  This strategy is adopted by the Orca language, 
amongst others:  it essentially imports monitor-like semantics into the object-oriented 
domain. 

Although perfectly acceptable as a solution to prevent interference, problems 
arise when single-threaded objects attempt to interact with each other.  Suppose that 
an object A calls a method on object B.  Objects A and B are now locked to method 
calls from other objects.  If, in the course of the call, object B calls a method on 
another object C, there are three objects which are locked as far as the rest of the 
system is concerned – none of the objects may be unlocked whilst a method call is in 
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progress, as there is no guarantee that their internal states are consistent.  What is 
more, it may not be possible for object C to make a recursive call to one of its own 
methods:  even if this case is recognised and allowed, it will not be possible for 
object C to make a mutually recursive call to objects A or B. 

In a parallel system, the progressive locking of many objects during method 
interchanges will inevitably cause bottlenecks.  Although single-threaded objects 
ensure intra-object consistency, they can be rather awkward to use when inter-object 
interactions occur – which, of course, is the norm in a well-decomposed system. 

Multi-threaded Object Models 
By allowing several method calls to be in progress within a single object at any 

time, we effectively re-introduce the “classic” problems of concurrency control 
encountered in the case of shared-memory systems:  in this case, the data being 
shared is the local state of an object.  The situation is somewhat improved, however, 
in that the number of operations which may be performed on an object is strictly 
defined by its interface. 

Given that the constraints upon the methods are defined correctly, multi-
threading solves the problem of recursive calls mentioned above.  Moreover, in many 
cases the progressive locking of whole chains of objects will not occur:  the fact that 
an object is engaged in some operation does not preclude another operation from 
executing, providing that the operations are compatible in terms of the object's 
sequentiality constraints. 

If multi-threaded objects are used, a means must be provided by which object 
designers may specify intra-object concurrency control constraints. 

Specifying Intra-object Concurrency Constraints 

The simplest solution for the language designer is to force programmers to 
implement their own concurrency control strategies, using semaphores or some 
similar primitive.  This solution is adopted in Smalltalk, where it imposes a 
particularly heavy burden as the standard classes are not safe for use in a concurrent 
environment.  In systems where concurrency is the norm rather than the exception, 
such approaches are unacceptable. 

  A slightly better approach allows a distinction to be drawn between read-only 
and read-write methods, where a read-only method does not alter the object's state.  
Several read-only methods may progress concurrently in complete safety, but read-
write methods must execute alone.  The programmer need only supply a single piece 
of information – the category to which each method belongs – and the system may 
implement the necessary controls automatically.  This is the scheme adopted in 
Emerald[63]:  depending upon the language's structure, however, it may not be 
possible for the compiler to check that a method designated read-only is indeed read-
only.  The Emerald compiler assumes that the programmer correctly designates all 
methods. 

An even more flexible approach is used by the DRAGOON language[7].  
DRAGOON provides syntactic structures for creating descriptions of permissible 
method interactions according to a deontic logic.  It is possible, for example, to 
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control the number of instances of a method which may be executing concurrently;  
to force methods to execute only in a particular sequence;  and to specify whether 
methods may execute concurrently.  From these descriptions, the compiler can 
generate appropriate concurrency control protocols transparently. 

An important problem with DRAGOON's concurrency controllers is that they 
cannot be inherited:  once a class is assigned a concurrency controller, no sub-classes 
may be derived from it. 

Arjuna's concurrency controllers[96] are simply objects in their own right, with 
each object possessing a concurrency controller as part of its local state.  Each 
method, when it begins executing, registers with the concurrency controller via a 
method call which only returns when the concurrency controller will allow the 
method to proceed.  At the end of execution, the method informs the controller that it 
has terminated.  The basic concurrency controllers in Arjuna are specialised towards 
transaction-based distributed processing, but there is no reason why other forms of 
control – optimistic or pessimistic – cannot be implemented. 

4.2.2. Concurrency Control and Scalability 

We must now consider the effects which the various schemes for concurrency 
control would have on a scalable system, in which the amount of concurrency is very 
large and unpredictable.  In particular, we must consider what concurrency control 
strategies are most appropriate for use within partitioned collections. 

Components 
Components perform all the data-access operations for collections.  Although 

these operations may be very complex, due to sub-classing, there are five main 
primitive tasks which a component must perform and from which other operations 
may be built: 

 
a) create or delete its local storage 
b) read from local storage 
c) write to local storage 
d) resolve a request for a (possibly remote) element onto a 

component, which may be itself or some other component 
e) (for some architectures) re-arrange its local elements between 

other components, or amalgamate more elements into its own 
storage 

 
Task (a) occurs only when a component is created or deleted.  It may be 

assumed that at this point no user-generated actions may reasonably be serviced, so 
the component should be locked to all actions except those directly related to the 
creation or deletion operation. 

The other four tasks may occur at any point during the component's lifetime.  
Task (b) is a read-only operation, which may occur in parallel with other such 
operations.  Task (c), on the other hand, must have exclusive access to the local 
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storage – we are assuming here that locking for read-write operations occurs on a 
component-wide basis. 

Task (d) will occur as a necessary prelude to tasks (b) and (c), identifying which 
component is to receive the local access task.  Many instances is task (d) may 
proceed in parallel. 

Task (e) – which is not applicable to all storage architectures (for example fixed-
size arrays) – is similar in its scope to task (a):  no other operation may sensibly 
proceed while the component's storage is being re-assigned. 

A component's primitive tasks therefore fall naturally into three categories for 
concurrency control purposes: 

 
• tasks which involve the local storage of the component – (b) 

and (c); 
• tasks which are concerned only with forwarding – (d);  and 
• tasks which affect the mapping of elements to the component 

and its fundamental structure – (a) and (e) 
 

The first category may be further sub-divided into tasks which access local 
storage in read-only mode, and those which require read-write access. 

Partitions 
Partitions perform the creation of components and the resolution of element 

requests.  Like components, there are a small number of primitive tasks which they 
may perform: 

 
a) divide a set of elements into a partition tree 
b) (for some architectures) re-map descendent elements, creating 

or deleting components and sub-partitions 
c) resolve requests for elements 
 

Task (a) occurs whenever a partition is created – either at the collection's 
creation or as a result of its growth.  Until the division of elements has occurred, it is 
impossible to perform resolution:  therefore no resolution requests may be accepted 
until the process is complete. 

Task (b) – which only occurs in some architectures – is similar to task (a) in that 
it involves the mutation of the structures necessary to perform resolution. 

Task (c) uses the partition's internal tables to perform resolution.  It is a read-
only operation, and may proceed with other resolution requests;  it must be blocked 
when one of the other tasks is in progress. 

There are only two categories of task within partitions, then:  those which affect 
the integrity of the tables used for resolution, and those which simply uses these 
tables. 
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Concurrency Controllers 

We shall now use the foregoing analysis to derive a suitable concurrency control 
regime for use in partitioned collections. 

The division of components' and partitions' primitive tasks into categories 
mitigates against the use of the single-threaded objects;  similarly, it would be 
unacceptable to use a simple read-only/read-write distinction for partitions as there 
are three categories of method.  Moreover, we should like if possible to avoid 
embedding concurrency control information into the syntax of the language, as this 
means that sub-classes cannot provide other, more sophisticated protocols if 
required. 

Deontic Logic Concurrency Control Objects 
The auxiliary concurrency controllers of Arjuna are very attractive:  they allow 

concurrency control to use the full facilities of the underlying host language to 
perform its task, rather than using a restricted (and possibly restrictive) sub-set.  The 
mechanism used, however – transactions coupled with support for highly reliable 
programming – is rather unsuited to the needs of highly parallel processing.  We 
might suggest, therefore, that the idea of concurrency control objects be used without 
using Arjuna's control policy. 

We shall instead adopt the deontic logic of DRAGOON to specify constraints.  
The reasons for this choice are quite simple:  firstly, the constraints being expressed 
within partitioned collections may be captured very succinctly using this 
representation;  secondly, the use of a deontic logic removes implementation details 
from the specification.  Since constraints are expressed as logical statements, rather 
than in terms of locks, they are more easily analysable. 

DRAGOON's Deontic Logic 
In order to specify the sequentiality constraints required by partitioned 

collections, we must first review the deontic logic developed for DRAGOON.  We 
shall then use this logic to provide the specification. 

The logic consists of a single predicate function per.  A specification is 
composed of a number of clauses of the form 

 
per op e t( ) ( )⇔  

 
where op is an operation and e(t) is a time-variant Boolean-valued expression.  This 
statement may be interpreted to mean that op has permission to execute if and only if 
e is true.  The logic may be easily extended to deal with multiple sets of operations 
having a common constraint:  if OPS is a set of operations then 
 

per OPS op OPS per op( ) ( )≡ ∀ ∈ •  
 

which divides the available methods into a set of equivalence classes. 
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In order to define e three monotonically-increasing functions are maintained for 
each object.   These functions record the number of events which have occurred since 
the controller was started: 

  
req(OPS) – the number of requests for execution by an operation in 

OPS; 
act(OPS) – the number of operations from OPS which have been 

given permission to start;  and 
fin(OPS) – the number of operations from OPS which have 

terminated. 
 

The nature of these functions requires that req OPS act OPS fin OPS( ) ( ) ( )≥ ≥ . 
There are some functions which are so common that they are best provided as 

standard: 
 

• active(OPS) – the number of operations from OPS currently 
executing, defined as act(OPS) - fin(OPS) 

• requested(OPS) – the number of currently outstanding 
requests for operations in OPS, defined as req(OPS) - 
act(OPS) 

 
Using these functions, it is possible to specify a number of important 

concurrency control constraints.  Some examples may make this clearer.  Given two 
sets of methods A and B: 

 
a) at most one operation from each of A and B may be executing at any time:  
 

per A active A
per B active B
( ) ( )
( ) ( )

⇔ =

⇔ =

0
0

 

 
b) any number of operations from A may execute concurrently, but at most two 
operations from B may be in progress at any time: 
 

per A true
pre B active B
( )
( ) ( )

⇔

⇔ < 2
 

 
One may define another condition which commonly occurs:  where an operation 

must execute exclusively.  This is represented in the logic by the symbol exclusive14:  
for any O1 to On  of sets of operations, 

 
per O j j n active Oi j( ) ( )⇔∀ ≤ ≤ • =1 0 

 

                                                
14In DRAGOON this property is represented by ><, but the use of the word exclusive seems clearer. 
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i.e. for the exclusive operation to begin, no other operation may be in progress;  no 
other operation may start whilst an exclusive operation is active. 

We may now use this logic to specify the constraints encountered in partitioned 
collections. 

A Logical Specification of  Component and Partition Constraints 
Consider first the categories of operation encountered in component objects.  We 

shall represent these operations by the following sets: 
 

• sets LSro  and LSrw  of operations manipulating local storage in 
read-only and read-write modes respectively; 

• set F of operations performing resolution and forwarding;  and 
• set ST which are concerned with the fundamental structure of 

the component object, its creation and deletion. 
 

For a particular component, we may give the constraints on these categories as 
follows: 

 
per LS active LS active ST
per LS active LS active LS active ST
per F active ST
per ST exclusive

ro rw

rw rw ro

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( )

⇔ = =

⇔ = = =

⇔ =

⇔

0
0

0
 

 
For a partition object, there need only be two categories of method: 
 

• set R of operations performing resolution;  and 
• set RA of operations performing (re-)arrangement of elements. 
 

The constraints of these categories are as follows: 
 

per R active RA
per RA exclusive
( ) ( )
( )

⇔ =

⇔

0
 

 
It should be noted that these constraints are free from the possibility of deadlock 

within a single object.  Since permissions apply only to operation's activating, not to 
their termination, an operation cannot become blocked waiting to finish.  Moreover 
the constraints on start-up have no cycles, so an operation cannot become blocked in 
a cycle awaiting another operation to start.  Therefore, providing that every operation 
in every set is guaranteed to terminate, deadlock cannot occur. 

Since objects and partitions interact, it is also necessary to eliminate the 
possibility of deadlocks between cycles of objects.  This is simple:  there is no 
interaction whatsoever, in terms of concurrency control, between methods in 
components and in partitions, so deadlock cannot occur between objects.  The same 
is true of operations which pass between partition objects during resolution. 
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Overview of the Implementation of Concurrency Control 
Within the partitioned model, concurrency control is implemented using Arjuna-

style auxiliary objects.  Any object may create a concurrency controller and use it to 
ensure synchronisation between its methods. 

The concurrency control class implements an interpreter for the deontic logic 
given above.  This allows synchronisation constraints to be expressed directly in the 
logic, with little or no translation. 

Every method in an object having a concurrency controller may be classified 
into a particular concurrency control class, such as LSro  in components.  When 
called, the method interacts with the concurrency control object to determine whether 
it may execute.  This is a blocking interaction:  the method is only unlocked when the 
controller, after solving the deontic equations, determines the method may be safely 
started. 

Each method also registers its completion with the concurrency controller, which 
may unblock other methods which are waiting permission to start. 

The Implications of Sub-classing 

An important facet of the partitioned object model, when used as the basis for a 
programming environment, is its ability to create novel memory architectures by sub-
classing existing collections.  Before leaving the topic of concurrency control, we 
must therefore consider the effects which sub-classing has upon concurrency control. 

In creating a sub-class, the programmer may add new state, add new operations, 
and re-define the meanings of existing operations.  This introduces a problem with 
concurrency control, as any new operations may affect the concurrency control 
constraints of the existing operations.  In DRAGOON, this problem is tackled by 
outlawing the sub-classing of classes which have a concurrency controller attached 
(the so-called behavioured classes).  The effect of this is to completely separate 
functionality from concurrency control:  a class' functionality is first written – 
possibly by sub-classing an existing class – and a concurrency controller is then 
written for it. 

By placing concurrency control into an instance variable – as in Arjuna, and the 
current system – this problem is side-stepped.  A sub-class will have a concurrency 
controller created for it by its parent.  It may then either use this controller “as-is” or 
may delete it and substitute another which better fits its needs.  The only constraint is 
that all the sets of operations provided by the original controller are provided in the 
new controller:  presumably the new controller will also maintain the semantics of 
the original object, but may extend them as required.  Care must be taken if multiple 
inheritance is used, as a new controller must them mimic the behaviours of all parent 
classes – a task which may be impossible if the parents have conflicting 
requirements. 

Another important facet of the partitioned model is the decoupling of user-
defined functionality from the basic functions which manage the components' 
internal storage structures.  It is possible in many circumstances that a sub-classed 
collection will provide new operations built from the primitive functions:  but if the 
sub-class provides no new state, it will require no additional concurrency control 
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since it utilises the functions which are provided in the basic architectures, and these 
are fully protected. 

4.3. Concurrency Regulation 

Concurrency regulation is a problem addressed must less frequently than 
concurrency control.  The reason for this is simply that it is a more recent problem:  
it is only with the rise of highly parallel systems that concurrency regulation has 
become a major problem. 

 4.3.1. Approaches to Concurrency Regulation 

The most common approaches to concurrency regulation are tightly integrated 
with the common programming practices for parallel systems.  A program is 
typically written to solve a particular problem as quickly as possible, using a 
particular target machine.  The program will be given complete control of the 
machine, possibly with a rudimentary operating system harness.  The configuration 
of the machine – the number of processors, their topology and local memory sizes – 
are known in advance. 

Concurrency regulation in these cases involves creating the optimal number and 
distribution of processes on the target machine:  usually one process per processor, 
with processes distributed so as to minimise communication delays.  Since the 
application has sole use of the machine, it may place processes according to its own 
best interests. 

The allocation of processes to processors is known as configuration.  It usually 
occurs after the application has been compiled but prior to link-time. 

The PLACED PAR construct of Occam is probably the most basic configuration 
system.  It allows the elements of a PAR statement to be placed on a particular 
processor.  Occam channels may then be mapped onto particular Transputer links.  In 
principle, processes may be placed on whatever processor is most suitable:  in 
practice (with current Occam implementations on current Transputers) configuration 
is complicated by the fact that only a single channel may be mapped onto any one 
link, so programmers must manually multiplex the use of links.  This makes  
configuration a very difficult task. 

A further problem with this form of configuration is that it is not really separate 
from the code of the application.  A PLACED PAR may only place a PAR which has 
already been written and is known to the application:  it may not be used to control 
the replication of processes (for example) independently of the text of the 
application, which must explicitly create all processes.  Therefore configuration and 
design are tightly coupled, one affecting the other15. 

A better solution is to adopt a “building block” approach in which a set of “black 
box” processes are connected to form an application.  The processes themselves 

                                                
15There is a “replicated PLACED PAR” construct in Occam, but there are restrictions on it to force 
the amount of  replication always to be constant and defined at compile-time.  In general it is not 
possible to create processes “on the fly” in Occam. 
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present an abstract interface – a set of input and a set of output channels, for example 
–  and the channels are connected by the configuration language.  One great 
advantage is that it allows a library of useful processes to be created and included 
into any suitable applications.  Constructing a new application involves constructing 
new “black boxes” for processes which are not in the library, and then linking them 
together to form a network.  The use of configuration languages still leads to largely 
static configurations of processes, although the processes' locations may be 
dynamically determined. 

The Helios shell uses this form of configuration. As mentioned in chapter 1, 
Helios is a Unix look-alike running on Transputer systems.  Each command – ls, 
grep, and the rest of the Unix tools – is treated as a process having (usually) one 
input and one output channel, corresponding to the stdin and stdout file streams.  A 
shell command of the form 

 
cat file.txt | grep "Helios" | less 
 

is configured so that (if possible) each element of the pipe executes on a different, 
though neighbouring, processor.  This allows the pipeline to execute in true 
concurrency.  There is also an external configuration language, CDL, allows more 
complex (though static) networks of processes to be created. 

In a more sophisticated form, this style of configuration is also adopted by the 
Darwin configuration language (§1.3.4). 

4.3.2. Regulating Concurrency in a Scalable Environment 

Configuration suffers from a crippling handicap for the current purposes:  an 
application is always configured prior to run-time, and so is in a static configuration 
when it is actually run on the machine.  In a scalable system, this presents two 
problems. 

Firstly, the number, topology and size of processors may be unknown prior to 
run-time.  A scalable application must be written in such a way that it may take 
advantage of whatever resources are available, without intervention, re-compilation 
or re-configuration.  This means that decisions on how processes are mapped to 
processors must be deferred until the program begins execution.  In systems where 
similar processes are replicated to obtain parallelism – process farms and multiple-
worker systems being the most common – it is impossible a priori to determine the 
optimal number of processes to create. 

Secondly, the assumption that an application has sole use of the machine is 
breached when multi-user systems are introduced.  On start-up an applications is 
competing for resources with all other applications in the system.  This makes the 
selection of an “optimal” process distribution impossible ahead of time. 

A tightly-coupled configuration system forces all decisions on distribution and 
replication to be taken when the code of the application is written;  configuration 
languages allow them to be deferred until just prior to run-time.  For a scalable 
system, we require that the decisions are taken during the program's execution, for 
greatest flexibility. 
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4.3.3. Concurrency Regulation in the Partitioned Model 

In §2.4 it was observed that concurrency paradigms may be divided into two 
categories:  data-based and stream-based.  It was further noted that scalable memory 
allows data-based algorithms to be constructed and regulated automatically, as the 
size of a memory may be used to determine the amount of concurrency used to 
process it.  We shall now expand on these ideas, and consider the ways in which the 
regulation of concurrency interacts with the creation and management of scalable 
memories. 

Multiple-worker Concurrency 

The use of scalable memory suggests the use of concurrency structures which 
are based around access to a large shared memory.  Such access might occur in two 
ways: 

 
• by a number of functionally specialised processes accessing a 

memory;  or 
• by a number of replicas of the same process accessing 

memory, each performing the same function on different 
elements. 

 
In some senses the second case is subsumed by the first:  a single logical process 

might be composed of a number of replicas, so several functionally distinct process 
groups might access a single memory concurrently. 

The use of replicated processes in this way is often called the multiple worker 
paradigm.  Each process is a “worker” performing part of a larger task.  Each worker 
is assigned a part of the data to be processed, with workers taking disjoint data sets 
which together cover the complete data set.  The workers are run concurrently, with 
the activity finishing when all its workers have finished processing their part of the 
data set. 

In order for this paradigm to function correctly, there must be some means of 
determining how many worker processes to use, and of dividing up the data between 
them.  There are hence two complementary aims:  assisting the programmer in 
constructing suitable processes (which may process correctly data sets whose exact 
bounds are unknown) and allowing the system to replicate and locate them correctly. 

Activities and Attachment 

The general form of a scalable memory (or partitioned collection) was shown in 
figure 7.  The collection is by its very nature divided into a number of smaller parts – 
the components – and such sub-division is exactly what is required for multiple 
worker concurrency.  If an activity is assigned to process each component, then 
together the activities will process the entire collection.  Moreover, they will access 
data through the distribution-transparent interface of the component: this means that 
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they may access any data item within the collection regardless of its location if 
required to perform their task. 

Specifying Activities 
Concurrency in object-oriented systems occurs at the granularity of the method 

call (§4.1).  This level is, however, wholly unsuitable for constructing parallel 
applications, being to parallel programs what the goto statement is to sequential 
programs:  powerful, but completely unstructured.  Just as “structured programming” 
evolved to meet the demands of large-scale sequential systems, it is essential to 
provide support for the introduction of parallelism in a controlled way. 

Although it would in principle be possible to use any object as a worker in a 
multiple worker system, a better solution is to provide some support, in the form of a 
suitable protocol, for the construction of worker processes.  Such worker objects may 
be sub-classed to provide the necessary specific functionality while still being 
guaranteed to provide the functions needed by the system.  We shall term this 
category of objects activities. 

An activity has four important attributes, providing 
 

• a method of replication; 
• a way of  “attaching” it to a component; 
• a way of obtaining the elements which it is to process;  and 
• a means of supplying task-specific functions in a manner well-

integrated with the preceding two points. 
 

The replication method is used to create as many replicas of the process as 
required.  Attachment involves informing each replicated activity exactly which 
component of a partitioned collection it is to process (with which it will be closely 
co-located).  Once attached, the activity must be able to obtain the elements assigned 
to it – the locally-held elements of the component – either by knowing their names or 
by iteration.  Finally, there must be a well-defined method for adding the task-
specific functions required. 

Attaching Activities 
From the programmer's view, attaching activities to a memory is a simple task:  

the operation may be encapsulated into a method call.  An application can call the 
method, supplying the activity to be run as a parameter.  This activity is then 
replicated near each component of the collection, with each replica being attached to 
its assigned component.  They may then execute concurrently:  the method which 
initiates this activity may wish to await the termination of all the activities, or may 
continue without waiting. 

Internally, attachment involves traversing the partition tree.  At each leaf 
(component) of the tree, a copy of the supplied activity should be created.  This 
process is shown in figure 20. 
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The attaching algorithm is simply a traverse of the partition tree.  One might 
write this algorithm as a parallel process:  in practice, except for extremely large 
collections, the sequential version of the algorithm is sufficient.  The only constraint 
on the algorithm is that replicas of activities should be created as close as possible to 
the component to which they are to be attached:  this minimises communication 
delays, and may be performed transparently of the programmer according to the 
distribution of the collection. 

Processing-Memory Interactions 

On the surface, the interaction between activities and memory is simple:  
activities are attached according to the distribution of the partitioned memory, and 
run on the processors over which the collection is distributed.  There is a more subtle 
issues however, in deciding the optimum granularity for dividing the collection,  

The division of a collection into components, by whatever manner, serves two 
purposes:  it distributes the data of the collection, allowing elements to reside on 
different processors;  and via this distribution it provides a mechanism by which 
concurrency may be regulated.  The distribution of concurrent activity, and the 
granularity at which it occurs,  follows the distribution of data elements. 

This scheme has a lot to recommend it.  When considering large sets of data 
being processed in parallel, the size of the data set is often a good measure of the 
complexity of the problem.  If such a data set is represented as a single partitioned 
collection, then the size of the collection – in terms of the number of components – is 
controlled by the size of the original data set:  the larger the data set, the more 
components the collection will have, and the more processing nodes it will use.  
Similarly, the more components a collection has, the more activities will be created 
when an activity is assigned to the collection, so a larger data set will generate more 
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q = new Q(); c -> AttachAndAwait(q);  

Figure 20:  Attaching activities to a collection 
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concurrent activity.  Hence the size of the problem is the single factor controlling 
distribution and parallelism in a scalable application. 

However, determining the size of individual components may be a difficult task.  
By way of illustration, consider two problems of identical size, each composed of a 
number of  integers, and each consisting of a function applied to each integer in the 
collection.  The function is encapsulated into an activity.  The first problem's 
function is a simple factorial calculation;  the second is a more complex cellular 
automaton which must access neighbouring values in order to compute its result. 

In the first case, the activity will access only local data elements, so the more 
components there are in the collection the more activities will run concurrently, and 
the faster it will execute.  In the second case, however, activities must access other, 
potentially remote, elements, and this introduces remote requests when elements at 
the “edge” of a component are processed.  Although increasing the number of 
components will increase the amount of parallelism, the reduced component size will 
mean that proportionally more requests will be remote due to edge effects.  
Concurrency control is performed en bloc over a component, so a large component 
introduces more synchronisation.  There is therefore a complex balance to be struck 
between two factors. 

In both cases, we have ignored the set-up times for both the collection and the 
activities.  Larger collections will take longer to create than smaller ones;  larger 
numbers of activities will similarly take more time to create than smaller numbers.  
Here is another trade-off16. 

Ideally these trade-offs would be resolved automatically:  in practice, this 
involves automatically determining the computational weight of a given piece of 
code, which is equivalent to the halting problem;  moreover, the piece of code to be 
executed may not be known at compile-time. 

There is a partial solution to hand, however.  The model of scalable memory 
does not mandate any particular distribution grain size, whilst the concurrency 
regulation scheme can handle any grain size.  If some means exists to specify the 
grain size at run-time, without re-compiling or in any other way altering the 
compiled application, the performance of the application – as determined by the 
granularity of distribution – may be optimised on an exploratory basis. 

The grain size may be treated as a property of a scalable memory, retrieved from 
the property database mentioned in chapter 3:  grain size is simply another property, 
like the degree of the partition tree or the enabling of caching. 

Other Concurrent Forms 

We mentioned in chapter 2 that, whilst the multiple worker form of concurrency 
seemed best suited to scalable processing, there were several problem domains for 
which the model seems inappropriate.  We shall now consider two of these forms – 
pipelines and process farms – and how they relate to scalable memory. 

                                                
16It should be noted in passing that most authors ignore set-up time when presenting results of 
experiments in parallel computing, which are always assumed to be small compared to the 
computation time and is all incurred before any “real” processing occurs.  In scalable system this is 
not the case, as the distribution of processes and data may change dynamically. 
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Pipelines 
Pipelines, as shown in figure 3, are formed when a number of functional units 

are connected by channels, down which they pass data.  Each stage of the pipeline 
accepts values from its predecessor, transforms them in some way, and passes them 
to its successor.  Stages of the pipeline may be replicated to improve throughput.  
Since each stage of a pipeline is functionally different, there is not necessarily a 
correlation between the number of stages in a pipeline and the amount of data to be 
processed. 

However, memory is used in two places:  as the source of data into the pipeline 
and as a sink for the values produced.  The first stage of the pipeline is responsible 
for removing data from the source and feeding them into the pipeline;  the last stage 
performs the opposite function.  Of course, stages in the pipeline may have local 
storage, and may interact with other memory modules like any other object. 

In many cases, it may be possible to replicate the pipeline.  If the first stage is an 
activity, it may be attached to the source and replicated;  it may then create the rest of 
the stages of the pipeline.  The final stage should be passed a handle to the sink 
collection, in which the final data is to be stored. 

Handling replication within a stage is a problem which cannot directly be 
tackled by the partitioned model, although it is possible to express this construction 
quite simply. 

Farms 
A process farm is a variation on the multiple worker idea with an important 

difference.  In a multiple worker system, the work which each worker is to perform is 
assigned initially;  for a farm, each member requests an new piece of work whenever 
it is free, until no more elements of work exist. 

It is simple to implement a process farm using the partitioned model:  one may 
in fact use the same attachment and regulation mechanism as with the multiple 
worker paradigm. Rather than each process computing with the elements of its 
component, however, a slight variation is required:  the workers must iterate through 
the collection as a whole. 

Each worker could begin processing the local elements.  If these elements are 
exhausted, however, the worker should attempt to obtain another, remote element for 
processing.  This implies that the work which in a multiple-worker system would be 
assigned to one process is in the farm performed by another process which would 
otherwise be idle. 

Implementing a process farm requires that there is some means of determining 
those elements of a collection which have been processed.  This could be provided 
by simply tagging each element, and marking its tag when some process deals with 
it.   A request protocol is then required which will locate some unprocessed element:  
in the beginning, these elements should come from the component receiving the 
request, and will only access remote components when the local pool of work is 
exhausted.  When stated like this, it is evident that process farms may be 
implemented within the partitioned model by sub-classing the existing storage 
structures. 
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Processes Within Collections 
There is another possibility for creating process structures:  placing the objects 

which compose the structure into a scalable memory, and using the memory's 
operations to co-ordinate the processes' actions. 

This is a radical departure from the concurrency structures considered so far.  
Rather than memory being a repository for data to be used by processes, it becomes a 
repository for the processes themselves:  processes become special forms of data to 
be stored in memory.  It is hardly a surprising suggestion – the Von Neumann model 
keeps code, data and process tables in memory (separated to a greater or lesser 
extent) – and is closely akin to the notion of an “active tuple” in Linda systems.  
However, the partitioned model offers considerable benefits of this form of process 
structuring is adopted. 

Firstly, all the benefits of the model – distribution transparency, type safety, 
high-level interfaces, customisable distributions et alia – may be used to control 
process structures.  This means, for example, that an array of processes – a cellular 
automaton – may be built in which the processes communicate using the array 
protocol:  by position instead of by process name.  Another example is processes 
placed into an associative store, from which they may be retrieved by a complex 
name:  this might be used as a “yellow pages” name server.  A third possibility is the 
emulation of CSP's channels by using a directed storage architecture with processes 
as the nodes. 

In principle, this form of structuring is very attractive.  It restores the full 
equality of activities as data elements whilst allowing them to be manipulated in 
large abstract collections in the same framework as other objects.  The extent to 
which this would affect programming practice is still a matter for investigation.  We 
shall return to consider it further in chapter 7. 

4.4. Résumé 

In this chapter we considered two facets of concurrency within scalable systems:  
concurrency control and concurrency regulation.  We examined the ways in which 
they interact with each other and with scalable memory, and have developed 
strategies for dealing with them. 

Some examples of concurrency control in object-oriented systems were 
summarised and compared.  From them, a system was synthesised which allowed 
flexible concurrency control protocols to be constructed in a logical manner.  The 
sorts of concurrency encountered in components and partitions was discussed, and 
from them a small number of primitive sets of operations was derived.  These sets 
constitute the only operations which access the internal structures of the partitioned 
collections.  Constraints required to ensure that they execute correctly in a parallel 
environment were then derived. 

The problem of regulating concurrency in a scalable system was considered.  A 
common paradigm for concurrency regulation – the multiple worker paradigm – was 
examined in detail, and the ways in which the number of workers could be regulated 
automatically using scalable memory were presented.  This illuminated some trade-
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offs between distribution and parallelism in this form of system.  Other process 
structures were considered more briefly, showing that the partitioned model can 
support a range of parallel architectures within its framework. 

 
 



Chapter 5. 

   

Phœnix:  a Prototype Environment 

“Well, can I walk beside you? 
I have come here to lose the smog, 
And I feel just like a cog in something turnin'. 
Well maybe it's the time or year, 
Or maybe it's the time of man, 
And I don't know who I am, but life's for learnin'.” 
 
  Joni Mitchell, Woodstock 

Programming is a human activity.  In advocating any new or improved 
programming method or tool, one must evaluate how the new item relates to 
programming as practised by programmers, and not simply evaluate the system's 
purely technical merits. 

An evaluation of the partitioned object model may be conducted from its 
theoretical description, but in order to assess its true usefulness some practical 
experience is also necessary.  For this reason a prototype programming environment, 
based on the partitioned model, has been constructed.  The prototype – called Phœnix 
after the legendary keeper of Wisdom – is not intended as a production-quality piece 
of software, nor as a practical programming platform.  Its goal is to provide a means 
of exploring two questions: 

 
• to what extent is it possible to practically hide the problems of 

distribution and concurrency within a scalable environment?  
and 

• in what manner can this abstraction be used to encourage the 
design and re-use of designs and implementations? 
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These are problems which cannot adequately be tackled without an 

implementation, however primitive. 

5.1. The Structure of Phœnix 

As with any large piece of software, Phœnix is not monolithic:  rather, it is 
composed of a set of sub-libraries, or “kits,” each of which control one aspect of the 
toolkit's operation.  The layered structure of the Phœnix kits is shown in figure 21. 

Phœnix is composed of four layers:  environment, virtual machine, partitioned 
environment and extensions.  Each layer provides a new abstract machine for the 
layers above, in the manner described in chapter 2. 

The environment layer includes the hardware and operating system platform on 
which Phœnix is executing, together with the host programming language used to 
create Phœnix applications. 

The virtual machine layer provides the abstraction of a virtual object space.  The 
OS kit presents a high-level interface to the process control and message transport 
functions of the operating system, while the RPC kit is used to implement remote 
procedure call[18][94] outside the host compiler.  The Storage kit manages memory 
in a typeless manner;  the Lock kit implements concurrency controllers of various 
varieties. 

 

Activity kit

Collection kit

RPC kit

OS kit

Programming language (C++)

Operating system (Wisdom)

Physical hardware (Transputer array)
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Applications

Storage kit

Environment

Extension kit
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Lock kit

 
 

Figure 21:  The Structure of Phœnix 
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The partitioned environment layer provides the abstraction of scalable memory 
modules having various storage architectures.  The Basic kit contains classes of 
general use, and those classes which are used internally by partitioned collections;  
the collection kit contains the basic components and distribution managers for the 
supplied storage architectures;  the Activity kit contains the support necessary to 
provide scalable processing capabilities using multiple worker tasks. 

The extension layer contains a small number of partitioned collections which are 
considered to be particularly useful:  an array of real numbers, a dictionary and a 
binary tree.  These are built on top of the partitioned  environment classes using sub-
classing.  This layer allows applications (or additional layers) to work with strongly-
typed scalable memories. 

Each layer of Phœnix thus provides an essentially new memory abstraction to 
the layers above:  from distributed memory to object-oriented memory to scalable 
memory to typed and extensible scalable memory.  There are also changes in 
abstraction with regard to concurrency, beginning with manual concurrency control 
and regulation and finishing with an object-oriented per-method concurrency control 
system coupled with automatic concurrency regulation based around typed scalable 
memory. 

5.2. The Host Language and Environment 

We shall begin by describing the host language and environment used by the 
Phœnix prototype. 

5.2.1. Design Issues 

In designing a suitable prototyping platform, two main decisions must be made:  
on what hardware is the system to be implemented, and in what language. 

The partitioned model is targeted at scalable, highly parallel, tightly-coupled 
multicomputer systems.  Most of the currently-available technology in this area is 
based around the Inmos Transputer which, although deficient in many respects, 
makes an adequate testbed for experiments with scalable systems.  A small network 
of Transputers was made available for experiments.  On top of this system was 
running the Wisdom scalable operating system nucleus (§1.2.2 and Appendix B). 

One effect of using Wisdom was that it provides a load balancing module, which 
may be modified to work on a per-task basis. The module follows the “ink blot” 
style, and thus respects the assumptions of the partitioned model with regard to 
object locations (§3.2.5). 

The choice of a host language was restricted to those object-oriented languages 
which were readily available to run on a Wisdom system, for speed of 
implementation.  Although it might have been preferable to implement a new 
language from scratch, it was felt that a prototype implementation in an existing 
language was more suitable for the project. 
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The language selected was C++, running a translator which converted C++ into 
C.  This has the advantage of portability, as the C++ translator is available for use on 
any target system which supports a C compiler. 

5.2.2. The Phœnix Pre-processor 

Pure C++, however, does not support certain features which are essential for 
Phœnix:  it lacks support for the implementation of a virtual object space and for the 
introduction of parallelism. 

For this reason, another pre-processor was implemented to translate a minimally 
enhanced dialect of C++ into the pure language suitable for the C++ translator.  This 
lead to the five-stage-pipeline compiler architecture shown in figure 22. 

The pre-processor follows the style of the standard C pre-processor, translating 
“directives” dealing with the creation of objects in a distributed environment, their 
interaction and concurrency, into C++. 

Introducing Distribution 

To build a distributed object-oriented system is to abstract away from the 
physical location of objects and instead to allow any pair of objects to interact 
regardless of their relative locations.  This is achieved by creating a virtual object 
space in which the name of an object is sufficient to identify it uniquely within the 
system.  Using this name, together with an appropriate support structure, objects may 
interact via method calls even when they reside on different processors. 

Implementing a virtual object space within C++ is a difficult task.  The problem 
centres around a design decision, taken deep within the C++ language, that an object 
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Figure 22:  The compilation process 
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name is a pointer to an area of memory.  So deeply is this assumption buried that it is 
impossible to change objects names to be some other, more complex structure 
without fatally damaging the language's semantics.  It is, for example, perfectly legal 
– though not encouraged – in C++ to perform C-style pointer arithmetic on object 
names17. 

Two possible solutions suggest themselves.  The first is to keep object names as 
pointers into some intermediate object table, such as is found in most Smalltalk 
systems.  In this table could be kept the information necessary to identify the object 
being referenced.  The other possibility is to introduce some new object naming 
system outside the syntax of C++, and convert it into “pure” C++ using a pre-
processor. 

The first solution, while attractive, leads to a rather problematic implementation 
due to the way in which classes are represented.  The second solution, however, is 
easy to implement.  The pre-processor converts a slightly embellished dialect of C++ 
into the “pure” language, with the embellishments supplying enough information to 
generate the necessary remote method invocation code.  The disadvantage is that a 
program is no longer strictly speaking a C++ program, and must be transformed by 
another compiler pass. 

This solution was adopted for Phœnix.  Object names are represented by the 
abstract “handle” type, which may be stored in variables, compared and passed as 
parameters without restriction. 

Method calls are made using statements interpreted by the pre-processor.  A call 
takes the form 

 
#Call(class, res = handle -> method ( p1, p2, ... ) ) 
 

which is expanded into “pure” C++ by the pre-processor. 

Introducing Concurrency 

The model of concurrency favoured for the partitioned model was presented in 
chapter 4:  methods in a class may be defined as being called asynchronously, 
whereupon the caller does not block and does not expect a value to be returned. 

C++ provides no mechanism for introducing new class syntax:  it is not possible 
to embellish the properties of methods.  Therefore there is no way, within the 
language, to specify that a method is to be executed asynchronously.  (This is one 
reason which many concurrent C++ implementations adopt a model of concurrency 
based around objects having special properties.) 

The choice of a pre-processor, as described above, now comes to our aid.  By 
adding suitable pre-processor constructs, we may maintain sufficient information 
about a class' definition to specify that some of its methods be executed 
asynchronously.  This information may be used by the method call statement to 
create the correct calling code transparently  The programmer may call any method 

                                                
17If C++ is implemented on a machine with a segmented architecture, pointer arithmetic fails anyway 
when a segment boundary is crossed.  This makes the choice of object names as pointers, de rigueur, 
even more questionable. 
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using the #Call directive, whereupon the pre-processor will automatically 
determine whether the method is asynchronous or not and generate the correct code.  
The same declarations may also be used to generate RPC stubs. 

To obtain the information about a class' methods, the simplest solution is to 
provide a “parallel” definition for each class specifying the type signature and calling 
convention of each method18. 

Restrictions 

It should be apparent that, in terms of language design, the Phœnix C++ 
compiler leaves much to be desired.  No apologies are made for this:  the host 
language is purely a vehicle for experiment, and such needs only be as finished as 
necessary for the desired experimentation.  However, it is worth pointing out exactly 
which features of the host language would require work in a “real” system. 

The first point is the use of a pre-processor to expand method calls.  The 
statements used are completely outside the scope of C++, and do not integrate well 
with it.  Furthermore they are outside C++'s type system, and so cannot be 
guaranteed by the compiler to be type-correct:  in particular, the “handle” type used 
to name objects does not preserve their type, so the programmer must ensure that all 
operations are applied to objects of suitable type.  Since “type-correct” is almost a 
synonym for “sensible[69],” the programmer must take on through discipline much 
of what, in a real language, would be enforced by the type system. 

A related problem is the use of parallel class descriptions which the programmer 
must ensure are consistent.  In practice, inconsistencies are caught by the compiler – 
though not in the place which might be expected.  This consistency checking is an 
additional burden which, again, would be carried out by the compiler in a real 
language. 

The use of the pre-processor adds another pass to the compilation process.  In 
expanding definitions into “raw” C++, it also increases the amount of compilation 
and (more importantly) linking required to create an application.  This leads to 
significantly increased compile-edit-debug cycles. 

5.3. The Virtual Machine Layer 

The purpose of the virtual machine layer is to act as an interface between the 
host language and the higher-level components of Phœnix.  It provides four services: 

 
• process creation; 
• remote method calls; 
• concurrency control;  and 
• local storage management 

                                                
18It would be more attractive to parse the existing C++ class definitions to obtain this information.  
However, due to yet another “feature” of C++, parsing class definitions potentially requires a program 
to be able to parse the entire C++ language rather than only a restricted sub-set.  For simplicity of 
implementation, and for no other reason, parallel definitions are to be preferred. 
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These services are all intimately related to the operating system being used at the 

environment layer:  their encapsulation means that the operating system may be 
changed with minimal impact on the rest of the Phœnix system. 

5.3.1. Design Issues 

Many of the features of the virtual machine layer are mandated by the object 
model chosen for Phœnix.  Other features are constrained by the capabilities of the 
operating system and host language used. 

The chief design decision concerns the way in which objects themselves are 
represented.  This decision was taken in the host language:  each class is represented 
by a stand-alone executable file which manages all objects of that class on a single 
node.  Class servers are created and located as required. 

The host itself, however, does not implement facilities such as links to the 
operating system or object interactions itself:  rather, it generates calls to the objects 
which are defined in the virtual machine layer to perform these tasks.  The layer may 
thus be regarded as the Phœnix “run-time library.” 

The basic structure of a Phœnix application is a set of stand-alone class servers.  
Each server manages objects of a single class, providing the interface between 
objects and the other objects in the virtual object space.  The actual interactions are 
performed by the virtual machine layer. 

5.3.2. Implementation Overview 

We shall give only a brief overview of the implementation of the virtual 
machine layer, before moving on to the implementation of the more novel parts of 
the Phœnix toolkit. 

Managing the Virtual Object Space 

The primary function of the layer is to manage a virtual object space containing 
all the objects composing the applications in the system.  The space must allow 
objects to be named and to interact regardless of their relative locations. 

The Guardian 
The basic object of a class server is an instance of the Guardian class.  Every 

class server has exactly one Guardian, which acts as a gateway to the virtual object 
space. 

Guardians perform several functions:  they 
 

• implement the start-up and close-down code needed by class 
servers; 

• manage several pools of frequently-used resources;  and 
• provide a remote procedure call service (see later); 
• co-operate to ensure that class servers are created as needed; 
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• shield the rest of Phœnix from the details of message transfer, 
process creation and other low-level operating system tasks. 

 
When a class server is first created, the Guardian executes the start-up code 

necessary for the correct working of Phœnix.  This includes registering the new 
server in the system's name space (along with its location), and the creation of the 
resource pools. 

Two pools are managed by Guardians:  a pool of RPC packets and a pool of 
processes.  The former are used whenever a method is called on another object, or a 
reply to a method call is sent from an object managed by the Guardian;  the latter are 
used to service incoming method calls.  The sizes of both pools may be controlled at 
run-time. 

The remote procedure call service is used internally by Phœnix when making 
method calls on remote objects.  It is dealt with fully in the next section. 

Phœnix takes steps to ensure that only a single class server for a particular class 
is running on any one node – although in general there will be several class servers 
for a class in the system, each running on a different node.  The Guardian provides a 
set of functions which allow the RPC service to determine whether, when creating an 
object on a new node,  it is necessary also to create a class server.  Each class server 
registers its name and location in the system name space, along with a capability 
down which it may be accessed. 

In general the programmer never interacts with the Guardian, as the Phœnix pre-
processor and support classes provide higher-level abstractions.  For example, the 
process-creation functions are perceived as asynchronous method calls. 

When started, the Guardian begins to run an event loop monitoring the 
capability which it registered with the namer.  All requests for service – remote 
method calls, the creation and deletion of objects – occur on this capability.  The 
event loop is very simple:  when a request is received on the capability it acquires a 
server process from the process pool and assigns it to process the request;  it then 
awaits the next request.  Although the capability forms a single point of 
communication (and hence is a potential bottleneck), the simple nature of the event 
loop minimises the chances of serious delays at this point. 

A server process, when assigned a request, performs all the actions required by 
that request and then returns itself to the pool.  Typically a request will animate a 
method call in an object managed by the Guardian. 

Remote Method Call 
Phœnix objects interact using method calls, which are dispatched across the 

network by the underlying virtual object space management system.  Methods are 
implemented using remote procedure call[18][94] (RPC). 

Objects make calls to other objects using the pre-processor #Call directive.  
These are expanded to: 

 
• obtain an RPC request packet; 
• add the necessary routing information; 
• marshal all the parameters to the call; 
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• for synchronously-called methods, create a capability down 
which the return value will be sent; 

• interact with the Guardian to send the request; 
• for synchronously-called methods, wait until the result of the 

method is received; 
• tidy up, returning the packet to the Guardian's pool. 
 

A single method call is an exchange of datagrams.  The Guardian is responsible 
to sending the request packet to the correct site, but this packet contains a capability 
to which the method's return value will be sent.  This means that the caller's Guardian 
is not involved in the reply:  the receiver transmits the reply directly to the calling 
process. 

A method call is assigned a server process when it is accepted by the Guardian 
which is managing the target object.  This process identifies the object which should 
receive the method, unpacks the parameters and makes the method call.  The process 
will execute until the called method terminates, and will be responsible for returning 
any return values to the caller.  For asynchronous methods, no such values are 
returned:  the difference between a synchronous and an asynchronous method call is 
all at the caller's end of the RPC system, not at the receiver's. 

A variation on the simple RPC request involves the creation and deletion of 
objects.  The former is simply a call to one of the class constructors, and may be 
treated like a synchronous method call whose return value is the handle to the newly-
created object;  object destruction is a synchronous call with no parameters and no 
return value. 

Although all method calls are logically remote, a simple optimisation occurs if 
the targeted object is on the same node as the caller.  The Guardian performs a 
“short-circuit” to avoid invoking the kernel to pass messages, simply calling the 
necessary routines in the target object's Guardian directly.  (This particular short-cut 
only works because, on the Transputer, all tasks share a common address space.  In a 
processor with virtual address spaces, this direct-call strategy would be impossible.) 

Object Naming 
An issue not yet touched upon is the manner in which objects are named. 
Virtual object space names are perforce more complicated that those for simple 

shared-memory systems.  An object's name must uniquely identify it, and must also 
allow method calls to be routed to it from any part of the system. 

The solution adopted for Phœnix is that, in the absence of object migration, the 
Guardian managing an object is fixed at its creation: therefore a name which 
identifies the Guardian and also the object within that Guardian's management 
domain will serve to identify all objects uniquely.  A Phœnix object name – also 
called a handle – is composed of the capability which the Guardian registers with the 
system namer and the address of the object within the Guardian's address space. 

This scheme has the advantage that an object name contains all the information 
needed to route messages to the object directly, since all RPC traffic occurs through 
the Guardian's capability;  furthermore, it contains all the information which the 
Guardian needs internally. 
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The major disadvantages of the scheme are that it makes object migration 
difficult (though not impossible, if a scheme similar to Emerald's forwarding 
addresses is used), and it makes object names rather large since capabilities are 
usually quite large objects (in Wisdom, a capability is around forty bytes). 

Concurrency Control 

Concurrency control is the province of the Lock kit, which provides a set of 
classes implementing the concurrency control model described in §4.1.  A lock is an 
object which embodies a concurrency control policy.  The functions which the lock 
exports are then used by objects to ensure that method calls are “safe” according to 
that policy. 

Phœnix defines locks in the abstract as instances of the Lock class.  This class 
exports a simple interface:  methods call the lock whenever they wish to execute, and 
this call only returns when the lock determines that the execution is safe.  Methods 
also call the lock when they complete execution, so as to allow other methods to run. 

A particular sub-class of the general Lock is the DLock, which implements an 
evaluator for the deontic logic presented in §4.2.2.  Sub-classes of DLock may then 
use the logic to define their concurrency control policies.  The important special 
cases of single writer/multiple reader and the lock used in the partitioned collections 
themselves are pre-defined, and may be re-used by any class in Phœnix. 

Low-level Storage Management 

Although the partitioned model provides a model of memory as seen by 
applications, another system is needed to manage memory at the most primitive 
level. 

Phœnix provides two classes for dealing with storage in this manner.  Both 
manage storage as collections of fixed-sized, untyped values:  one implements a 
vector of elements accessed using an index, whilst the other implements a variable-
length list of elements.  Both are sub-types of the Storage class. 

The memory management classes all manage memory in untyped units called 
StorageElements.  A StorageElement may be placed into a storage class 
and later retrieved.  The size of each StorageElement is fixed at its creation, 
although different StorageElements may have different sizes.  They export a 
completely untyped interface. 

Phœnix manages local memory in collections as follows:  the elements of a 
collection are stored in StorageElements, which are themselves placed into an 
instance of a Storage class.  The storage routines themselves do not manipulate the 
values which they store, and may thus be made independent of the values' type.  The 
collection classes are responsible for ensuring that values are stored and retrieved in 
a type-safe manner. 
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5.4. The Partitioned Environment 

The heart of Phœnix are the classes which directly support the partitioned 
model.  Phœnix provides a collection of partitioned data structures which are 
designed to as to be completely distributed, scalable, highly concurrent and simple to 
extend through sub-classing. 

5.4.1. Design Issues 

The Phœnix Collection and Partition class hierarchies directly implement the 
functions described in §3.  There are, however, some subtle differences introduced 
by the choice of host language.  The two main differences concern the way in which 
resolution is performed, and the creation and deletion of components of collections. 

Resolution 

Resolution (§3.2.4) involves forwarding requests for data in toto between 
components.  A component which receives a request which it cannot service locally 
forwards it via its partition to another component which can deal with the request.  In 
essence, the continuation of the request is passed to another site. 

This architecture is very attractive for a number of reasons:  it is simple, logical, 
and means that a site receiving a request may simply forward it and continue 
processing, thus avoiding a potential bottleneck.  It proved rather difficult to 
implement for Phœnix, however, for two reasons:  the nature of C++ procedures and 
the use of RPC. 

C++ internally treats function names as pointers.  Once a function has been 
called, therefore, all other information disappears.  It is not possible in C++ – as it is 
in Smalltalk – to obtain the text of the request being serviced.  This makes 
forwarding of requests difficult. 

A second difficulty is the use of RPC, as the client blocks awaiting a reply from 
the called object.  Passing a request involves changing the object which will reply to 
a request.  (Actually this is not as difficult as it sounds, as Wisdom allows 
capabilities – return addresses – to be passed to another process.  Whilst possible, 
such an architecture would require a “pass responsibility” primitive, increasing the 
complexity of the programming model.) 
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The solution adopted for Phœnix is to implement resolution using simple RPC.  
The difference in control flow is illustrated in figure 23.  It is interesting to compare 
this diagram with that in figure 8:  the “circular” flow of  control is replaced by a 
“chained” flow.  This has several disadvantages.  The first is that there is an amount 
of unnecessary message-passing occurring:  the partitions which were involved in 
resolution have no interest in returning messages, and act simply as forwarders.  This 
introduces overheads.  Secondly, such circularities may introduce unnecessary 
synchronisation.  They are accepted here purely for the sake of a simple 
implementation:  we shall discuss possible improvements in chapter 7. 

Re-arrangement, and the Deletion of Components 

The second major problem concerns the aspects of the partitioned model which 
involve the deletion of components, specifically the join operation in associative and 
directed storage. 

Suppose that an application creates a dictionary (associative memory) and 
attaches an activity to it, so that a copy of the activity is attached to every 
component. In the course of processing, a replica removes an element from the 
dictionary, which causes the dictionary to join several components into a single 
component.  This operation is perfectly well-defined within the partitioned model, 
and is the reverse of the split operation:  the elements held by one or more 
components are amalgamated into a single component, and the extraneous 
components are then deleted. 

It is this deletion which causes the problem:  there will be activities attached to 
these components, and their deletion will result in “dangling” pointers.  Even if 
deletion operations use some form of reference counting, the components will be 
detached from the collection. 

 

 
 

Figure 23:  Control flow for resolution in Phœnix  



 

- 125 - 

Another variation of this problem occurs in the opposite case – when elements 
are added which cause splits.  The new components will then have no activities 
attached to them, and it is not safe to attach activities as this may result in elements 
being processed twice. 

The general statement of this problem is that  it may not be safe to perform re-
arrangement of data structures during processing.  This is an annoying, but not 
crippling restriction, and Phœnix does not enforce it.  It only affects those structures 
which may suffer re-arrangement (i.e. anything except arrays);  indeed, it may be 
safe to re-arrange such structures even during processing, depending upon exactly 
what application is running. 

A similar problem affects iteration:  iteration across a structure is not completely 
deterministic in the presence of possible re-arrangements.  Iterating through a 
structure whilst simultaneously adding elements to it (or deleting elements) may 
result in the iteration omitting some elements of the structure, or returning duplicates 
of some elements. 

5.4.2. Basic Classes 

The Phœnix Basic kit implements classes which are used directly or indirectly 
by several parts of the system. 

Common Functionality of all Phœnix Objects 
C++, unlike Smalltalk, does not force its class definitions to form a tree:  they 

may form a forest of trees19.  It is useful, however, for all objects to have a certain 
minimum functionality, and this is best accomplished by having a single base class 
for all objects. 

Phœnix defines a class Object for this purpose.  It provides the following 
guaranteed functions for each objects: 

 
• class naming 
• instance naming 
• equality comparison 
• copying 
• hashing 
• concurrency control 
• property access 
• error handling, logging and debugging messages 
 

The class name allows an object to access its type at run-time.  Each object may 
have an instance name to distinguish it (at a textual level) from other objects of its 
class.  The equality comparison, copying and hashing protocols are “virtual” (re-
defined on a per-class basis, but always with a common type signature):  hashing is 
implemented to support associative memory architectures. 

                                                
19Actually, using multiple inheritance, a forest of directed acyclic graphs. 
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The concurrency control methods allow a method to register its starting and 
finishing with the object's concurrency controller (if any) in a manner independent of 
the actual controller class being used. 

Property access will be discussed in more detail later, but is concerned with 
accessing a database of user-supplied “hints” to control aspects of an application's 
function. 

Error handling allows common error conditions, such as run-time exceptions, to 
be reported through a standard interface.  There is support for logging actions to the 
user (or to a file) and for accessing a debugging level to control the amount of 
debugging information generated (without re-compilation). 

When created, an Object runs through the sequence of constructors defined by 
its inheritance hierarchy.  The result of construction is to create an Object whose 
class and instance names are defined and which has a concurrency controller 
installed. 

Properties 
One important aspect of Phœnix yet to be touched upon is the way in which the 

programmer supplies “hints” to an application at run-time. 
In §3.4 it was mentioned that the partitioned model allows decisions about a 

structure's exact configuration to be deferred until run-time.  A distribution strategy – 
embodied in a particular Partition sub-class – may make use of run-time 
conditions and programmer-supplied hints to determine the exact distribution pattern 
used. 

The judicious use of hints allows programmers to influence markedly the 
distribution of structures.  To take one example, a hint might suggest an order-of-
magnitude number of elements to be stored in an array component.  The distribution 
policy may then use this suggestion to decide how many components to create for 
arrays at their creation. 

The hints which may be supplied are obviously very dependent upon the 
structure being hinted at.  By taking care in selecting what features may be controlled 
by hints, it is possible to generate a very flexible control mechanism for distribution 
at very little cost.  Moreover, it might allow the use of automated tools for optimising 
distributions. 

Phœnix provides a hints mechanism via its property sheet.  A property sheet is 
an object of class PropertySheet, of which exactly one instance exists per 
application.  When created, this object reads hints from a file to create a hints 
database which may be accessed by any object. 

The form of properties is modelled on that of X Windows[103].  Properties are 
described hierarchically by naming the class hierarchy to an object.  For example, the 
hierarchy to the Array class is 

 
 Object.Collection.ArrayedCollection.Array 
 

meaning that Array is a sub-class of ArrayedCollection which is turn a sub-
class of Collection and so on.  A property specification takes the form of a class 
path followed by a property name and value, for example 
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Object.Region.verbosity:     2 
 

which sets the verbosity (amount of logging information generated) in all Region 
objects to be 2. 

Properties may be set generically for parts of the class hierarchy by using the * 
wildcard.  So, for example, to set the verbosity of all collections to 2, one would 
supply the hint 

 
Object.Collection*verbosity:    2 
 

Generic properties are overridden by properties given farther down the tree:  to 
disable debugging logging on all collections except Arrays, the following hints may 
be used: 

 
Object.Collection*verbosity:    0 
Object.Collection*Array.verbosity:   2 
 

Properties may also be set for particular objets by giving an object an instance 
name and using it in a hint:  adding the property 

 
Object.Collection*Array.test.verbosity:  0 
 

would disable the logging in an Array called test.  The Object class 
automatically creates the property path name for all objects, and there is support 
within the base Object class to obtain properties. 

5.4.3. Collections 

The components of partitioned collections are, in Phœnix, all derived from the 
Collection class.  Each storage architecture – arrayed, associative and directed – 
has an associated Collection sub-class hierarchy. 

The hierarchies are separated into two classes:  an abstract class defining the 
protocols and functions common to all implementations of an architecture and a 
concrete class implementing a particular local-storage model.  Many of the functions 
in the abstract class are empty, being used to define the type signatures of functions 
will which be defined later. 

The classes do not implement any functions intended for application-level access 
to data.  All data access is performed at an untyped level:  it is the responsibility of 
sub-classes to implement appropriate access functions. 

Iteration 
As an alternative to using access functions, it is possible to iterate across 

collections.  Iteration allows client objects to access all the elements in a component 
“anonymously,” one at a time:  it also has the advantage of being a protocol shared 
by all architectures, so a client may iterate across any storage architecture. 
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All the Collection sub-classes multiply-inherit the Iterator class20.  This 
defines a set of functions which return the first element in a component, and then 
successive elements until the component has been fully iterated.  To allow concurrent 
access, iteration uses a “key” held by the client object:  the iteration protocol itself is 
stateless, and holds all its context in the key value.  Each concrete Collection 
sub-class must provide functions to interpret the key value and return the correct 
element:  this is provided automatically by the built-in concrete classes.  There is no 
pre-defined order for iteration – indeed, there is no single order which is meaningful 
for all architectures – so sub-classes are free to define their own orderings. 

Iteration is not necessarily safe in the presence of concurrent addition or deletion 
to structures, and this may cause problems in associative and directed collections.  
The reason is that these operations may cause the collection to be re-arranged, and 
this may confuse the iteration routines.  It would be possible to disallow these 
“dangerous” operations whilst iteration is in progress using the Lock kit, if so 
required. 

5.4.4. Partitions 

Associated with each storage architecture hierarchy is a storage management 
hierarchy, derived from the Partition class.  The partition hierarchy exactly 
mirrors the component hierarchy. 

The partitions defined for each collection implement the general-case 
distributions described in chapter 3.  They can thus distribute an instance of an AMM 
in some manner, although this is unlikely to be the most efficient distribution for 
particular applications.  The class hierarchy is defined so as to allow individual 
aspects of the distribution to be changed independently of other aspects, to allow 
easy refinement. 

“Area” Classes 
Distribution of structures is performed using instances of auxiliary classes.  The 

elements held locally by a component are represented by an instance of such a class, 
and other instances are used internally by partitions when constructing a collection 
and resolving requests. 

The arrayed architecture uses a Region class, which defines a small region of an 
n-dimensional discrete space.  The associative collections use a Slice object defining 
a portion of a hash space.  Directed collections are sufficiently simple that they need 
no area class. 

The advantage of this approach is that, by altering the behaviour of the area 
class, the behaviours of the collections may be altered.  For instance, defining a new 
Region sub-class allows different shapes of region to be used in array decomposition, 
without changing either the component or the partition class.  

                                                
20This is the only example of the use of multiple inheritence in Phœnix. 
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5.4.5. Activities 

Multiple-worker tasks are supported in Phœnix using sub-classes of the class 
Activity.  Each sub-class defines a different “process,” and contains the 
supporting protocol necessary to interact with the collections to provide scalable 
parallel processing. 

Within the Collection and Partition classes are functions which allow 
activities to be attached to collections in a single operation.  These attachment 
functions are provided at the top of the class hierarchy, and require no support from 
sub-classes. 

A single function, Body(), implements the activity's main function.  This 
function is called automatically when the activity is attached to a collection.  
Functions are provided so that the activity can gain access to the component to which 
it is attached. 

It is possible to determine the state of an activity – whether it has started, 
finished, raised an error et cetera – and to interrupt or kill it21. 

Groups 
It is sometimes necessary to manipulate a group of processes en bloc.  This is 

particularly true in a scalable system when, although it may be know that a number 
of concurrent processes are running, it may not be known exactly how many 
processes have been created. 

The Group class is a sub-class of Activity which collects together a number 
of activities under a single name.  All the functions concerned with attachment work 
with groups of activities, although many of them hide the Group object from the 
outside world. 

Group supports exactly the same control interface as Activity, and 
dispatches the commands to all its members.  It is possible, therefore, to create a 
group of activities and start their execution with a single command to their Group.  
The states of members are reflected in the Group so that, for example it is possible 
to wait until any one member of the Group completes its execution.  This might be 
used for multi-version or speculative parallel computation, where the other members 
are killed as soon as one completes successfully. 

Applications 
Every Phœnix application contains exactly one instance of a sub-class of a 

special form of activity, an Application.  This class contains special start-up 
code which initialises the Phœnix environment. 

                                                
21Actually, although the kill function is provided for completeness in the interface to Activity, it is 
unimplemented:  it is not possible to kill a process in a Transputer system. 



 

- 130 - 

5.5. Extensions 

A major advantage in the use of partitioned collections as a memory model is 
that the model which an application uses is, at its most basic level, extensible.  This 
allows memory to be made “intelligent” to better reflect the operations used in the 
application.  This encapsulation of intelligence into memory modules both increases 
the level at which programming takes place and reduces the amount of 
communication needed in an application. 

5.5.1. Issues in Extending Phœnix Classes 

To minimise the amount of code which must be re-written, however, classes 
must be designed with sub-classing and extension in mind.  This ensures that all the 
functions which may sensibly be re-defined are made independent of each other, so 
that single facets of a class may be changed. 

Another important factor is the use of abstract classes:  classes which cannot be 
instantiated directly, but which define the interface protocols for a selection of sub-
classes.  The abstract class is an “umbrella” defining a collection of possible 
implementations of the same abstraction, which may be used interchangeably. 

Phœnix has been designed very much with sub-classing in mind.  There are 
several abstract classes used in the programmer's interface – for example 
Collection defining the basis for all partitioned collections, and 
ArrayedCollection defining those functions which are specific to all arrayed 
collections.  The bottom-level concrete classes, such as Association, may also be 
considered rather abstract, as they do not define a user-level access protocol. 

In addition, Phœnix separates all aspects of the partitioning process into separate 
methods.  This allows a single facet of the process – for example the generation of 
sub-regions of an array – to be re-defined by sub-classing whilst allowing the 
existing functions for creation and distributing these regions to remain unchanged. 

5.5.2. Example Extensions 

The Phœnix Extension kit contains some useful class pre-defined.  These include 
some commonly-encountered memory modules and some sample custom 
distributions.  It is these concrete classes which will be used as the basis for the 
evaluation of Phœnix in the next chapter. 

Custom Components 

Three collections have been implemented as part of the Extension kit:  an array 
of real numbers, a dictionary mapping strings onto objects, and a binary tree. 

For illustration, the interface to the FloatArray class – slightly abbreviated 
for clarity – is as follows: 
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class FloatArray : public Array { 
public: 
 FloatArray( Region *lr ); 
 FloatArray( int x, int y ); 
 ~FloatArray(); 
 
 /* copying */ 
 virtual void BasicCopy( Object *o ); 
 virtual Object *BasicReplicate( NodeAddr a ); 
 
 /* access */ 
 virtual void AtPut( Point p, float f ); 
 virtual float At( Point p ); 
}; 

A few points may be made about this class.  The first is that it contains very little 
“real” code.  The constructors simply pass information back to the parent Array 
class' constructor, whilst the access operations provide type-checking for the 
BasicAtPut() and BasicAt() methods implemented as part of Array. 

Similar points may be made about the Dictionary and BinaryTree 
classes:  in all cases most the work is being done by the memory architecture classes, 
leaving the user-defined classes to concentrate of application-level issues. 

Custom Distributions 

The partition sub-classes described earlier all implement particular, very general 
distribution strategies.  Phœnix provides an additional distribution for one particular 
type of structure – the array – based around the most commonly-occurring mapping 
of arrays onto processors:  as a rectangular mesh, with one component being placed 
on each processor. 
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class ArrayMeshPartition : public ArrayPartition { 
private: 
 ... 
public: 
 ArrayMeshPartition( Collection *rc,  
         Partition *p =nil ); 
 ~ArrayMeshPartition(); 
 
 /* copying */ 
 virtual void BasicCopy( Object *o ); 
 virtual Object *BasicReplicate( NodeAddr a ); 
 
 /* partitioning */ 
 virtual void PerformPartitioning( void ); 
 virtual void BasicPartition( int srs, 
          Region *sr[], 
          boolean ism ); 
}; 

The new partitioning policy – overriding that in ArrayPartition – is 
implemented by the PerformPartitioning() and BasicPartition() 
members.  The latter takes an array of sub-regions generated by the former and 
creates a partition tree based upon them.  The function is called recursively during 
the tree's creation.  Hence the policy is divided into two parts:  the division of the 
array into sub-arrays is performed by PerformPartitioning(), which then 
calls BasicPartition() to build the tree. 

The same approach may be taken with other custom distributions.  The various 
parts of the distribution strategy are separated into different functions, which may 
thus be altered individually as required.  This minimises the amount of re-coding 
which is needed to implement new distribution strategies. 

5.6. Résumé 

This chapter presented an overview of a programming system based around the 
partitioned object model .  The tool kit, called Phœnix, is composed of a set of 
classes written in a dialect of C++ extended to support the distribution of objects 
around a network and the asynchronous execution of methods. 

The issues important in the design of the various layers of Phœnix were 
described to illustrate the possible alternatives in the design.  The implementation of 
the various classes were then presented. 

Some consideration was given to the extensibility of the tool kit, allowing 
programmers to create sub-classes of the important classes to define application-
specific functions.  It was shown that, by giving careful attention to the facets of the 
system which might meaningfully be re-defined, it is possible to maximise the 
flexibility with which users can customise the Phœnix classes whilst maximising the 
amount of design and code re-use within the system. 
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Chapter 6. 

   

Evaluation 

The pursuit of happiness is just a bore. 
 
  Mary Coughlan, Mother's little helper 

The preceding chapters have presented an argument in favour of the partitioned 
approach, and its ability to abstract away from the most difficult attributes of scalable 
systems, and have described an implementation based on this model  However, such 
arguments seem somehow incomplete:  there is a need to discuss post facto the 
features of the system. 

The partitioned model is not intended to extract the best absolute performance 
from a system: its aim is to simplify the programming task, possibly at the expense 
of efficiency.  At the same time, parallel programming's raison d'être is to tackle 
computationally challenging problems, so too great a sacrifice in performance is 
unacceptable.  For a prototype system such as Phœnix, however, it will suffice to 
identify areas of inadequacy and discuss ways in which they can be perfected.  This 
is the focus of the following evaluation. 

The evaluation proceeds along four paths.  Firstly the partitioned model itself is 
evaluated in terms of the abstractions which it presents, and is contrasted against 
other possible implementations of scalable memory.  Secondly the Phœnix prototype 
is discussed as an implementation of the model, and its shortcomings as a 
programming system highlighted.  Thirdly, statistics are presented on some of the 
experiments run practically on the prototype, showing that, whilst its performance is 
wholly inadequate in practical terms, the overheads incurred are due to identifiable 
(and correctable) flaws in the prototype implementation.  Finally some case study 
problems are developed using Phœnix. 
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6.1. The Partitioned Object Model 

The partitioned object model attempts to provide a view of memory which is 
scalable, in terms of resource consumption and concurrency. 

6.1.1. Meeting the Aims of Scalable Memory 

The partitioned model is an attempt to implement the goals of scalable abstract 
memory laid-down in chapter 2, and we may compare it with this abstraction in order 
to determine how well it succeeds in this aim. 

The aims of scalable memory were defined in the Introduction:  to provide a 
system which 

 
• manages and co-ordinates large quantities of structured data in 

a distributed-memory environment; 
• regulates and controls massive amounts of concurrent activity; 
• hides architectural details from programmers through the use 

of an abstract programming model; 
• provides a supportive programming framework with scope for 

re-use, to avoid unnecessary re-invention;  and 
• ensures scalability by ensuring that applications can take 

advantage dynamically of whatever resources are available at 
run-time.  

We may evaluate how the partitioned model meets these aims. 

Distributing Data 

A partitioned collection of data is essentially a memory module, according to the 
arguments presented in chapter 2.  Since the data in the collection is physically 
distributed between its component objects, it may be implemented on a 
multicomputer without unnecessary centralisation;  but since the data is logically 
centralised – all elements being accessible through any component, regardless of 
which component actually holds the item being sought – it effectively hides the 
physical distribution being used. 

This has two advantages.  The first is that a major source of complexity in 
distributed programming – the management of data locality – is removed from 
applications.  However, since collections are actually distributed entities, there is still 
scope for the knowledgeable programmer to control the distribution of data as 
required.  The important point is that this control is largely an optimisation of an 
application, and is not essential to its correct function. 

Regulating Concurrency 

In the partitioned model, the amount of concurrency used and its location, 
follows the distribution of data.  Altering the distribution of a collection will affect 
the pattern of concurrency used to process it. 
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The justification for this view is that the size of a collection is often a good 
metric for deciding how to process it in parallel, whilst the distribution of data allows 
the programmer to exploit the possibilities for true concurrency provided by 
multicomputers. 

Abstracting Away from the Architecture 

The architecture has several effects on applications.  It will determine the 
amount of data which may be held locally by a processor;  suggest a certain “grain 
size” for concurrent computation;  and define the cost of communications between 
processes on different processors. 

In the partitioned model, all these factors may be balanced indirectly by altering 
the sizes of components and their distributions.  This allows a partitioned application 
to be mapped efficiently onto any given architecture, but the mapping occurs post 
facto and need not affect the code of the application.  The statement of problems 
within the model is to a large extent architecture-independent. 

Programming Support 

The kernel of scalable memory modules provided by the partitioned model may 
be re-used in many different applications, since they implement “general case” 
storage requirements.  They may also be extended incrementally to develop new, 
application-specific structures.  There is considerable scope for the re-use of designs 
and code within such a framework, simplifying the construction of distributed 
applications based around large amounts of shared data. 

Ensuring Scalability 

By providing a scalable memory model, the partitioned model ensures that a 
central aspect of program creation – its data organisation – is completely scalable.  
The use and re-use of partitioned  data structures need not affect the basic algorithms 
used internally, so “intelligent” memory sub-systems may be created from the basic 
structures provided. 

Moreover, the use of memory as a concurrency regulation infrastructure ensures 
that, for properly-written applications, the amount of concurrency used in an 
application is completely variable according to its distribution pattern. 

These features do not, of course, guarantee that an application can scale.  It is 
still the programmer's responsibility to ensure that applications have as little 
centralisation as possible, and that locality of reference is exploited to the full when 
creating worker tasks. 

6.1.2. A Comparison of Possible Alternative Implementations 

In §2.4 we suggested that a scalable memory would be best implemented using a 
community of objects, and it was this suggestion which gave rise to the partitioned 
model.  There are, however, a number of other alternative implementations which 
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might also be considered, and we shall compare partitioning against the four most 
promising alternatives:  Linda, distributed shared virtual memory, the use of objects 
within a DSVM framework, and Concurrent Aggregates. 

Linda 

The similarities between scalable memory and the Linda tuple space abstraction 
(§1.4.2) are obvious:  both allow large collections of entities to be stored and 
manipulated en masse by processes distributed across a network. 

Linda's tuple space is a large shared associative memory.  Depending upon the 
implementation there may be multiple tuple spaces in existence, but most current 
systems implement only a single space shared between all processes in an application 
(and occasionally between all applications in a system).  Single tuple spaces 
introduce the problem that processes must ensure that the tuples which they inject 
into tuple space do not conflict with those of any other processor. 

A more serious complication – or advantage, depending on one's viewpoint – is 
that Linda completely hides distribution from the programmer.  Whilst it is true that 
scalable memory aspires to the same ideal, the latter also seeks to allow the 
programmer to intervene to control distribution if desired in order to increase 
applications' performances.  Early Linda implementations were very inefficient 
precisely because they could not automatically deal with the problems of efficiently 
distributing tuples. 

It is perfectly possible to build structures like arrays in Linda, by using 
appropriate patterns of tuples.  However, this reduction of arrays to tuples destroys 
all those spatial characteristics of arrays which are useful in distributing elements 
efficiently.  For example, consider the case of a two-by-two array called array1 
implemented using the following tuples: 

("array1", 0, 0, -1) 
("array1", 0, 1, 0) 
("array1", 1, 0, 0) 
("array1", 1, 1, -1) 

A priori, there is no way of identifying the relationship which these tuples have 
to each other – other than the fact that they will be matched by a common pattern, for 
example: 

("array1",?x, ?y, ?v) 

which information is insufficient to perform any intelligent distribution.  The Linda 
assertion that “all tuples are equal” is a double-edged sword. 

By comparison, the partitioned model retains the information about a data 
collection's essential structure, and may thus exploit it in creating a distribution 
pattern.  The programmer may explicitly become involved, if he so desires, with the 
distribution of collections, using the full power of the host language rather than 
simple annotations. 



 

- 139 - 

Concurrent processing in Linda comes from the use of “active” tuples inserted 
into tuple space.  By the same token as above, Linda prevents programmers from 
placing processes onto nodes (even as an optimisation step) and prevents processes 
from making use of the principle of locality (since there is no idea of locality in 
Linda).  This places a large burden onto the Linda system implementor to manage the 
distribution of tuples intelligently, and there is no evidence that this is possible 
without programmer involvement – and Linda itself does not provide mechanisms 
for this involvement. 

Distributed Shared Virtual Memory 

DSVM is another logically shared memory for use in distributed systems, but 
one which is centred around access to memory at the word level.  In seeks to 
simulate a simple “flat” address space by using the local physical memories of nodes 
as page caches in a virtual memory system. 

Some problems in the scalability of DSVM systems have already been 
mentioned (§1.3.1).  The problems of page usage and allocation, cache sizes and 
thrashing mitigate against the use of DSVM as a scalable memory implementation. 

Representing Large Objects using Distributed Shared Virtual Memory 

There is, however, a second possible use for DSVM.  If a conventional object-
oriented language is executing in a DSVM environment, then its object abstractions 
may be used as a model of memory without any intervention on the part of the 
programmer. 

This is a very attractive possibility.  The same collection techniques as used in 
(for example) Smalltalk or a C++ data structure class library could be introduced 
directly into the distributed computing arena.  A collection of arbitrary size could be 
represented easily, since not all the pages of an object need fit onto a single 
processor:  they may be distributed between several nodes, with the guarantee that 
any access to a “remote” data item will cause that item to be acquired transparently 
through a page fault. 

This approach hides the distribution of data onto nodes – indeed, it makes it 
impossible to discover what data is on which node – and so could not be used as a 
concurrency infrastructure.  The best one could achieve is to decide the number and 
location of processes and then allow them to divided the data between themselves 
using page faults.  This means that processing becomes process- rather than data-
oriented. 

Indeed, this illustrates a major problem with all DSVM applications.  There is a 
distinct separation between data and code, despite the fact that code must reside in 
memory.  It is essential for an application to place its processes with great care in 
order to perform load balancing and minimise communication overheads:  but the 
features of DSVM make this impossible by preventing the programmer from 
controlling distribution.  In a very real sense, DSVM is equivalent to Linda in this 
respect, but at a lower level of abstraction. 
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Concurrent Aggregates 

The system in the literature which bears most resemblance to the partitioned 
model is Chien and Dally's Concurrent Aggregates[36] (CA) (§1.3.2). 

The main use of CA is as a concurrency-management system, since aggregates 
are inherently parallel to the degree of the number of objects within the aggregate – 
objects themselves may remain strictly sequential, but aggregates are concurrent.  
However, as a collection of objects manipulated using a single name, the parallel 
with the partitioned model is obvious. 

The major difference is one of emphasis.  CA is intended to introduce 
concurrency into objects, something which we have assumed to be present within the 
partitioned model and have controlled using auxiliary objects.  CA is simply a 
framework, onto which may be added any desired functionality. 

CA does not address the problems of deciding how many objects to create as 
part of an aggregate, nor of determining how to distributed the component objects or 
selecting a target site for interaction.  All these are features of the partitioned model. 

It seems, however, that CA would make an excellent possible host language for 
a partitioned system, since it provides many of the necessary features (especially 
concurrency control and message delegation).  Although the described system was 
not strongly typed, there is no reason why this might not be added.  It would be 
interesting to explore the effects on CA programs of introducing partitioned memory. 

6.1.3. Some Problems with the Chosen Implementation 

The partitioned model does, however, present some problematic aspects.  Most 
serious are its use of software in routing requests, which is a direct consequence of 
the model's flexibility. 

All routing of requests for data are sent round a partitioned collection using an 
algorithm embodied in the partition classes.  The use of such software control makes 
the partitioned model very simple to optimise, as the algorithms used may be 
changed without necessitating the re-writing of the entire structure. 

However, other possible implementations – notably Linda and DSVM – may 
make use of hardware acceleration to speed-up the routing of requests.  The 
partitioned model, on the other hand, is not so susceptible to the use of hardware 
accelerators:  this implies that, in purely speed terms, it is demonstrably inferior to 
the alternatives. 

This objection may be answered in two ways.  Firstly, there is a trade-off to be 
made between flexibility (which comes from software) and speed (which arises from 
hardware).  A system with a hardware accelerator is very much tied into that 
accelerator's algorithm, and cannot adopt a different strategy if circumstances 
warrant. 

Secondly, there is some scope for the use of hardware acceleration in partitioned 
systems.  Hardware message routing would be a great advantage, and may be 
provided within the operating system kernel.  Furthermore, many of the partitioned 
model's algorithms involve look-up against a table of possible values.  There is a 
great deal of knowledge about the creation of hardware-based associative 
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memories[74], which could be used by partitioned structures with little problem 
(storing routing tables in a special memory with hardware support for the necessary 
searching). 

6.1.4. The Programming Model and Method 

The programming style encouraged by the partitioned model is one of shared 
data processed by several largely independent worker tasks.  It is thus a shared 
memory model as opposed to a message passing model. 

Since the partitioned model favours one of the two major parallel programming 
paradigms, it is natural to ask:   for what classes of problem is the partitioned model 
suitable?  For what classes is it unsuitable?  Are these two classes sufficiently 
recognisable to ensure that unsuitable applications are avoided? 

A shared data model, when implemented on a distributed memory machine, 
suffers from overheads whenever tasks request data which is not held locally to 
themselves.  The farther away – in network terms – the data resides, the longer it will 
take to access.  Although Valiant's work indicates that such a shared memory is 
implementable with only a constant factor overhead[113], it gives no clues as to the 
magnitude of this overhead.  Hence in order to reduce the potential for unacceptable 
overheads it is essential that: 

 
a. locality of reference is available and is exploited;  and 
b. data is accessed sufficiently frequently to justify its 

organisation. 
 

The first condition implies that an application should not make “random” access 
to a data structure – by “random” we mean accesses which target elements without 
any pattern; or, put another way, there exists no distribution pattern such that the 
accesses may exhibit locality of reference.  For an array, this might imply that 
elements accessed should be metrically close;  for a graph, that only a few edges are 
traversed.  Applications which do make random access will incur significant 
overheads. 

The second condition states that applications must access the shared data a 
number of times.  If an application accesses a particular data item only once, there is 
no advantage to be gained by structuring the data:  it would be better to pass it 
explicitly using streams. 

These conditions together identify a class of algorithms which manipulates a 
large shared data pool for a considerable length of time.  The first excludes 
applications whose data accesses are unpredictable,  the second those applications 
which use data “in passing.”  (Interestingly, these are precisely those conditions 
identified by Li and Hudak in analysing their DSVM system[77].  This would 
suggest that partitioning and DSVM are largely equivalent, with the former offering 
higher-level abstraction and the latter providing a more kernel-oriented approach.) 
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6.2. The Phœnix Prototype 

In evaluating Phœnix it is necessary to compare it with both the theoretical 
qualities of the abstract model and with other parallel programming systems.  We 
wish to determine whether Phœnix is a good implementation of the partitioned 
model, and whether it compares favourably with other similar programming systems. 

6.2.1. Sufficiency of the Base System 

The basic Phœnix system provides three things:  a distributed and parallel dialect 
of C++, a set of high-level distributed memory structures, and an infrastructure for 
regulating concurrency.  We shall first examine this system as it appears to the 
programmer, without refinement or specialisation, before going on to consider these 
essential issues.  Doing this enables us to assess the ease with which Phœnix may be 
used for prototyping, before considering refinement. 

It is possible to write object-oriented programs without using any tool kit 
support, simply using the facilities of the C++ dialect.  There is little support for 
concurrency or distribution control, but applications could be created this way.  The 
significance of this is that it shows that aspects of a problem which are not covered 
by Phœnix – or by the partitioned object model – may still be written.  Phœnix 
attempts to make this process easier, but does not outlaw other approaches being 
used, and the admixture of several different paradigms may in some cases be 
beneficial[123]. 

The Phœnix memory classes provide as standard roughly those structures 
described in the standard work on the subject[70].  The abstract classes are chiefly 
concerned with refinement operations;  the concrete classes provided in the extension 
kit (figure 21) supply basic functionality for several commonly-occurring structures.  
Applications could use these basic functions to implement an algorithm, with all the 
algorithm's sophistication being built into clients rather than memories.  Although 
potentially less efficient, this approach is completely workable for a first cut at a 
problem. 

6.2.2. Extensibility 

Extensibility – the ability to re-use existing code and designs to create new 
classes for new applications – is a prima facie advantage of object-oriented 
programming.  It reduces the amount of work, both in design and implementation, 
which an application requires 

Extension can occur in two directions.  When existing classes are specialised to 
provide new functions on an existing framework, it is termed extension by 
differentiation;   when classes are being created to provide new functions, it is termed 
lateral extension.  In practice creating a new class is often a mixture of these two 
forms of extension. 
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Extension by Differentiation 

The mechanisms for differential extension are perforce limited to those in the 
host language.  In C++, the main mechanism is the virtual member function which 
replaces the definition of the parent's function with a new function which is called in 
preference to the parent definition.  The usefulness of differential extension is 
therefore largely defined by which functions are declared to be virtual, and by the 
decomposition of tasks into well-defined functions which may be replaced 
selectively. 

In other languages, different mechanism exist.  In Smalltalk, for example, all 
functions are by definition virtual:  the dynamic binding of names to functions is the 
only mechanism provided, whereas in C++ static binding is used by default.  The 
C++ version is in many respects more powerful and safer, as it allows functions to be 
defined which must be used in all sub-classes. 

Phœnix was designed with extension in mind, and the interfaces provided to 
sub-classes for extension are intended to be the most flexible possible consonant with 
the need to maintain the integrity of the structure.  Phœnix defines as virtual 
functions all those aspects of a collection or partition which might be changed as a 
matter of policy, whilst leaving statically-bound (i.e. non-virtual) those methods 
which maintain the structure of the collection. 

This is a vitally important distinction, as it ensures that extensions may be made 
to storage architectures without compromising their integrity.  Consider, for example,  
the partitioning of an array:  the method which divides a region into sub-regions 
ready for allocation or further partitioning is defined as a virtual method, and may be 
re-defined in sub-classes to implement different partitioning policies;  the method 
which takes these sub-regions and creates the partition tree from them is defined 
statically, since it is a matter of structural integrity, not policy. 

Some of the classes in Phœnix are not directly related to partitioning, but are 
used by collections internally.  Examples are the Region and Slice classes, 
defining the elements held by components of arrayed and associative collections 
respectively.  These classes may be sub-classed like any other, and the sub-classes 
used indirectly to affect partitioning.  A Region sub-class (for example) may be 
supplied to an Array to define its global storage:  Phœnix is written in such a way 
that, when partitioning, the Array will use instances of the sub-class wherever an 
instance of Region would be used by default (all internal objects are created using 
copying rather than explicit creation).  This makes it an easy matter to create an 
Array whose components hold hexagonal rather than square areas of the array's 
elements, simply by defining a Region sub-class with the given shape and passing 
it to the Array constructor22. 

Similar mechanisms may be used to define and utilise new Partition sub-
classes to define novel distribution strategies.  A Partition sub-class is created to 
implement the required policy and is then supplied to the root component of the 

                                                
22Unusually-shaped array decompositions are found in applications such as computational wind 
tunnels, where a polyhedral locale may be used to improve the connectivity betwen neighbouring 
locales[118]. 
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structure to be partitioned.  The structure will then use the sub-class rather than the 
original Partition sub-class henceforth. 

Both these forms of extension are completely type-safe within C++, as the type 
signatures of the member functions ensure that only suitable sub-classes may be 
passed into the collections – it is not possible to pass an 
AssociativePartition sub-class to an array, for example. 

Lateral Extension 

Phœnix naturally encourages the creation of new classes.  If these new classes 
are defined as sub-classes of the Phœnix Object class, they will have the same 
functions and privileges as the basic objects:  they will be available throughout the 
network to any object which know their name;  may be copied and placed into 
partitioned structures;  and may be used safely in a parallel environment. 

A possible weakness is that there is no compulsion on programmers to derive 
new classes from Object (as there would be in Smalltalk), so it is possible to 
introduce classes into Phœnix applications which “misbehave” in some way.  This is 
a result of C++'s class model, which does not force the class hierarchy to be a tree. 

The creation of new partitioned collections is, of course, a major undertaking, 
requiring analogous functions to those contained in the Phœnix collection and 
partition objects to be implemented.  Such extensions should hopefully be needed 
only rarely, if ever, since any data structure may be created by sub-classing one of 
the existing storage architectures, 

6.2.3. Refinement 

We shall now return to the issue of refinement within Phœnix, which is 
concerned with two things:  allowing memory to manipulate data in an intelligent 
fashion and creating novel distributions of data.  The former removes intelligence 
from parallel activities and places it into the memory;  the latter allows the 
distribution of data to be customised.  Both forms of refinement may proceed using 
differential extension of the basic Phœnix structures, so applications may be 
progressively refined. 

Concurrency may in some applications be viewed as a refinement – an example 
would be an algorithm which is first implemented in a sequential manner and is then 
parallelised – but it is more likely that parallelism will be inherent in applications 
from their conception.  Refinement in this latter case takes the form of balancing the 
distribution of a structure using its properties, in order to achieve an optimal trade-off 
between concurrent execution and communications overheads. 

Intelligent Memory 

Making memory “intelligent” essentially creates a memory module which is 
targeted directly at a particular application domain.  This movement from the general 
to the particular may be accompanied by increased efficiency and readability in the 
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resulting applications and, if performed carefully, may allow significant amounts of 
re-use within the domain. 

Since Phœnix separates its Collection class hierarchy into classes providing 
protocol and classes providing a storage model conforming to that protocol (for 
example the AssociativeCollection and Association classes 
respectively) it is a simple matter to supply new storage models for the same 
architecture.  An example might be an array whose storage was created lazily using 
list-based storage rather than eagerly using indexed storage.  It is also possible to 
change the storage model deeper in the inheritance hierarchy, since all storage 
management and access functions are virtual. 

By default, Phœnix' memory modules simply allow access to individual 
elements.  In many applications, however, data may be dealt with in larger chunks – 
entire array rows or collections of logical assertions, for example.  By allowing the 
memory to perform the chunking internally, several advantages accrue to the 
programmer. 

Firstly, an application's activities may deal with large conceptual units rather 
than with the raw units of memory storage.  This allows algorithms to be expressed 
at the appropriate level.  Chunking reduces the communication necessary between 
activities and memory, as more data is transferred per step:  this allows the costs of 
resolution to be amortised across several data items. 

Secondly, a memory may make use of knowledge about its distribution to 
optimise operations for speed.  This weakens the independence of data manipulation 
and data distribution, but is useful as a refinement step.  The simplest example of 
such optimisation would be the caching of recently-accessed data elements which 
were known to be read-only (or not, if cache consistency is implemented in an 
appropriate form).  Another would be the pre-fetching of data in order to service later 
requests faster. 

Thirdly, careful accumulation of intelligence into a memory allows applications 
within the same domain to share the intelligent memory.  An example would be a 
bitmap (a variant of the array) which incorporated image-processing operations:  
many image processing applications could usefully share the common operations.  
The result of this process is the construction of domain-specific toolkits of classes, 
having the advantage over other class libraries that they would be distributed, 
scalable, and parallel, and could make extensive use of parallel processing. 

Specialised Distributions 

It is widely recognised that the distribution of an application has a major effect 
on its performance.  There are several factors to be balanced: 

 
• objects which interact heavily should be placed close together;  

but 
• heavy interactions generate communications hot-paths and -

spots; 
• application peculiarities determine the appropriate grain size 

for distribution;  but 
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• grain size is difficult to determine a priori; 
• completely novel distribution strategies may be useful to 

optimise particular algorithms;  but 
• optimisation is a (usually) performance issue, not a 

fundamental question of design;  and 
• the appropriate distribution may not be immediately obvious 

for a new, complex or irregular application. 
 

The issue of distribution is a complex one.  The common solution is to provide a 
secondary configuration language to allow the distribution of program elements to be 
specified after the fact:  examples of these are the Occam toolset, the Helios 
configuration language, and the Conic and Darwin systems.  Phœnix takes the view 
that distribution, from the general viewpoint, is the concern of the machine, not the 
programmer. This implies that the system takes responsibility for placing objects, 
and allows it to re-configure dynamically. 

The distribution of a memory is controlled by the partition class being used.  
This may be made arbitrarily intelligent by extending from the basic classes, which 
themselves provide a simple distribution suitable for prototyping.  Hence the strategy 
used to distribute data may be refined:  moreover, it is largely independent of the 
data manipulations being performed by the collection. 

Furthermore, properties may be used to provide hints to the distribution 
controller at run-time.  The classes supplied as standard allow various parameters to 
be set, so that their run-time behaviour may be altered – in important but semantics-
preserving ways – until an acceptable pattern is found. 

Covert Parallelism 

One attractive possibility is the use of hidden, or “covert” parallel evaluation for 
complex methods in a scalable memory. 

A method appears to the user as a sequential operation which runs to completion 
and terminates, with the caller being blocked throughout.  Internally, however, the 
method is free to use concurrent techniques to improve its performance.  As a 
refinement step, a simple method may be converted to use parallel evaluation without 
changing the external interface. 

In doing this, a method may make use of all the concurrency regulation features 
of Phœnix.  It may define an Activity sub-class which is then attached to the 
collection being processed, and wait until all the activities thus created have 
completed evaluation. 

The need to use a new Activity sub-class for this operation is a problem with 
Phœnix, as it is extremely inconvenient and results in yet another class definition.  A 
better approach would be to allow activities to be constructed from first-class 
functions – a point which will be addressed later, §6.2.4. 
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6.2.4. Defects 

The problem with the use of a tool kit in programming, rather than a complete 
new language, is that the tool kit can do little to ameliorate problems introduced by 
the host language:  any defects in the host propagate through to the tool kit.  Many of 
the defects which one may identify in Phœnix are a direct consequence of the use of 
C++ as a host language. 

However, Phœnix also suffers from other defects as a programming system.  
Both these classes of defect will be dealt with here:  a third class, those concerned 
with performance, will be deferred until the next section. 

A Hybrid Object Model 

One of the major criticisms of C++ as an object-oriented language is that, by 
inheriting the functionality of C, it allows programmers to break its object model.  
This causes difficulties for the class designer. 

In a “true” object-oriented language, all instances of all entities are objects.  
They may be all implemented in the same way (as in Smalltalk) or some may be 
optimised to provide a better representation, but all are objects conceptually.  In C++, 
built-in types like integers are not objects, and follow completely different rules to 
those of application-defined classes.  C++ makes great use of pointers.  Not only are 
pointers used as object names (§5.2.2), they are also used to represent strings. 

Both these factors complicate the construction of a class library.  In order to be 
useful, the Phœnix collections must be able to store not only all types of object but 
also a variety of different entities which require different handling.  Phœnix would be 
considerably simplified by a host language in which “all objects are equal.” 

Initialisation and Termination Functions 

Another defect in C++ concerns the way in which initialisation and termination 
of objects are performed using virtual functions.. 

Consider three classes A, B and C, where C is a sub-class of B which is in turn a 
sub-class of A.  B defines a virtual function f which is called from its constructor, 
and C re-defines this function. 

Construction of an object of class C occurs by executing the constructors of A, B 
and C in order.  One might expect that the constructor of B would, when calling the 
virtual function f, actually call the re-defined version in C (in accordance with usual 
practice for virtual functions):  in fact, the original version in B will be called.  The 
reason for this is that the constructor of C has not yet executed, and so the re-defined 
version of f may rely on initialisations which have not yet occurred. 

The rule is therefore that a virtual function called in a constructor calls the 
version of that function “at its own level” (or lower) in the class hierarchy.  A similar 
effect is observed (in reverse) with virtual functions called in destructors.  This 
policy prevents errors caused by non-initialised variables and the like. 

An effect of this choice, however, is that it is impossible to define a protocol for 
“top-level” initialisation of derived classes which is called automatically from the 
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constructor.  It is necessary for the user to explicitly call a virtual function after 
construction has occurred.  This is an added complexity, and somewhat at odds with 
C++'s goals of automatic object initialisation and destruction;  it also makes it more 
difficult to create complex class libraries. 

A solution would be to define two new special functions within the language, 
called (for example) Initialise() and Terminate().  Such functions should 
be implicitly virtual, and should be called automatically after construction completes 
(or before destruction commences) to allow top-level initialisation (or destruction) 
operations to be defined virtually. 

Type-safety 

When creating any general-purpose programming system, it is desirable to make 
it as general as possible.  Of all the facets of a system which affect its generality, its 
type model is probably the most profound. 

A statically- and strongly-typed language offers the possibility of creating 
programs in which errors caused by applying operations to inappropriate values can 
be eliminated.  Although based on C – often used as the classic example of a 
language with no type system – C++ has a considerably tighter and more flexible 
type system.  In particular, it allows a particular brand of polymorphism sometimes 
termed inclusion polymorphism (which Cardelli and Wegner[32] define as the 
property that “an operation may be applied to objects of different types related by 
inclusion”) and overloading of both member functions and operators23.  In practice 
this means that an object of type B which is a sub-class of class A may be used in all 
circumstances in which an object of class A might be used, since they share the same 
interface;  the reverse substitution does not hold, as class B may define elements in 
its interface which are not available in class A.  As with most object-oriented 
languages, C++ integrates both polymorphism and overloading through the 
inheritance hierarchy. 

Phœnix uses this form of polymorphism to great effect.  A function may, for 
example, be defined to accept an instance of class Collection and will then work 
with any Collection sub-class.  Similarly, a collection may be refined without 
altering the code which depends upon it. 

However, a major defect in C++'s type system, from Phœnix' point of view, is 
that it does not support two other useful forms of polymorphism:  functional or 
parametric polymorphism[40]. 

Functional polymorphism allows functions to accept arguments of any type, 
which they do no manipulate in any operational fashion.  An example of this would 
be ML[117], where a function such as that which performs the map operation (which 
constructs a list by applying a function to all members of another list) may be defined 
as 

                                                
23There is occasionally some confusion over the difference between overloading and polymorphism.  
Overloading (sometimes called ad hoc polymorphism) allows the same identifier to refer to different 
functions, with the appropriate function being chosen at run-time according to the type of its 
arguments;  polymorphism allows the same function to apply to items of different types, with no run-
time selection necessary. 
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val map = fn [] f -> [] 
   | fn h::l f -> (f h) :: map l f ;; 
val map = fn : 'a list -> ('a -> 'b) -> 'b list 

and can work with any values of 'a and 'b (which represent type names) as it does 
not manipulate values of this type explicitly – it is sufficient to know that the list is of 
some type.  This is similar to the common C (and C++) trick of type-casting values 
which are not used as void *, but with the important difference that casting in this 
way loses all information about the original type of the value. 

Parametric polymorphism is found in languages such as Russell[22], where a 
type may be passed as a parameter to a function.  A Russell implementation of the 
map operation would be 

map == 
 func [ l : val List a ; 
    f : func [ val a ] val b ; 
    a : type {} ; 
    b : type {} ] val List b 
 { 
  if l = Null ==> 
   Null 
  # else 
   f[hd[l]] ^+ map[tl[l], f, a, b] 
  fi 
 } 

whose major difference from the previous definition is that the types a and b are 
passed explicitly as a parameter and is available for use within the function's body, 
although in this case there are no operations defined for them.  In general, it would 
be possible to use any of the operations known to be available on that type, and the 
function could be applied to any type providing these operations – and this type 
conformance could be checked statically24. 

For Phœnix, it would be useful to use both these polymorphic arrangements.  
Collections could then be made type-safe for any type of value stored, without the 
need for sub-classing. 

The templates feature defined in the C++ standard (and the Ada generics 
mechanism from which it is derived) are not equivalent to the above.  A generic 
package in Ada must be instantiated for a particular type at its creation, before use.  
Thus it is not possible to define a generic type List parameterised by the type of 
elements in the list, and to then write a function which will perform map over Lists 
(although one could construct a generic function to do so, which would then itself 
have to be instantiated). 

                                                
24A similar effect may be achieved in languages which allow sub-typing without allowing type-valued 
variables.  In effect, the sub-type information makes available a set of operations which may be used. 
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Storage 

Local memory in Phœnix is represented by the Storage classes 
ListStorage and IndexStorage, which are parameterised by the size of their 
elements and are accessed in a typeless manner.  The use of a parametrically-
polymorphic type system could remove this typeless-ness by allowing the type of 
values which a collection is to hold to be passed to the storage object. 

The use of variably-sized storage is, however, only necessary because of the 
variable size of possible elements, and this is in turn related to the tight coupling of 
objects to memory found in C++.  It is not reasonable to represent integers as objects, 
for example – especially not in Phœnix, where object names are of the order of tens 
of bytes long – and so it must be possible to store shorter values within a collection.  
The use of shorter object names, and the implementation of Phœnix in a language in 
which all object names are of the same, small size (such as Smalltalk) would 
alleviate this. 

The Proliferation of Classes 

 A cursory glance at the Phœnix class hierarchy shows that it contains a large 
number of classes, many of which are largely empty of new functionality but which 
are needed to implement type-safety or some other slight interface variation.  This 
problem is again largely solved by the addition of other polymorphic forms to the 
host language. 

The most problematic feature comes in the creation of Activity sub-classes.  
Every worker task is represented by an instance of such a sub-class.  The creation of 
a new activity is therefore a very heavy-weight operation and, what is more, must be 
performed at compile-time. 

It would be far more attractive to be able to create activities from functions so, 
for example, a new activity could be created simply by instantiating the Activity 
class with the function which it was to execute, rather than defining a new sub-class 
and embedding the function within it. 

In order for this to be practical, functions must be first-class entities,  The 
availability of first-class functions has many advantages, and this additional use as a 
means of defining parallel activities comes “for free.”  It means that a function may 
be created dynamically, according to run-time conditions, and be then turned into an 
Activity. 

6.3. Performance 

Our intention in evaluating the performance of Phœnix is to illustrate those 
features of the partitioned model which most influence an application's efficiency, 
not to evaluate the current prototype as a practical programming environment.  We 
shall first analyse the theoretical sources of overheads in Phœnix, derived both from 
the partitioned model and from its overall implementation, before presenting some 
experimental performance figures. 
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6.3.1. Theoretical Performance 

In performing this analysis one important source of overheads and delays must 
perforce be ignored – those arising from network contention and routing.  The reason 
for this is simply that the very features which allow the partitioned model to scale 
and precisely those features which mitigate against being able to model 
communications patterns to the accuracy necessary to include routing delays.  We 
shall therefore make the assumption that calling any function takes a unit amount of 
time, no matter how the objects are distributed and what else is happening in the 
network. 

Creating and Destroying of Objects 

Object-oriented programming tends to make extensive use of objects with very 
short lifetimes, so the mechanisms for creating and deleting objects can make an 
important contribution to application speeds. 

Creating an object involves three steps: 
 

1. Decide upon the node where the object  is to be created (using 
explicit placement or load balancing); 

2. Interrogate the namer to see whether a class server is available 
on that node; 

2a. If no server is available, interact with the host operating 
system to create one; 

3. Make a remote procedure call to the appropriate constructor in 
the selected class server. 

 
The major cost, of course, is the creation of the class server, which (if necessary) 

will involve calls to the machine's file system.  Once loaded, the class server's 
executable image must be transported across the network to the selected site and then 
started up. 

Deleting an object is somewhat simpler, involving only two steps: 
 

1. Make a remote procedure call to delete the object; 
2. (Optionally) Close-down the server if the it no longer holds 

any objects. 
 

As with the calling of constructors, calling destructors may cause a certain 
amount of additional activity.  The decision as to whether a server should close-down 
when it has no objects remaining is a matter of policy:  leaving the server running 
means that, if objects are created on the node at some time in the future, the server 
must be re-started;  leaving it running may use memory unnecessarily. 
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Accessing  Data 

Data access may be divided into two possible cases:  accessing data which is 
held locally, and resolving data which is held remotely. In the latter case, local access 
is performed after resolution has occurred, so the local-access operation is common 
to both cases. 

Local Access 
Accessing data held locally involves the following steps: 
 

1. Testing whether the element held is held locally; 
2. Acquiring (or possibly failing to acquire) the data, or setting 

the data, or some other operation on the local element. 
 
The locality test is reasonably simple for all the storage architectures.  For an 

array, it involves testing whether a point lies within the component's local region;  for 
an associative memory, testing a hash key prefix;  and for a directed structure testing 
whether the node's parent is one of those whose children are held locally.  All of 
these cases, in the default architectures, involve communication between the 
component concerned and another object, so at least one remote call is needed for 
local accesses. 

If the element being accessed is indeed held locally, then it must be located from 
the local storage.  This operation obviously involves no remote communication, but 
will involve a search of local storage. 

Resolution and Remote Access 
If the locality test fails, then resolution must be invoked.  This involves making a 

request to the partition associated with the receiving component, the resolution 
process itself, and a local data access operation at the servicing component. 

At each stage of the resolution process – i.e. for each partition visited as part of 
the process – some cost will be incurred for further routing.  This cost will always 
include the cost of the remote call made to the partition:  the rest of the cost will 
depend upon the architecture involved. 

For arrays, if we assume that the regional decomposition strategy is used, each 
partition will hold references to (on average) half the total number of sub-regions in 
the array.  In each component, assuming a linear search, each resolution step will 
need to test on average half these sub-regions before finding a match:  therefore, 
denoting the total number of sub-regions by nregions , the total cost per step will be 

given by 1
4

+
nregions  method calls.  For associative and directed structures, resolution 

may occur without any remote communications and will thus take a single call (that 
to the partition) per stage. 
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The total costs of resolving remote data elements is summarised by the table in 
figure 24.  This shows a general pattern in the cost of accessing data:  the initial 
request, a number of resolution steps, and the access to local storage involved in 
accessing the data when it is eventually resolved.  In other words, 

overhead e n f estages( ) ( )= + +1 τ 

where overhead(e) is the overhead involved in an operation accessing an element e, 
f(e) gives the cost involved in the resolution of e, if any, and τ is the local access 
time.  For locally-held data, f(e) is zero;  for associative and directed structures, it is a 
linear function of the number of resolution steps required (i.e. of the metric distance 
between the receiving component and the component holding the element);  for 
arrays it is a product of the number of stages and the number of sub-regions (also 
linear, since nregions  is constant for a given array). 

 
The result for arrays indicates the importance of better distributions in the array 

case:  for large arrays, where nregions  is large, a significant overhead is incurred at 
each stage of resolution;  moreover, it is reasonable to assume that nstages varies with 
nregions , so large arrays will also involve more resolution steps. 

Although the costs of resolution are linear in terms of the number of stages or 
resolution performed, the number of stages is itself often a logarithmic function.  

 
   Structure  

  Arrayed Associative Directed 
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l data 

 1 + τ 1 + τ  1 + τ 
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data 

Request 1 1 1 

 Per stage 1
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 Total 1 1
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1+ +nstages τ  1+ +nstages τ  

 
Key: τ = local access time 
 nstages = number of resolution steps 
 nregions  = average number of local sub-regions (arrays only) 
(All figures are in units of one remote method call.) 

Figure 24:  Analysis of costs involved in accessing data 
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Consider the case with an associative memory:  each level of resolution increases of 
decreases the number of possible values accessible by a multiplicative factor.  The 
resolution complexity of any partitioned collection is logarithmic;  the actual cost per 
stage varies according to the type of collection and the distribution used. 

6.3.2. Experimental Performance 

Rather than fill the section with data, we shall concentrate on the most important 
low-level performance aspects when performing the experiments.  These are the 
factors which affect all other aspects of the prototype's performance, and so are most 
representative of its drawbacks. 

The experiments were performed using Phœnix on the existing Wisdom kernel.  
This is composed of a four-by-four mesh of T800 Transputers connected via a serial 
line (100Kb/s) to a Sun file server acting as a Wisdom host, which is in turn 
connected by a 10Mb/s EtherNet to the departmental filing system.  All Wisdom 
executable programs are loaded using the Sun NFS protocol, with Wisdom itself 
acting as an NFS client. 

For the experiments, Phœnix was instrumented with a class Logger to record 
logging information.  This information took the form of a single asynchronous 
request, and was stored along with a time-stamp and a source-node record.  Logging 
was activated and de-activated through a property. 

The experiments were designed to identify the factors which introduce 
overheads when creating applications with Phœnix, and to quantify these overheads. 

In general, it may be noted that it proved very difficult to obtain timings of any 
real significance for Phœnix.  The system's flexibility in allowing different aspects of 
its behaviour to be changed easily means that representative timings are hard to come 
by:  there is always the possibility that a better distribution pattern exists.  The 
instrumentation used is rather intrusive, and can distort the transport times for 
messages significantly.  Problems were also experienced in the C run-time library 
with regard to the accuracy and length of the system timers, making it impossible to 
obtain long-term timings. 

Basic Properties 

The start-up of a Phœnix application involves the following tasks: 
 

• creation of the master (Application) object; 
• creation and loading of the PropertySheet and Logger 

objects; 
• the running of the Application object's main code section. 
 

The first experiment determines the overheads in this process, which may then 
be discounted in future timings.  The average time taken to start an application was 
recorded by the Logger as 305ms.  This figure, of course, does not include the time 
taken to load most of the object servers – for Logger, PropertySheet and the 



 

- 155 - 

Application – so these occur “before time” and may be discounted in this and all 
future experiments. 

The time taken to run an application which performs no action – simply starts-up 
and then terminates – is 492ms. 

Object creation 
The creation of objects may occur in two modes:  in the first, an object is created 

onto a node which is not running a suitable object server;  in the second, an object 
server is running at the target node. 

In both cases, the number of “hops” (communications links traversed) between 
the creating object and the new object was varied.  In the first case, the results were 
as follows: 
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In the second case, the results were: 
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We can illustrate the difference between these two sets of timings in the 

following graph which plots both timings on the same axes: 
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From this it can be seen that there is a generally linear relationship between 

distance and object creation time, and that the time taken to start a new class server is 
of the order of 6 seconds.  This is a quite appalling figure!  It is somewhat mitigated 
when the current experimental set-up is examined.  Files must be retrieved from the 
host file system across a serial line, which achieves a transfer rate of less than 
100Kb/s.  In addition to this, there is a certain (variable and effectively 
unquantifiable) overhead associated with accessing the departmental file servers.  
(File system design in scalable is discussed extensively by Austin[9][11], and one 
conclusion is that filing systems require extensive kernel support if they are to be 
efficient, especially in the area of large-packet message transport.  This feature is not 
currently available in Wisdom, with the result that file system access times suffer.) 

Still, the figure is quite unacceptable.  It indicates that significant gains in 
performance may be expected if the system has all its necessary code servers loaded 
ahead of time, rather than loading them “on demand.”  This is exactly the approach 
taken by other systems, where all an application's code is assumed to reside on all 
nodes.  For a multi-user scalable system this assumption is not realistic:  in the 
interests of realism, we shall use lazily-loaded code in all experiments, but the 
benefits of eager loading should be borne in mind. 

Method Calls 
An experiment was performed in which method calls were made between 

objects at varying distances.  Three different methods were tried, taking arguments of 
an integer, a string, and an integer and a string.   The results for varying distance 
(averaged over 100 repetitions) were as follows: 
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These figures indicate that the (un-)marshalling time for integers is negligible, 

but that for strings is of the order of 20ms (the marshalling time for reals is 
comparable with that for integers, as is the time taken to marshal an object handle).  
There is a constant overhead of around 20ms from acquiring packets, creating server 
processes et alia.  The time taken to send a method call averages at about 1ms per 
hop (in each direction). 

Partitioned Collections 

Arrays, unlike the other storage architectures, allocate all their elements at their 
creation.  The creation time for various sizes of array were as follows: 
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Note the unusual shape of this graph:  there is a “step” where a significant 

number of components must be created, but then a tailing-off as components are 
placed onto nodes which already have servers running. 

Creating associative and directed collections takes approximately the same time 
as taken to create an array with a single component:  experimentally, this comes to 
around 20 seconds (adjusted)  A more meaningful time is the time taken to split a 
component of such an architecture when one overflows. 

Splitting a Component 
An associative memory splits a component whenever the number of elements in 

that component grows to be too large.  The time taken to perform a split depends 
upon several factors, notably the number of new buckets which are created as a result 
of a split operation and the number of elements which were in the bucket being split 
(both controlled by properties). 

Take as an example a structure with ten-element components which, when split, 
generates four new components (i.e. adds two bits to the hash key).  The splitting 
operation takes 27674ms (creating nine new objects and four new class servers).  
Added to this is the time taken to re-arrange the contents of the split component 
between the new buckets (averaging around 2200ms – ten resolution operations). 

The times for directed structures are almost identical, and are not shown.  This is 
hardly surprising, given the similarity between the algorithms used in splitting both 
structures.  The re-arrangement operation averages at 1800ms. 

Resolution 
The resolution of elements within an array depends upon the distance (in terms 

of resolution steps) between the receiving component and the servicing component:  
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there is also a factor of distance in terms of hops, although this is less significant.  
The following results were obtained by for accessing an array of fixed size, varying 
the targeted element to vary the distance between receiver and servicer: 
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An associative memory incurs similar overheads, but with better linearity due to 

the simpler resolution protocol: 
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A directed collection resolves along edges in a constant time, approximately 

20ms.  Retrieving data from each node follows the same timing profile as retrieving 
from an array. 

Activities 

The time taken to create the replicas of an activity is the main factor affecting an 
application's start-up time.  The time taken to create replicas of an activity 
(performing no action) are as follows: 
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Notice again the “step” in the graph where re-use of servers occurs. 

6.3.3. Discussion 

In discussing the figures arrived at above, we shall start with the admission that 
they are disappointing in the extreme.  There are two main reasons for this:  the 
prototype nature of the low-level support system and the granularity of 
decomposition. 

The low-level supporting system of Phœnix, especially the RPC kit, are very 
simplistic in their approach to communication, and could be significantly optimised 
given time.  In particular, the way in which parameters are marshalled could be much 
improved. 

At present a parameter block is built by moving the value of each parameter, 
individually, into the block.  This is somewhat unnecessary, as there already exists a 
suitable block holding all parameters:  the stack frame of the current RPC stub.  In 
principle the contents of the stack frame could be transferred directly to a parameter 
block;  in practice, the way in which C++ handles certain structures (especially 
strings) as pointers to local memory, and the internal architecture of the Transputer, 
make this rather too difficult.  Given a different, more regular host language on a 
different processor architecture, it would be possible to reduce significantly the 
delays associated with RPC. 

The second problem is more serious.  As mentioned above, Phœnix is written so 
as to be highly modular and hence highly extensible and customisable.  This is 
accomplished by a detailed object-oriented decomposition in which each object 
represents a separate logical entity. 

Unfortunately this results in a profusion of objects.  Consider an array.  An array 
consists of several components, each having an associated Region object holding 
the bounds of its local data.  This arrangement allows new Regions to be defined – 
defining, for example, hexagonal areas of space – without altering the definition of 
the component class.  This makes for easier extension;  it also means that each test 
for locality in a component results in a method call to another object.  Even though 
the Region is likely to be on the same processor as the component, the parameter 
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marshalling overhead is still incurred.  A similar problem exists in associative 
memories, in which slices of hash space are represented by objects. 

The overheads thus incurred are prohibitive, and make Phœnix impractical as a 
programming environment.  Ironically, this is a direct result of proper 
decomposition!  The use of the “correct” discipline results in a severe degradation in 
efficiency. 

In some ways, however, this is point in Phœnix' favour.  It is possible to develop 
software according to the traditional, well-accepted disciplines and have it run in a 
scalable manner – albeit very slowly.  Phœnix then allows an application to be 
refined, and one possible refinement path is to remove some of the auxiliary objects 
– effectively freezing the application into a particular pattern and reducing its 
flexibility – in order to reduce communications overhead and hence improve 
performance.  This introduction of performance after-the-fact may make for faster 
software development times overall, as the early stages may be programmed 
experimentally. 

6.4. Three Examples 

We shall conclude this evaluation by creating some Phœnix applications.  Firstly 
we shall review the practical comparison of Phœnix with the Booch Components.  
We shall then follow the creation of two applications from start to finish.  This 
derivation illustrates the stages which Phœnix encourages in creating scalable 
parallel applications. 

In the examples, the code presented is functionally that required by Phœnix.  We 
have, however, converted the syntax into “pure” C++ rather than use the pre-
processor directives necessary in the current prototype, and have elided some low-
level details.  The structure of the code, however, is that of Phœnix. 

6.4.1. Example One:  the Booch Components 

The Booch Components25 are a library of data structures used extensively in the 
Ada community, and which have since been implemented in Ada, C++ and Ada-9X.  
As an established class library consisting almost entirely of data structures, it offers 
an ideal vehicle for testing the flexibility and extensibility of the Phœnix memory 
modules:  the result is a parallel, distributed and scalable implementation of an 
existing software tool. 

An Overview of the Booch Components 
The most accessible presentation of Booch's work is [24], which covers the 

components' implementation in C++.  The original version of the Components, in 
Ada, is presented in [23]. 

The Component library consists of four orthogonal elements: 
 
                                                

25We shall use the term Component (with a capital C) to refer to the Booch components, to avoid 
confusions with Phœnix' components (with a small c). 
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• abstract data types; 
• internal memory representations; 
• concurrency controllers;  and 
• utilities which may be applied to structures. 
 

The abstract data type classes define minimal abstract data type interfaces to a 
component.  For example, queues, sets, strings, rings, trees and maps are all provided 
as abstract data types.  For each data type one of several memory representations 
may be used, each having a different time/space complexity, which may include 
garbage collection.  Concurrency controllers control access to data structures in a 
multi-tasking environment.  The utilities implement functions such as sorting and 
searching, and may be used in conjunction with structures of several different types. 

The first three element categories exist (in the C++ implementation) as 
independent class hierarchies.  To create a usable data structure, an application 
creates a class which multiply inherits one of the data type, storage management and 
concurrency control classes.  The class itself need provide no extra functions 
(although it can if required). 

Comparing the Components with Phœnix 
Some immediate differences between the Components and Phœnix are evident. 
The primary difference is that the Components are not classes:  rather, they are 

templates from which classes may be constructed by combining an ADT, a storage 
manager and a concurrency controller.  The classes are parameterised according to 
the type of their contents, using the templates mechanism defined in the C++ 
standard. 

Phœnix collections are classes in their own right, containing their storage 
management and concurrency control protocols within them.  The classes are not 
parameterised by type:  instead the basic architecture classes are parameterised by the 
size of elements which they are to store.  Type-safe access is provided by sub-
classing the component class and tightening the type checking at its interface. 

At first glance, it would seem that Phœnix' collections are considerably less 
flexible than the Components.  Their storage management and concurrency 
controllers are in-built rather than being composed from “outside,” and their type 
parameterisation is less safe.  However, the internal architecture of Phœnix makes it 
quite straightforward to implement a new local memory architecture by re-defining 
the collection's basic access members:  this is a result of the careful use of virtual 
functions. The same is true of concurrency controllers. 

Type safety remains a problem in Phœnix.  The templates mechanism of C++ is 
not implemented by very many compilers, and those which do implement it usually 
use some form of macro expansion.  In a shared-memory environment this may be 
acceptable, but its use in Phœnix would be complicated since every new class must 
have its own class server.  Ideally a more flexible type system than that of C++ 
would be used to alleviate these problems. 

Local storage management architecture is slightly less flexible in Phœnix than in 
the Components, as Phœnix aims to maximise the use of global rather than local 
memory.  Phœnix adopts a slightly more cavalier attitude to local memory, but 
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allows global memory to be co-ordinated;  the Components assume that all memory 
is shared, and attempt to optimise its use by providing storage managers which make 
different trade-offs in time and space. 

The concurrency controllers provided for the Components are quite low-level, 
especially when compared to Phœnix' use of deontic logic.  They are tailored for use 
in an environment where concurrency is the exception rather than the norm:  in Ada, 
one might reasonably expect that only a few tasks will share a set of data structures.  
There is no attempt to minimise potential interference between concurrent accesses. 

The Component's associated utility objects – for searching, sorting et cetera – 
are similar in flavour to a set of commonly-needed activities which might be 
implemented easily in Phœnix. 

The most radical difference, of course, is that Phœnix collections are distributed 
and have support for concurrency regulation.  There is no feature in the Components 
corresponding to Phœnix' use of data structures as infrastructures for concurrency 
regulation, and the Components do not address issues of distribution.  Since each 
Component is a single object, they cannot be distributed as they stand even with a 
distributed host language (e.g. [62]).  This makes then unsuited for use in a 
distributed, highly parallel environment. 

Sample Implementations 
Several Components were re-implemented in Phœnix to examine whether there 

were any important gaps in the Phœnix class hierarchy as compared to that of the 
Components. 

A selection of the Components were easily implemented in Phœnix.  These re-
implementations shared all the important features of the Components in terms of 
external interface (functionally, though probably not syntactically, as the C++ 
Components' interfaces are not available in the public domain).  For example, the 
Ring component can easily be implemented using a directed storage architecture.  
(The Components do not provide an array type, as this is provided intrinsically by the 
host language.)  The Phœnix associative memories may be used to implement 
structures behaving like the sets, bags and maps (dictionaries) found in the 
Components. 

The Phœnix implementations were completely scalable, which would not be the 
case with an implementation of the Components.  They provided a better interface 
for concurrent access.  Neither of these two results is surprising, as Phœnix was 
specifically designed with these aims in mind:  it does illustrate, however, that there 
are important differences between computing in scalable and non-scalable 
environments. 

One difference which was discovered was that large-scale queues and lists may 
be highly inefficient in the partitioned model, essentially because of their single 
points of access:  adding to the head of a list must always be directed to the same 
component of the directed structure which composes the list, for example.  
Fortunately such large lists – or, at least, this sort of manipulation of large lists – are 
quite rare, and it is acceptable to create partitioned lists (or queues, or dequeues, or 
other similar structures) as directed collections which are seldom partitioned.  This 
may be accomplished very simply in Phœnix by setting an appropriate property:  the 



 

- 164 - 

result is that all elements of the list will tend to reside on the same processor, which 
has the same problem with hot-spots but avoids any partitioned overhead.  Hence the 
properties mechanism allows problems like these to be addressed without changing 
any of the application's code. 

6.4.2. Example Two:  a Cellular Automaton 

Cellular automata are a commonly-encountered processing model for highly 
regular, highly parallel systems.  They are especially prevalent in simulation studies 
of physical systems such as gases and fluids.  A good overview of the field is 
presented by Wilson[118]. 

Coarse Structure 
A cellular automaton is essentially an array of points, each representing a 

discrete amount of “real” space.  A single point in the automaton has the “average” 
value  of the area which it represents:  the more points the automaton has, the closer 
it will approximate to a continuous space and the better its behaviour will model the 
“real world.”  The value of each point is typically a simple integer or a vector. 

Conceptually, a cellular automaton simulation centres around a large array of 
points, where each point is a structure which holds the properties being modelled as 
they evolve through time. 

Computation in the automaton occurs in the following manner.  A point is 
updated at time t by obtaining the values of its immediate neighbours (and itself) at 
time t-1 and averaging these values.  Hence a point's behaviour is only directly 
influenced by its immediate neighbours (although indirectly it is influenced by the 
entire model), and so the computation exhibits an almost ideal locality of reference. 

Parallelism in such systems comes by updating the values of several points 
simultaneously.  In principle, every point may update its own value:  in practice, in 
automata consisting of millions of points, this amount of parallelism is 
unmanageable and processes are assigned to update the values of a locale of points. 

Points and Access 
A single point within a cellular model may be quite complex.  A simple example 

is a model of electrical field characteristics, where each point holds the field 
intensity;  more complex is a fluid flow system in which each point holds the local 
flow vector. 

It is the updating function – controlling how a point's value is updated by its own 
and its neighbours' values – which determines the functionality of the model.  For our 
current purposes, the details of this function are largely irrelevant:  a set of values 
must be obtained from the array and have a simple function applied to them. 

An important feature of a cellular system is that there may be some amount of 
asynchrony in evaluation.  It is not necessary to force all points to be updated for 
time t before proceeding to time t+1:  it is only necessary to wait for the values of 
those points actually being interrogated to arrive at the current time.  This does, 
however, imply that a point can carry with it a certain amount of its past history, and 
that values from times in the past may be obtained. 
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A Primitive Implementation 
The most primitive implementation possible builds the automaton from the basic 

array class, extended to hold elements of type Cell: 

class Cell : public Object { 
private: 
 ... 
public: 
 Cell( int history =DEFAULTHISTORY ); 
  
 float GetValueAt( int t ); 
 void SetValueAt( int t, float v ); 
}; 

For simplicity, we shall assume that the GetValueAt() operation will block 
until a value for the requested time is set, and that the last value set defines the 
current time.  This may be expressed using a customised Lock: 

boolean CellLock::CanStart( int st, int t ) { 
 switch(st) { 
  ... 
  case SetValueOp: 
   ... 
  case GetValueOp: 
   return (Finished(SetValueOp)>=t); 
 } 
} 

The automaton may be built using the ordinary ObjectArray provided as part 
of the Phœnix extension kit. The cells' values are initially set to zero, with two high-
value “peaks” being placed manually towards the centre of the model: 

ObjectArray *a;   Cell *cell; 
Point p(2, 0, 0), q(2, 10000, 10000); 
Region *r =new Region(p, q); 
 
cell=new Cell;   cell->SetValueAt(0, 0.0); 
a=new ObjectArray(r);   a->Initialise(cell); 
 
cell->SetValueAt(0, 5000.0); 
p.Is(100, 5000);   a->AtCopy(p, cell); 
p.Is(9900, 5000);   a->AtCopy(p, cell); 

A Cell is first created with an initial value of zero.  An ObjectArray is then 
created with the desired dimensions (specified by its two diagonal corner Points), 
and is initialised using this Cell (which will be copied into all values).  
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Initialise() causes the array to be partitioned.  The two peaks are then inserted 
by placing copies of a high-valued Cell into the array. 

Properties 
The scalability of a collection is controlled by several factors, the most 

important of which is the size of each component.  Two considerations affecting the 
selection of a component size are the size of each node memory and the amount of 
work which will be performed on a component by activities. 

The size may be specified as a property by altering the property sheet.  At its 
creation, an arrayed structure acquires this property and uses it as a hint to determine 
the size of components, the number of components created and (indirectly) the 
number of nodes over which the collection distributes. 

In this example, selecting a component size of 1000 elements on each side 
(1000000 elements per component) would result in 100 components, each of which 
might potentially be placed on a different processor;  it would also result in 100 
parallel activities being created to process the array. 

A Customised Access Protocol 
The interface for accessing cells – using the At() and AtPut() operations in 

conjunction with Points – is rather awkward for the current application.  The 
mechanism is designed so as to cope with arrays having any number of dimensions, 
but in the current application we know that there will always be exactly two 
dimensions to the array.  We may thus specialise the ObjectArray class to 
provide a new access protocol which will be more usable: 

class CellArray : public ObjectArray { 
public: 
 CellArray( int x, int y, int d ); 
 
 /* access protocol */ 
 float GetValueAt( int x, int y, int t ); 
 void SetValueAt( int x, int y, int t, 
        float v ); 
}; 

These new functions may easily be implemented in terms of the existing 
interface, but provide a better, more convenient interface for external objects: 
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float CellArray::GetValueAt( int x, int y, 
         int t ) { 
 Point p(2, x, y); 
 Cell *cell; 
 Region *r =GetGlobalRegion(); 
 
 if(!r->Contains(p)) 
  return 0.0; 
 cell=At(p); 
 return cell->GetValueAt(t); 
} 

Note that the new function makes no references to the structure's distribution, or 
to resolution and partitioning:  it is acting, in many respects, as a client to the original 
ObjectArray methods.  This is also true in concurrency control terms:  the new 
function do not require additional concurrency control, as it accesses the component's 
state through an already-protected interface.  It also extends the function of the basic 
access routine by returning zero if the value of a point outside the array is requested. 

Processing 
Performing the processing in the automaton may make use of the concurrency 

regulation infrastructure.  It is necessary to define a new Activity sub-class to act 
as a worker: 

class CellActivity : public Activity { 
private: 
 int simTime; 
 
protected: 
 float Evaluator( int x, int y, int t ); 
 virtual void Body( void ); 
 
public: 
 CellActivity( int st ); 
}; 

The Evaluator() function performs the actual evaluation function, 
calculating the value of a point (x, y) at a time t+1:  
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float CellActivity::Evaluator( int x, int y, 
         int t ) { 
 CellArray *a =(CellArray *) GetCollection(); 
 int dx, dy; 
 float ave =0.0; 
 
 for(dx=-1; dx<=1; dx++) 
  for(dy=-1; dy<=1; dy++) 
   ave+=a->At(x+dx, y+dy, t); 
 return ave/9.0; 
} 

The Body() of the Activity simple calls this evaluation function once for 
each point in the component to which it is attached.  The cycle is repeated once for 
each time step until the requested simulation time has passed: 

void CellActivity::Body( void ) { 
 CellArray *a =(CellArray *) GetCollection(); 
 Region *r =a->GetGlobalRegion(); 
 Iterator iter =r->NewIterator(); 
 Point p(2); 
 int px, py; 
 float value; 
 
 for(t=1; t<simTime; t++) { 
  p=r->First(iter); 
  while(!p.Undefined()) { 
   px=p.Ordinate(0);   py=p.Ordinate(1); 
   value=Evaluator(px, py, t-1); 
   a->SetValueAt(px, py, t, value); 
   p=r->Next(iter); 
  } 
 } 
} 

This activity calculates the mean value of a three-by-three locale of points at a 
time t-1 and uses this as the value for the centre point at time t.  It uses the iteration 
methods of the Region class to iterate through all points held locally by the 
component to which it is attached. 

Executing this Activity involves attaching it to the components of the 
CellArray and waiting for all copies to terminate: 

a->AttachStartAndAwait(new CellActivity(SIMTIME)); 

By using the AttachAndStart() method instead, the activities could be 
started without blocking.  In either case, a copy of the given Activity is attached 
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to each component of the collection, without explicit involvement of the 
programmer. 

Increasing the Granularity of Access 
However, a problem with this architecture is immediately apparent:  since it 

accesses points singly, it requires ten operations – nine reads and one write – to 
update each point.  Moreover, there will be a considerable amount of redundant 
acquisition of information as points are retrieved several times. 

A straightforward solution to the first problem is to implement a new access 
protocol to the array which acquires a set of points at a single call.  This reduces the 
number of calls required from activity to array by an order of magnitude.  Although 
internally the array may still need to make several resolution requests to acquire all 
the elements not held locally, it is likely that many of the elements will be held 
locally (ideally all of them).  In the original architecture, the client activity benefited 
from locality by the absence of resolution requests being generated;  in the new 
system, it also benefits by the fact that no method calls are needed to acquire these 
elements. 

A possible implementation of this new access routine is as follows: 

void CellArray::At(  int x, int y, 
         int t, float v[] ) { 
 int i =0; 
 
 for(int dx =-1; dx<=1; dx++) 
  for(int dy=-1; dy<=1; dy++) 
   v[i++]=At(x+dx, y+dy, t); 
} 

The client activity's evaluation function must be re-written so that it makes use 
of this “chunking” of access: 

float CellActivity::Evaluator( int x, int y, 
          int t ) { 
 CellArray *ca =(CellArray *) GetCollection(); 
 float ave =0.0; 
 float v[9]; 
 
 ca->At(x, y, t, v); 
 for(int i=0; i<9; i++) ave+=v[i]; 
 
 return ave/9.0; 
} 

Although this difference seems trivial, it is crucial.  In the first definition of 
Evaluator(), nine At() calls were made – all to another object.  In the second, 
there is a single At() call in Evaluator() and nine in the new definition of 
At():  but these calls will be made to the same object, and so incur no 
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communications overhead unless they are for points held elsewhere.  At the same 
time, the CellArray memory has become more intelligent and specialised towards 
its application. 

Caching 
The fact that partitioned memory may present an abstract interface may be 

exploited to provide features internally which are not visible externally to client 
objects.  Such additional features may be used to improve performance whilst 
maintaining the same interface – a classic optimisation step. 

The intention is to use the same scheme as mentioned above but to hide it within 
the memory:  elements may then be pre-fetched and cached at the component, and 
may be retrieved from the cache when requested. 

The advantage of this approach is that it requires no modification to client 
objects;  the disadvantage is that it re-introduces the communications overheads 
which the use of external pre-fetching avoids. 

The most attractive architecture, then, is to use the “chunked” data access 
routine to access a component which internally caches remote objects to avoid 
resolution requests. 

In the general case, such caching may be extremely unsafe due to the actions of 
other clients.  There is then a need for a cache-coherence protocol which, in the worst 
case, degenerates into a form of DSVM implemented entirely in software.  However, 
in many cases, the requirements on consistency are less strict:  in the current case, for 
example, the value of a point forms a history trace which is only added to, never 
changed.  Caching of the most recent part of the trace may thus be performed safely.  
This is a good example of the ability of the partitioned model's ability to absorb the 
programmer's knowledge of the application in situations where the details would be 
difficult to extract automatically. 

Rectangular Distribution of Components 
A cellular automaton has a very regular pattern, following the arrangement of 

the space which it models;  moreover, the requests for remote elements will only ever 
be made to neighbouring locales.  A further optimisation is to ensure that 
neighbouring locales are always mapped onto neighbouring processors;  or, more 
precisely, match the distribution of components to the underlying mesh-structured 
hardware.  Such a distribution may be implemented by making use of a novel 
distribution manager (i.e. partition sub-class) which performs this mapping, and may 
be performed without affecting the shapes of the components26. 

                                                
26Actually this is not always entirely true.  Care must be taken to ensure that no hidden assumptions 
about the shape of components are introduced into an application.  With care, however, this is 
possible:  the code fragments given will work for any distribution. 
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6.4.3. Example Three:  an Inference System 

Inference systems are typified by Prolog interpreters. The idea is to solve a 
query deductively by examining a database containing logical assertions and 
inference rules. 

The main part of the inference system is the database of clauses against which 
queries are solved.  The database is a single conceptual structure which may grow to 
be very large, and which may be accessed in parallel if required. 

We shall represent the database as a large associative memory.  We shall make 
the assertion, however, that clauses are never removed from the database, so it will 
only grow in size. 

Resolving queries uses the unification algorithm and may proceed in parallel:  
several different processes may attempt to unify different parts of the database, with 
the results being combined to give the query's final result. 

Clauses and Bindings 
A clause is the unit of storage within the database.  A clause may contain actual 

values and variables, which the unification process will bind onto appropriate values.  
Clauses are generated by parsing strings describing the structure of the assertion: 

struct Binding { 
 string variable, value; 
}; 
 
class Clause : public Object { 
private: 
 Binding **bindings; 
 ... 
 
public: 
 Clause( string str ); 
 
 virtual HashKey Hash( void ); 
 boolean Unify( Clause *clause, Binding b[] ); 
}; 

Calling the Unify() method will attempt to match the free variables in the 
Clause supplied and the target Clause (the unification algorithm is described in 
detail most AI books, e.g. [35]).  The result is false if the two clauses cannot be 
unified, or true together with a set of bindings describing the most general 
unification of the clauses. 

The Clause Database 
The clause database may be represented as a large associative memory 

containing clauses.  As with the previous example, the basic partitioned structure – in 
this case a Dictionary rather than an ObjectArray – could be used:  but we 
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shall bypass this step and develop an interface which is better suited to our 
application. 

The database essentially consists of three operations:  assert a fact, retract a fact, 
and deduce the answer to a query.  The first two are simply variations on the theme 
of access to the associative memory;  the last is a more complex operation involving 
operations on the clauses themselves. 

class ClauseDatabase : 
  public AssociativeCollection { 
private: 
 ... 
 
public: 
 ClauseDatabase( void ); 
 
 void Assert( string cl ); 
 void Retract( string cl ); 
 int Query( string cl, Binding b[][] ); 
}; 

The operations accept string arguments, creating Clause objects to 
represent them internally:  thus the Clause object is never manipulated by clients of 
the database.  All the operations must make use of the ability of Clause objects to 
generate a hash key based on their values.  The Hash() member function must 
return a hash key from the contents of the Clause, and this key will then be used to 
store and access clauses. 

The Query() method functions by unifying the query against all members of 
the database using the clauses' Unify() methods, and returns the set of sets of 
bindings representing all possible unifications across the database. 

As an example, consider the following database containing the logic 
programmer's favourite, a family tree: 

man(simon) 
man(matthew) 
man(chris) 
woman(pamela) 
man(frank) 
woman(betty) 
 
parent(chris, simon) 
parent(pamela, simon) 
parent(frank, matthew) 
parent(betty, matthew) 
 
father(?x, ?y) :- man(?x), parent(?x, ?y) 
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Creating this database involves first creating the ClauseDatabase structure, 
initialising it, and placing clauses into it 

ClaseDatabase *cd; 
 
cd=new ClauseDatabase();   cd->Initialise(); 
cd->Assert("man(simon)"); 

and so forth.  The assertion of new facts and rules may result in the partitioning of 
the clause database memory structure, controlled according to properties from the 
property sheet.  The most important property in this case is the size of each 
component, interms of the number of clauses which it may contain:  exceeding this 
limit causes the component to split.  Smaller component sizes result in more splits 
(which take more time) but allow more concurrent activity to be generated when 
queries are performed in parallel. 

Once built, queries may be made of the database, for example: 

Binding **bind; 
 
cd->Query("father(chris, simon)", bind); 
 true 
 
cd->Query("father(?x, ?y)", bind); 
 {?x=chris, ?y=simon} 
 {?x=frank, ?y=matthew} 

(where the lines in italics represent the results of the queries).  This is an example of 
a sequential query regime being run on a distributed-memory system:  a simple, but 
hardly efficient solution.  For better performance, especially on large databases, it is 
necessary to use parallel evaluation of queries. 

Parallel Querying 
Within Phœnix, a parallel query will obviously involve the creation and 

attachment of Activity objects.  For every sub-clause in a query, an activity is 
created on every component in the clause database to perform the unification.  Each 
activity attempts unification against those clauses which are held by its local 
component.  The result is that a query gives rise to a set of worker activities which 
will eventually return the set of all possible unifications to the creator of the query. 

The activity takes the usual form, but is extended with functions to allow the 
results of a unification to be acquired: 
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class SubGoalProcessor : public Activity { 
private: 
 void SetBindings( int b, Binding b[][] ); 
 ... 
 
public: 
 SubGoalProcessor( Clause *gl ); 
 
 int GetBindings( Binding b[][] ); 
}; 

We shall assume that a single function LocalQuery() has been added to the 
definition of ClauseDatabase which behaves in exactly the same way as 
Query() but only attempts to unify the query with the clauses held locally.  The 
activity's Body() code may be implemented as follows: 

void SubGoalProcessor::Body( void ) { 
 ClauseDatabase *cd =(ClauseDatabase *) 
         GetCollection(); 
 Clause *goal =GetGoal(); 
 Binding **b; 
 int uni; 
 
 uni=LocalQuery(goal, b); 
 SetBindings(uni, b); 
} 

For simplicity, we shall consider the case of a query composed of a single 
clause, which may be answered using the following algorithm:. 

Clause *query; 
Group *g; 
SubGoalProcessor *sgp; 
ClauseDatabase *cd; 
Binding b[][], c[][]; 
 
sgp=new SubGoalProcessor(query); 
g=cd->AttachAndStart(sgp); 
g->Await(); 
 
for(i=0; i<g->Members(); i++) { 
 g->Member(i)->GetBindings(c); 
 CollectBindings(b, c); 
} 
delete g; 
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The operation makes use of the Phœnix Group object to manipulate a set of 
activities en masse:  in this case, a Group is created for the activities evaluating all 
the sub-goals, and the routine waits for all processing to complete before collecting 
the results together into a single set of bindings. 

It is interesting to compare this code fragment against the example presented in 
§2.4.  The structure of the algorithm is exactly the same:  an activity is created and 
attached to a memory.  The creator awaits the completon of the query and then 
amalgamates all the partial answers to form a single result (a set of sets of bindings).  
There is no reference to the exact amount of concurrency generated, or the location 
of elements required in processing queries. 

Refinements and Optimisations 
The refinements which may be appropriate in this application are less obvious 

than those of the previous example, and it may be better to refer to someone whose 
studies of parallel logic programming are an end in themselves rather than the current 
means to an end. – a good example is the work of Wise[121].  A few alternatives 
suggest themselves, however. 

The first is that a predictable hash function, coupled with the predictable nature 
of clauses, may be exploited.  If, for example, all clauses of the form man(?x) are 
hashed with the same prefix, they can be guaranteed to all fall into the same portion 
of the partition tree and it will only be necessary to create sub-goal processors on a 
small portion of the collection's components. 

At present, evaluating a new query requires the attachment of a new set of 
activities.  An alternative would be to create the evaluating activities along with the 
components of the database, and to send queries directly to these activities.  
Specialising the memory interface would allow parallel processing to occur in this 
fashion without the user's involvement. 

6.5. Scalable Memory, Partitioning and Phœnix:  a Judgement 

The preceding sections have evaluated to work presented in the earlier chapters 
from four main perspectives: 

 
• how good is the abstraction of scalable memory when creating 

scalable applications?; 
• how good an implementation of scalable memory is the 

partitioned model?; 
• how well does the Phœnix prototype perform?;  and 
• how easy is it using the model, as embodied in Phœnix, to 

create scalable applications? 
 

We shall here draw together the conclusions reached in each of these evaluations 
to form an overall value judgement on the system. 

The idea of a scalable memory which may be distributed transparently across the 
nodes of a multicomputer system is a very powerful one.  When compared with other 
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similar systems it offers advantages over them all, and suffers from few of their 
disadvantages. The ability of a data structure – a large, user-defined, strongly-typed, 
scalable collection of elements accessed using meaningful names – to be used as a 
programming metaphor is a major simplification over other parallel processing 
paradigms. 

The partitioned object model is a good implementation of the scalable memory 
abstraction.  Again, it offers several large advantages over other possible 
implementations:  it is potentially more flexible and tailorable than either Linda or 
DSVM, and would allow these systems to be implemented in itself if required.  
There is little or no loss of abstraction when moving to a partitioned system;  
moreover, a partitioned data structure may be configured very finely to take account 
of any application-domain knowledge.  The collections may also be used to regulate 
concurrency in a scalable manner. 

However, the partitioned model suffers from a handicap when compared to 
recent Linda and DSVM implementations, in that these systems make use of 
dedicated hardware.  No software-only system can hope to compete against a rival 
which uses hardware assistance to improve its performance.  Partitioning is less 
susceptible to enhancement via hardware, although a machine designed exclusively 
to support its object model would be a major step in this direction. 

The scalability of the system is closely tied to its use of “hints” supplying 
important parameters.  Currently the best values for these hints must be determined 
experimentally:  it would be better if this process were automated to some extent.  
Although the use of hints is an improvement over the re-compilation required by 
other systems, it falls short of the goal of truly transparent scalability. 

Phœnix is very much a prototype system, and lacks several features which 
would be needed in a “real” programming system.  Its host language's type system  
and object model are not ideal – although this illustrates that a partitioned system can 
be implemented in a variety of host languages.  The lack of optimisation, in both the 
host and the RPC system, coupled with the fine decomposition of the Phœnix class 
hierarchy, means that performance suffers as a result of the large number of method 
calls made.  Flexibility, in this sense, is a drawback. 

The model is, however, extremely easy to program in.  If applications are built 
around large data structures – and a sizeable fraction are – then the partitioned model 
and Phœnix may be used to create a working application in a remarkably short time.  
This basic applications may then be refined to remove some overheads – effectively 
performing the reverse of an object-oriented decomposition –  in order to improve its 
performance.  There is no reason in principle why such refinement might not result in 
an application as efficient as one written using a lower-level programming system:  
in practice, it is doubtful that refinement would be carried so far. 

The partitioned model offers good potential for the creation of applications able 
to tolerate faults in the underlying hardware.  Although we did not examine fault 
tolerance experimentally – due to constraints of time and of available hardware – 
there is reason to suppose that a partitioned system might be built which was 
extremely resilient to faults.  An experimental verification of this would be 
interesting future work. 
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6.6. Résumé 

This chapter has sought to evaluate the work set down in the preceding chapters, 
with a view to deciding whether the ideas presented really constitute a viable 
approach to scalable parallel programming. 

The scalable memory abstract was examined.  The abstraction was seen to hide 
some of the more troublesome characteristics of multicomputer systems, whilst 
providing a means of regulating the distribution, and hence the concurrency, used in 
solving problems. 

The partitioned object model was seen to be a good implementation of the 
abstract memory model, with advantages over all the possible alternative 
implementations – although it also suffers from disadvantages, notably its use of 
software-based routing of requests. 

The Phœnix prototype was examined and was seen to be deficient in several 
respects.  The use of C++ as a host language outlawed some desirable language 
features – notably true polymorphism and the creation of activities from first-class 
functions – which were seen to be advantageous to a partitioned system.  The 
system's performance, from a theoretical standpoint, was seen to be free from 
bottlenecks as long as the application exhibited locality of reference, but its practical 
performance left much to be desired.  As a programming system, however, Phœnix 
was seen to offer great scope for fast prototyping of applications, followed by 
stepwise refinement to improve performance as an optimisation step.  The need to 
consider the exact distribution of applications from the start of development was thus 
removed. 

 
 





Chapter 7. 

   

Conclusions and Further Work 

To live only for some future goal is shallow.  It's the sides of 
the mountain which sustain life, not the top.  Here's where 
things grow.  But, of course, without the top you can't have 
any sides.  It's the top which defines the sides.  So on we go ... 
we have a long way to go ... no hurry. 
 
 Robert M. Persig, Zen and the art of motorcycle maintenance 

This thesis has examined some aspects of programming on machines whose 
hardware and software resources are dynamically variable.  Such scalable machines 
offer considerable hope for “future-proof” computing, as their capabilities may be 
incrementally increased as required to support a larger user base, more 
computationally complex applications et cetera.  The central theme has been the 
development of an abstract  programming model, an implementation architecture and 
a programming environment for creating scalable parallel applications.  Such 
applications are capable of taking advantage of whatever resources are available in 
the machine at run-time, without re-compilation. 

7.1. Réprise 

Chapter one explored the concept of scalability in all its forms, concluding that 
the essence of something's being scalable was its ability to cope gracefully with 
changes in its fine structure whilst maintaining its gross structure.  It then reviewed 
the existing literature in three areas:  machine architectures, operating systems and 



 

- 180 - 

programming environments for parallel distributed machines.  The focus of this 
review was on the scalability of the various systems described. 

Of all the available multicomputer architectures, only those architectures 
maintaining a constant number of links per node were seen to be scalable in our 
sense.  Although hypercubic architectures are scalable in some respects, adding 
additional nodes requires that all the nodes in the system are upgraded with extra 
links. The design of operating systems for these machines was a challenge, as it 
requires a substantial degree of information hiding to shield applications from 
changing number of processing nodes. 

Many of the programming environments described in the literature were seen to 
offer the possibility for creating truly scalable applications, but few procedural or 
object-oriented systems provided a sufficient degree of architecture-independence for 
scalable applications to be constructed easily. 

Given this, chapter two developed a more abstract view of scalable computing.  
It began by examining the nature of programming systems in general, concluding 
that all such systems are built using layers of abstraction.  This allowed us to take the 
view that toolkits built on top of programming languages nevertheless provide the 
programmer with an abstract machine on which to write applications.  For a scalable 
system, such an abstract machine could be seen as implementing a model of memory 
and processing which was highly divorced from the underlying hardware and 
software base:  this allows applications to be constructed using a shared-memory 
model whilst retaining a large degree of scalability. 

Chapter three developed an object-oriented implementation of the abstract model 
of scalable memory, built around the notion of object communities constructed to 
implement highly scalable memory modules.  These communities appear to the 
programmer as common data structures.  They are composed of many objects which 
interact to present the illusion of a single logical entity.  This means that a data 
structure may be created which is as large as required by an application, 
unconstrained by architectural features such as the size of individual node memories. 

A collection of techniques were developed for the creation of such memory 
modules.  These techniques included the design of a novel hashing algorithm with 
highly scalable and distributed characteristics.  The complexities and access 
characteristics of the various approaches were analysed, as was the ease with which 
the structures might be extended to provide application-specific functions.  
Consideration was also given to the effects of failures within the machine, and the 
ability of the partitioned model to degrade gracefully. 

Chapter four addressed the problems implied for concurrency control and 
regulation by the introduction of scalable processing.  Concurrency control was first 
dealt with:  while no new model or algorithm was presented for concurrency control 
in a scalable environment, a suitable system was devised from a fusion of the deontic 
concurrency control logic of DRAGOON with the auxiliary control objects of 
Arjuna.  This fusion is extremely flexible, allowing applications to specify complex 
concurrency control constraints simply. 

Concurrency regulation was introduced by the observation that a multiple-
worker approach is very well-suited to a system with shared memory.  The number 
of tasks may be controlled automatically by the partitioned collection itself, with all 
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co-location and replication occurring transparently.  Support may be provide for 
termination detection, speculative concurrency et cetera. 

No new programming system is complete without an experimental 
implementation, however simple.  Chapter five described Phœnix, an implementation 
of the partitioned object model in C++.  Phœnix follows closely the descriptions of 
chapters three and four, with some restrictions introduced by the syntax and 
semantics of C++.  The implementation is basically a virtual object space within 
which partitioned collections may be built:  all the features of the partitioned model 
are supported.  Considerable emphasis was placed on the construction of a “clean” 
class hierarchy with features for easy extension. 

Chapter six presented the results of the evaluation performed on both the 
partitioned model and Phœnix.  The use of scalable memory was judged to be a good 
abstraction for scalable computation, and the partitioned object model showed many 
advantages over the other possible implementation strategies.  The class of 
algorithms suited to partitioned computation was identified. 

The Phœnix prototype was analysed in detail.  It was found to be a good 
implementation of the partitioned model in terms of its theoretical complexity and 
the support which it provided for the creation of parallel applications.  Some case 
studies were used to demonstrate the ease with which a Phœnix application may be 
first prototyped and then refined into a more suitable form.  The practical 
performance of Phœnix, however, was shown to be prohibitive, as too much 
overhead was introduced by the underlying system and by the fine level of 
decomposition performed to maximise the system's flexibility:  ironically, a good 
object-oriented decomposition is what destroys the system's performance.  
Identifying these causes, however, lead to methods by which the overheads might be 
eliminated. 

Some of the deficiencies of Phœnix were also seen to derive from the use of 
C++ as a host language.  The major problems with C++ in this context were 
identified. 

Contributions 

The research described has, it is believed, made the following contributions to 
the field of programming language design for scalable systems: 

 
• a thorough discussion of the concept of scalability in all its 

manifestations – from hardware, through algorithms, to 
applications; 

• a novel parallel programming model which views memory, 
rather than processing, as the central component of a parallel 
system, around which processing may be centred in a scalable 
and flexible manner; 

• a collection of implementation techniques which allow true 
shared-memory computing to take place in a distributed-
memory environment, using the abstract programming model; 
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• a novel algorithm for building large hashed data structures 
which is scalable, distributed and free from bottlenecks;  and 

• some insights on language and operating system design for the 
next generation of scalable systems, in the light of the 
experience gained in the course of the research. 

7.2. Further Work 

The work presented in this thesis is, of course, not an end in itself.  It has 
suggested several course of study for the future. 

A Language for Partitioned-model Programming 

The design of the partitioned object model has been an experiment in the design 
of a programming system, differing from a programming language only in as much 
as that it may be implemented in any one of a number of possible host languages.  By 
identifying the features in the host which most act to the benefit (or detriment) of the 
partitioned model (§6.2.4), it is possible to draw some conclusions about the form of 
an “ideal” scalable parallel programming language, in which the ideas of scalable 
memory are embedded. 

The model rests on the initial contention that the distributed nature of 
multicomputer memory should not propagate to the programmer, in the sense that it 
should not make the construction of applications more complicated unnecessarily.  
The way in which it should propagate is by allowing more efficient, more parallel, 
more scalable applications to be constructed.  This allows the power of 
multicomputer architectures to be harnessed whilst hiding the difficulties which they 
introduce. 

A language based on the partitioned model presents memory as a collection of 
typed abstract memory modules, to which activities are attached.  This means that the 
methods by which data is structured within the language must be very flexible.  In 
particular, it is important that data structures may be introduced using type 
parameterisation or polymorphism.  This greatly increases the generality of memory 
modules. 

A more important contribution comes from the provision of first-class functions.  
The ability to build new concurrent activities ex nihilo at run-time is something 
which is seriously missed in Phœnix:  although providing no essential advantages in 
terms of expressibility, first-class functions make the creation of general-purpose 
tools very much simpler.  (Interestingly, first-class code is a feature of Smalltalk – 
the first object-oriented language – but not of many of its descendents.) 

Once we have the ability to create worker tasks “on the fly,” we reduce the 
number of classes required by an application.  The code which an activity is to 
execute is simply a parameter – especially when the types of elements contained by 
the activity are also parameterised. 

Indeed, the ability to pass code to objects as parameters raises some questions 
about the nature of objects.  What is the distinction between a method and a function 
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passed as a parameter?  Does it make sense to change the text of a method 
dynamically?  These are interesting directions for the future. 

A Better Implementation 

The most pressing need is for an implementation of the partitioned model which 
is better than Phœnix in terms both of performance and of language design. 

The factors contributing most to Phœnix' poor performance were identified in 
§6.3.3:  the poor implementation of remote procedure call, coupled with the 
overheads involved in dynamically creating class servers.  Optimising RPC is a 
difficult and time-consuming task, although experience on other projects indicates 
that it is feasible.  The size of code servers may be reduced by allowing some 
portions of the server – the RPC management especially – to be shared by all the 
class servers on a node.  Both these improvements would have a considerable effect. 

Another alternative is to implement a virtual machine interpreter running on 
each node.  The code for the various objects is then simply passed to this interpreter.  
Such an organisation is more portable, but incurs a penalty through the use of 
interpretation.  Such a strategy interacts well with the ideas of first-class functions 
and other high-level constructs, however. 

Applications Experience 

It is difficult to evaluate the success or usability of a new programming approach 
without developing a significant amount of code with it, and naturally it is difficult to 
obtain such experience in a limited time. There is also a natural reluctance on the part 
of third parties to invest time programming an experimental system. 

Phœnix is not a practical vehicle with which to perform large-scale 
programming, but with a better implementation it would be possible – and eminently 
desirable – to obtain more practical experience with the construction of realistic 
partitioned-model applications. 

In particular, there is a need to experiment with the configuration of scalable 
applications.  There area great many factors which must be balanced to achieve an 
optimal configuration and, although some small experiments in this line were 
performed, meaningful results could only come from prolonged use of the system. 

Some form of tool support for generating configurations, or for assessing the 
effects of changes, would also be beneficial.  The latter case could take the form of 
additional instrumentation of partitioned collections (activated by a property) which 
analysed resolution traffic.  It is then possible to determine the effects of different 
property values by examining (for example) the different number of remote requests 
generated by activities 

Fault Tolerance 

Fault tolerance in the partitioned model was discussed briefly in §3.5, although it 
was not embodied into Phœnix;  nor is the Transputer a suitable testbed. 
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Implementing a partitioned system on a different architecture would make it 
possible to test the ability of the partitioned model to withstand faults in its hardware 
and software.  The techniques outlined in §3.5, although quite minor, offer the 
potential for a highly fault-tolerant memory architecture to be constructed. 

7.3. Conclusion 

The partitioned object model has been shown to be a possible programming 
environment for creating highly parallel, highly distributed, highly scalable 
applications.  It has several advantages over other systems. 

The most notable advantages are in the areas of abstraction and refinement.  The 
model provides a very good abstraction over a scalable machine, hiding the issues of 
data distribution and concurrency regulation from the programmer.  The programmer 
is presented with a system based on large scalable memory modules which manage 
distribution of data elements automatically. 

In contrast to many other systems, the partitioned model still allows the 
programmer to exert a marked degree of control over data distribution.  This control 
comes from two sides:  the ability to supply run-time parameters, and the ability to 
provide totally new distribution controller.  The former allows factors such as 
component size, tree structure et cetera to be controlled at run-time, without re-
compiling the application and possibly making use of automatic tools;  the latter 
means that new distribution algorthms may be introduced. 

The abstraction over the hardware view of memory allows programmers to 
create applications very quickly using the partitioned model, without being 
immediately concerned about distribution.  The exact distribution of an application 
may be left until it is debugged and working, at which point different distribution 
patterns may be applied a posteriori if required.  The distribution of elements has no 
semantic relevance, and so need only be considered where performance is an issue.  
This is a major simplification over other parallel programming systems. 

Some of the techniques developed may have uses outside the current work.  The 
best example of this is the scalable hashing algorithm, which might form the basis for 
a distributed name server or a database engine.  The algorithm might also be used to 
manage data stored on disc:  by decomposing both the data and index table of a 
hashed data structure, it would allow better control over what parts of the structure 
are brought into memory.  

Concurrency concerns the programmer in two ways:  controlling concurrent 
activity to avoid interference and regulating it to determine how many concurrent 
activities to deploy as part of an application.  The first is tackled on a per-object basis 
by using concurrency control objects coupled with a deontic logic for the 
specification of constraints;  the latter is addressed using the memory infrastructure. 

The partitioned model contains support for the multiple-worker paradigm for 
concurrency control.  Concurrent activities may be created which access a scalable 
memory to transform it in some way.  These activities are replicated according the 
memory's size and distribution, with the scalable memory itself determining how 
many replicas to create and where to locate them.  An application may thus treat 
parallelism as indeterminate:  it specifies when parallel activity is to occur, but does 
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not specify how many activities should be created or where they should reside.  
Memory organisation controls concurrency, regulating the number of activities 
automatically.  This allows concurrency to scale alongside memory. 

Although not considered at length, partitioned data structures might form a good 
basis for a fault-tolerant memory architecture.  Their abstract nature means that fault 
tolerance may be added, to some extent, internally, without being visible to clients. 

Applications may be written using a very simple abstract model – that of 
scalable memory and automatic concurrency regulation – and this is a major 
simplification over other systems.  The penalty is increased execution times due to 
the amount of communication involved in resolving requests for data. 

If flexibility is the great strength of the partitioned model, then performance is 
its major weakness.  Although all the structures and algorithms used in the system 
are completely scalable, the fine-grained decomposition of applications into objects 
means that efficient performance in practice is governed by the efficiency of the low-
level communications system;  nor is the model as amenable as other systems to the 
use of hardware accelerators. 

The ability to incrementally refine applications' distribution patterns, however, 
may be used to reduce unnecessary communications.  In the limit, this refinement 
might result in a system with exactly the same properties as one constructed in (for 
example) Occam, with manual data placement and concurrency regulation.  An 
application might be prototyped using the partitioned model and then refined into 
another, more efficient form. 

A long-term aim is to investigate the creation of a practical programming system 
based around the ideas in this thesis, with the appropriate language support and 
including support for fault tolerance and hardware assistance.  This would lead to a 
high-level, practical approach to scalable parallel programming. 
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Appendix A. 

   

A Formal Treatment of Partitioning 

Any new technique benefits from a formal treatment:  it allows the properties 
and interactions of a system to be presented unambiguously.  In this appendix we 
present a formal treatment of the partitioning technique introduced in chapter 3, 
using the Z notation[105].  The specification was generated using the University of 
York's CADiZ type checker and formatter for Z[66]. 

 



Objects and Collections
We shall begin by defining a rudimentary object space. Values stored in

collections are identified by abstract identifiers.

[VALUE_ID]

There is a single identifier which represents the "null" object.

NULLVALUE_ID : VALUE_ID

Values are identified within collections by names < array index tuples, hash
keys, edge labels et cetera.

[VALUE_NAME]

A collection is a community of component and partition objects. These
objects may also be represented in the system using abstract identifying values.

[COMPONENT_ID, PARTITION_ID]

Similarly, there exist privileged objects identifiers representing the "null"
component and partition object.

NULLCOMPONENT_ID : COMPONENT_ID
NULLPARTITION_ID : PARTITION_ID

Local storage within a component, where values are stored, may be seen as a
(finite partial) function from a values names to value identifiers.

STORAGE == VALUE_NAME VALUE_ID

A component object is an instance of an abstract type having a system-unique
identifier, a partition to which it is attached, a (possibly infinite) set of names which
it may store locally, and a binding from some or all of those names to values.

COMPONENT
cid : COMPONENT_ID
part : PARTITION_ID
localNames : VALUE_NAME
local : STORAGE

dom local localNames

Partition, similarly, are named instances of another abstract type. One
element of this type is a disjoint union of possible descendents of a partition, which



may be components or other partitions.

TREENODE_ID ::=
ComponentTreeNodeID COMPONENT_ID |
PartitionTreeNodeID PARTITION_ID | NullTreeNodeID

A partition itself is composed of a unique identifier, a parent partition’s
identifier, and a sub-mapping table of this disjoint union, accessed using value
names.

PARTITION
pid : PARTITION_ID
parent : PARTITION_ID
submap : VALUE_ID TREENODE_ID

The identifiers for the objects, held within the abstract values, act to all intents
and purposes as object names (or pointers to) single shared instances of the abstract
type. Such names may be dereferenced uniquely by ensuring that only at most one
object has the given identifier. The "system" of partitioned collections is
essentially a set of component and partition objects < for simplicity we shall
consider stored values to lie outside the system being specified. Every object
within the system has a unique name.

SystemObjects
componentObjects : COMPONENT
partitionObjects : PARTITION

c1, c2 : COMPONENT |
c1 componentObjects c2 componentObjects
c1 . cid = c2 . cid c1 = c2

p1, p2 : PARTITION |
p1 partitionObjects p2 partitionObjects
p1 . pid = p2 . pid p1 = p2

This completes the description of the object space.

Collections and the System

A collection may be seen as an abstract value composed of a number of
components and partitions and having a set of value names which it may resolve.



COLLECTION
componentIDs : COMPONENT_ID
partitionIDs : PARTITION_ID
resolvable : VALUE_NAME

The system is defined as a set of collections. The members of a collection
possess a structural relationship to one another, and not to members of any other
collection.

SystemCollections
collections : COLLECTION

coll : COLLECTION | coll collections
#coll . componentIDs = 1 coll . partitionIDs =
#coll . componentIDs > 1
( c : COMPONENT | c . cid coll . componentIDs

c . part coll . partitionIDs)
( 1 r : PARTITION | r . pid coll . partitionIDs

r . parent = NULLPARTITION_ID)
( p : PARTITION | p . pid coll . partitionIDs

p . parent = NULLPARTITION_ID
( q : PARTITION |
q . pid coll . partitionIDs q p
p . parent = q . pid))

For partitions, there is a notion of a partition being "above" another if it or one
of its descendents holds a reference to that partition in its submap table.

_ above _ : PARTITION PARTITION

p1, p2 : PARTITION
p1 above p2

p2 . parent = p1 . pid
( p3 : PARTITION

p3 above p2 p3 . parent = p1 . pid)

Partitions and components are related by the fact that a given partition may
contain in its submap table an entry relating to a local element of a component.
This partition is said to "resolve" the component; moreover, by virtue of the
partitioning technique, any partition which is below a partition which can resolve a
particular component can itself resolve that component.



_ resolves _ : PARTITION COMPONENT

p : PARTITION; c : COMPONENT
p resolves c

ComponentTreeNodeID c . cid ran p . submap
( q : PARTITION

p above q
ComponentTreeNodeID c . cid ran q . submap)

The complete system may be defined as the synthesis of objects and
collections together with the additional constraint that every resolvable value name
must be held locally by exactly one component.

System
SystemObjects
SystemCollections

coll : COLLECTION | coll collections
vn : VALUE_NAME | vn coll . resolvable

1 c : COMPONENT | c . cid coll . componentIDs
vn c . localNames

Resolution
"Resolution" is the process by which value names are mapped onto

components by traversal of the partition tree. The resolution operation accepts the
value name being sought and a target component, and returns the name and the
component which holds the name locally. The target and servicing component will
always be in the same collection.



RESOLVE
id? : VALUE_NAME
target? : COMPONENT_ID
id! : VALUE_NAME
service! : COMPONENT_ID
USystem

coll : COLLECTION |
coll collections target? coll . componentIDs
id? coll . resolvable service! coll . componentIDs
( c : COMPONENT | c . cid = service!

id? c . localNames)
id! = id?

The resolution operation relies on the fact that, from any component in a
collection, there is a path to a partition which can resolve the component holding
the required data item. If we represent the parameters to a resolution operation as
the receiving and servicing components, dereferenced from their identifiers and
ignoring the value name for the present:

ResolutionParameters
rec? : COMPONENT
ser! : COMPONENT

then this property may be stated as follows:

ResolutionParameters; System

coll : COLLECTION | coll collections
rec? = ser! rp resolves ser!
( p : PARTITION | p above rp p resolves ser!)

where

rp : PARTITION

rp partitionObjects
rp . pid = rec? . part

This property may be proved trivially as the partitions form a tree with
references at every node to all components below: therefore there exist either no
partitions or a single root partition able to partially route any request. In other
words,



System

coll : COLLECTION | coll collections
coll . partitionIDs =
( 1 p : PARTITION |

p partitionObjects p . pid coll . partitionIDs
c : COMPONENT |
c componentObjects
c . cid coll . componentIDs p resolves c)

It is this property which allows a partitioned collection to behave as a single
resource, with all components acting as pseudonyms for each other, whilst still
maintaining an essentially distributed nature.

Creating and Manipulating Collections
If a component is judged to be full, it may be split. Splitting has an important

property: it is value-preserving across the set of mapped names, even though the
contents of components and the object population may change.

SPLIT
id? : VALUE_NAME
service? : COMPONENT_ID
id! : VALUE_NAME
service! : COMPONENT_ID
6System

collections’ = collections

( oldcoll, newcoll : COLLECTION |
oldcoll collections
collections’ = collections \ {oldcoll} {newcoll}
oldcoll . resolvable = newcoll . resolvable
oldcoll . componentIDs newcoll . componentIDs
oldcoll . partitionIDs newcoll . partitionIDs)

This operation will be used in defining user-level access operations.
The overall collection-creation function must simply generate some collection

which can contain all the value names specified.



CREATECOLLECTION
global? : VALUE_NAME
root! : COMPONENT_ID
6System

c : COMPONENT | c componentObjects c . cid = root!
componentObjects componentObjects’
partitionObjects partitionObjects’
coll : COLLECTION
coll collections coll collections’
root! coll . componentIDs

Operations
We shall define two operations on collections to illustrate the process: getting

a value and assigning to a value. All operations share a common framework: the
supplied ideitifier is resolved to the correct servicing component, at which the
activity specified by the operation occurs.

Getting the value of a name from a collection simply involves accessing the
local storage function of the servicing component. The result of the operation is
the value associated with the supplied name, or the null value if no such association
exists.

RETURNVALUE
id? : VALUE_NAME
service? : COMPONENT_ID
value! : VALUE_ID

id? c . localNames
(id? dom c . local value! = c . local id?)
(id? dom c . local value! = NULLVALUE_ID)
where

c : COMPONENT

c . cid = service?

The entire get operation may be represented as the composition of resolution
and storage access.

GET RESOLVE RETURNVALUE

Altering a value < assignment into a storage function < is slightly more
complex. The alteration of the servicing component involves modifying the



component selected, over-riding its storage function to reflect the assignment.

ALTERVALUE
id? : VALUE_NAME
service? : COMPONENT_ID
value? : VALUE_ID
6System

id? c . localNames
( newc : COMPONENT

newc . cid = c . cid newc . part = c . part
newc . localNames = c . localNames
newc . local = c . local {id? value?}
componentObjects’ =
componentObjects \ {c} {newc})

partitionObjects’ = partitionObjects collections’ = collections
where

c : COMPONENT

c . cid = service?

Since assignment may cause a component to be split, the full operation
involves resolution, (possibly) splitting, and storage over-riding.

PUT RESOLVE SPLIT ALTERVALUE

One might similarly define a value-removal operation by subtracting a pair
from the appropriate local storage function, and so on: the point is that all
operations are composed as resolution-plus-action. Similarly, high-level user-
defined operations may be defined as compositions of the basic operations.
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Wisdom 

The Wisdom project investigated the design and implementation of a general-
purpose scalable parallel computing engine (SPCE) based on an extensible mesh of 
processing nodes.  The principal product of the project is an operating system 
nucleus which provides the minimum support necessary for running communicating 
tasks on such a processor mesh.  At the time of writing, a prototype of the Wisdom 
nucleus has been implemented for a mesh of Inmos T800 Transputers. 

 

B.1. The Wisdom Nucleus 

Wisdom creates a virtual machine in which a (potentially vary large) number of 
communicating tasks are executed in parallel.  Inter-task communication is 
performed through a capability-based message-passing system, not through a shared 
primary memory, so communicating tasks can be executing on different processing 
nodes.  Although Wisdom distributes tasks amongst the available nodes, tasks are not 
aware (unless they want to be) of their location, or the location of tasks with which 
they are communicating.  This location transparency means that the user can think of 
a Wisdom system as being the same as a traditional time-shared computer, except 
that tasks really execute in parallel rather than having their executions interleaved.  It 
is hoped that this abstraction will encourage programmers to produce applications 
composed of a large number of communicating tasks.  Such applications would 
execute on a Wisdom system with any number of processors, but should run more 
quickly on a Wisdom system with a large number of processing nodes since each 
task could be executed on a separate node. 
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The Wisdom nucleus runs on each processing node in the mesh, and is 
composed of four principal components (or modules) (figure 25).  The modules are: 

 
• tasking module – manages the allocation of memory and 

processor time between the tasks running on the node; 
• load balancing module – manages the creation and distribution 

of new tasks amongst the nodes.  When a new task is created 
the load balancing module examines the load of its own 
processor and of its four immediate neighbours.  The new task 
is then created on the processing node with the lowest load.  
(There is a threshold function used to avoid conspired 
thrashing:  see Murray[92] for details.).  This style of load 
balancing results in tasks spreading-out in a “ink-blot” pattern 
(see figure 26); 

• routing module – manages the transfer of messages between 
tasks on the same or different processing nodes.  A 
capability[88] abstraction is used to allow tasks to identify the 
destination of messages without having to know the targeted 
task's location.  A capability is a user-space object with a 
single reader (its creator) but may be written to by any task 
which has a copy of it.  Capabilities may be freely exchanged 
in messages.  At present the routing modules on all nodes co-
operate to move message around the network using a store and 
forward routing mechanism:  this is a consequence of the lack 
of routing hardware on the Transputer, and could be rectified 
by a different processor design or a routing co-processor; 
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Figure 25:  The Wisdom nucleus 
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• naming module – provides a way for tasks to associate a 
textual name with a capability.  Other tasks may then obtain a 
capability to a task if they know its textual name.  Although 
naming module is considered to be part of the nucleus, it runs 
as a user task. 

 
In addition to the nucleus, other prototype software has been developed to 

provide a primitive user interface to the Wisdom system.  This includes a simple file 
system that allows programs to access the department's NFS-based file server 
network and Unix services, a shell, and  small number of utilities. 

B.2. The Filing Systems 

The Wisdom nucleus, by itself, does not constitute a working operating system:  
there is, at the very least, a need to be able to access files.  Two file systems have 
been provided for Wisdom. 

The first is a simple attachment of the Wisdom system to an external NFS file 
server.  A library of file system calls interact with a process which converts file 
system requests into TCP/IP requests, which are then sent to another process running 
on the host system:  this host then places these packets onto the EtherNet to which 
the NFS servers are attached.  Returning data is handled in a similar way.  This 
structure allows Wisdom to access the filing system of its host, using the most 
widely-available network file system standard.  As a bonus, Wisdom applications can 
also use the TCP/IP libraries to communicate with any process running on the host 
via sockets[12], and the system can also provide a proper log-in suite using the host's 
password protection scheme. 

The more interesting file system is an experimental project called Sage[11].  
This project involved the creation of a filing system explicitly designed for use on a 
scalable parallel computing engine.  It makes extensive use of caching:  files are 
cached as near as possible to the site at which they are used[9], with processes 
sharing caches for common files.  The system also identifies commonly-used, 
infrequently-updated files (such as system binaries, font descriptions and the like) for 
optimised handling. 
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B.3. Wisdom in Use 

The intention is that a Wisdom system would be used to serve a group of users 
in the same way as a traditional time-shared computer.  One Wisdom system with an 
appropriate number of processing nodes, some secondary storage devices and other 
peripherals would have terminals or workstations connected to it by high-bandwidth 
links.  The connection points of the terminals would be distributed evenly throughout 
the mesh so that each user would start programs off at a separate point in the mesh 
and his (or her) tasks would flood-out from this point (figure 26).  (In a Wisdom 
system using Transputers the connection points must be at the edges of the mesh 
since only the Transputers at the periphery have a free communications link.)  Users 
would be allowed to use any terminal connected to the mesh, regardless of the 
terminal's connection point. 

The current Wisdom nucleus presents the user with an environment very similar 
to that of Unix.  A full-function shell allows files to be examined and executed direct 
from the host filing system, and most of the standard Unix tools are available.  This 
is a marked contrast to most parallel systems, which must access filed data using 
some other, less convenient mechanism. 
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Figure 26:  A Wisdom system in use (showing load balancing) 
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