
Rutherford Appleton Laboratory
Computing and Information Systems Department

Council for the Central Laboratory of the Research Councilshttp://www.cclrc.ac.uk/

Threads in a Modular World Wide Web
Server

http://www.cis.rl.ac.uk/proj/www/docs/threads.ppt

Simon Dobson
S.Dobson@rl.ac.uk http://www.cis.rl.ac.uk/people/sd/contact.html

Overview
World Wide Web

The STONES architecture for distributed information servers

Threaded aspects of STONES
• protocols
• connections
• administration and advanced services

Benefits and lessons

Conclusions

2Threads in a Modular WWW Server

Who is this man?
Senior Research Fellow in the Computing and Information
Systems Department of the Rutherford Appleton Laboratory

Interests
• programming abstractions and languages
• distributed system architectures
• formal aspects, especially type systems, program

analysis and transformation

Projects
• TallShiP - high-level sharing for parallel programming
• part of CCLRC’s central WWW team

3Threads in a Modular WWW Server

The World Wide Web
Conceived at CERN as a medium for storing and sharing
information on large co-operative projects

Has since evolved into the primary way to provide and
access data across Internet

• client/server distributed architecture on Internet scale
• hyperlinks between pages
• multimedia - text, images, videos, virtual worlds...
• large repositories of information on most subjects
• search engines for locating pages
• increasing integration with database back-ends

4Threads in a Modular WWW Server

CCLRC’s Interest in WWW
We see WWW - and what it may become - as one of the
most exciting new areas of computing science

• member of W3C since Spring 1995
• co-founded ERCIM W4G in Autumn 1994

Interests:
• database integration and information retrieval
• graphics (CGM) and virtual reality (VRML)
• enabling protocols and technologies
• page and web design

All Laboratory information is accessible via WWW interfaces

5Threads in a Modular WWW Server

The STONES Architecture - Rationale
We want to investigate novel applications of WWW

Existing servers tend to be optimised for performance, rather
than for maintenance or extensibility

We needed a well-engineered, modular, extensible WWW
server to act as an experimental testbed

• add additional services without disruption
• ease of maintenance
• portability - across platforms and languages
• performance is far less important to us than these

6Threads in a Modular WWW Server

The STONES Architecture - Design
Different sorts of documents, different protocols
• objects and sub-typing

Configuration at the level of a document store, not a protocol

Activities within the server are mostly independent
• a thread for each activity (connection, protocol)

Highly changeable configuration
• a thread controlling each “module”
• protect (and minimise) shared data

Threads prominent in the architecture from the beginning

7Threads in a Modular WWW Server

The STONES Architecture - Overview

Protocol handler

Connection handler

Document store

user
information

system
configuration
database

Resolver

N
etw

ork

f : URL -> Document

8Threads in a Modular WWW Server

Multiple Protocols
An information server needs to be able to interact using a
number of network protocols

Protocols are independent, in the sense that they can run
together, but share a common configuration

Each protocol handler runs in its own thread, creating
protocol connection objects as required

• each protocol completely independent - simultaneous
support

• shared document store and shared configuration

Adding or removing protocols is trivial

9Threads in a Modular WWW Server

Multiple Connections
Each connection is handled by its own thread

• requests proceed independently once accepted
• latency hiding for document store/network accesses
• time-consuming requests need not impact on other

clients

Threads sequence a single connection but separate
multiple connections

Long-lived connections (i.e. under FTP) may accumulate
information about the client, for better processing. This
information is local to the thread handling the interaction

10Threads in a Modular WWW Server

Advanced Services
Consider other services, such as cache maintenance or on-
the-fly system optimisation

These are completely independent of request servicing

Without threads one would need to control the interleaving of
requests, to prevent a service monopolising the system at
the expense of other activities

With threads, one may run such services in parallel with
normal request servicing without change

Entire server needs to be thread-aware, e.g. cache manager
shouldn’t change a cached document while it’s in use

11Threads in a Modular WWW Server

Abstraction
Threads are a vitally important piece of abstraction - as
important as procedures, types or objects

A thread isolates a locus of activity, without shutting it off
from the application’s shared data

Each thread can proceed independently, without other
threads being aware of them…

…as long as care is taken so that no data structure is
corrupted through concurrent accesses

Threads combine well with event loops - direct events to the
appropriate thread, and there process them sequentially

12Threads in a Modular WWW Server

Design Decisions and Trade-offs
It is very easy to get carried away with all this freedom, so
remember…!! Threads cost !!

Example design decision: do we create a new thread for
each new HTTP connection accepted, or have a pool of
threads and assign connections to them?

• the former leads to maximum parallelism, but the
server can become saturated under heavy load

• the latter is less parallel but easier to manage, as the
number of workers is bounded

Note that this is not an architectural issue per se

13Threads in a Modular WWW Server

Programming with Threads
Most languages and libraries provide laughably inadequate
support for programming with threads

What you want:
• high-level management of threads, especially pools
• thread-safe objects and collections

What you get
• a thread handle
• a standard library that isn’t thread-safe
• semaphores, or monitors if you’re really lucky
• a sincere hatred of concurrency

14Threads in a Modular WWW Server

Portability - or lack of it
Different operating systems, and different languages,
provide different thread facilities

• threads in the language layer can lead to inadvertent
lock-outs, i.e. on blocking file accesses

• threads can’t always be suspended
• overheads vary wildly

A language with thread support built in (i.e. Modula-3) at
least gives portability across platforms, but will often only
support the lowest common denominator of capabilities

The basic problem is the low-level use of threads

15Threads in a Modular WWW Server

The Good Thread Guide
1. Clearly identify each independent resource and locus of

activity at design time

2. Create a thread to manage each shared resource

3. Create (or acquire) a thread for each independent activity

4. Unless something is absolutely, definitely, forever private,
make sure it’s thread-safe

5. Consider using pools of threads, to simplify management

6. Consider having a thread to watch over your application

7. Remember that threads can unravel

16Threads in a Modular WWW Server

Conclusions
Threads have helped greatly in creating a modular,
extensible WWW server

Threads were included from the very start of design, as an
aid to abstraction not as an aid to performance

In a complex system, threads will almost certainly simplify
the management of independent activities…

…and may improve performance too, given the right problem
running on the right hardware

Current programming languages just aren’t adequate for real
applications programming

17Threads in a Modular WWW Server

