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Abstract—Epidemic-based communications, or “gossiping”,
provides a robust and scalable method for maintaining a knowl-
edge base in a sensor network faced with an unpredictable
network environment. Since sensed information is often pe-
riodic in time, protocols should be able to manage multiple
messages in an efficient way. We describe a mathematical
model of gossiping dealing with multiple messages. We present
simulation results that suggest the model can provide insights
into the design and optimisation of sensor networks in the
case of dissemination of periodically generated data. We show
that it is possible to control data freshness without increasing
overhead, and quantify the importance of topology in achieving
timely dissemination.
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I. INTRODUCTION

Wireless sensor networks (WSNs) [1], [2] pose particular
problems of robustness and tolerance of component fail-
ures. The network must remain functional despite losses of
individual links and nodes, and must retain and transport
sensed information. Since most WSNs involve battery- or
self-powered nodes, efficient power utilisation is also critical
in order to maintain sensor and network longevity. Long
lifetimes must however be balanced against the desire to
measure the events that the network has been deployed to
sense. This complicates power management decisions.
Epidemic communications – “gossiping” [3], [4], [5],

[6] – can provide an effective means of transferring data
around a WSN. Gossiping replaces the traditional pro-
ducer/consumer model of networks, in which consumers
request information from sensors, with a flatter peer-to-peer
structure in which information is propagated and replicated
between nodes. This has many advantages, including better
management of the load and an improvement of robustness
and performance [3]. However, the scheme also impacts
the power consumption, storage, bandwidth, data integrity
and freshness of the network. Consumers cannot explicitly
request the most up-to-date information, and conversely may
expend resources maintaining information in which they
have no interest. A principal component of data integrity
is providing bounds on the time taken for sensed data to
percolate through the network and reach consumer nodes.

Moreover, since many of these trade-offs vary dynamically,
WSNs require significant autonomic management [7].
In this paper we present a new simple model of gos-

siping on a WSN. The model describes dissemination and
interaction of periodically sensed data, which are distributed
by gossiping without increasing the traffic on the network.
The model also allows to control data freshness and to
define the best sampling frequency. Moreover, the model
is a useful tool to explore the effects of network topology
and size. We employ techniques widely used in physical
and life sciences – and indeed part of our intention is to
expose these techniques more widely within the computer
simulation community.
Section II briefly describes gossiping in the context of

WSN management, and section III presents our new model,
the Multi-Rumour Overwriting (MRO) model. Section IV
presents simulation results for different network topologies,
while section V concludes with some future directions for
this work.

II. BACKGROUND
A. Gossiping
In many systems the communications patterns observed in

a network follow the function that the system implements, in
the sense that (for example) communications will be targeted
by consumer nodes and information-producer nodes, with
the producers of more “interesting” information receiving
more traffic. This approach is simple, intuitive and modular,
but poses two significant problems:
1) Hot spots and hot paths. Nodes can become over-
loaded with requests for service, both as end-points
and through routing traffic.

2) Single points of failure. If a node serves the data it
collects, its failure will result in data loss.

The intuition behind gossiping is to remove this link
between traffic and function. Information sensed by one
node propagates across the network through a series of
exchanges based on local node communication. The random
nature of communications removes hot spots and hot paths,
whilst the pervasive replication of data makes the system
relatively immune to local failures or changes in node
populations and connectivity (“churn”).



The topic of formulating flexible and reliable gossiping
protocols has attracted considerable interest in recent times.
Among the many approaches, the work by Levis et al. [8]
presents a very efficient algorithm, named Trickle, which is
reminiscent of gossiping models widely applied in social
networks [9]. With Trickle, the two typical problems of dis-
seminating information to all nodes in a sensor network and
collection of information towards a single sink node in the
sensor network are both cast in such a way that they can be
solved by implementing a protocol of eventual consistency.
Gossip-based communication provides an elegant solution to
this problem. Trickle implements an adaptive protocol which
increases or decreases the speed of contact between nodes
based on information appearing in the network.
Many other gossip and non-gossip style protocols exist

for the dissemination of information across sensor net-
works. The SPIN family of protocols [10] addresses the
problems of message implosion and energy conservation.
Directed Diffusion [11] tackles dissemination in a non-
gossip style, setting up communication gradients over which
information is routed towards interested nodes. Barrett et
al. [12] gave us probabilistic protocols which take into
account network information in setting the probabilities for
information retransmission. However, the goal in their case
is routing of information towards a single collection sink,
rather than dissemination across all nodes. More recently,
RAPID [13] uses probabilistic forwarding and gossip-based
eventual consistency in conjunction with parametrically con-
trolled retransmission probabilities (based on local density
as in [14]) to provide a practical dissemination protocol for
wireless networks.
A possible problem of gossiping is that the information

available locally may not be the most recent available in the
network, and this poses challenges for some applications. In
this paper, we focus on the particular problem of dissemi-
nating periodically sensed information to all nodes across a
WSN. Our aim is to study the effect of network topology
and to present a simple model able to control the age of the
diffusing messages, without increasing network traffic.

B. Information propagation in networks
The analysis of a general gossiping system involves

relating the propagation of information to the topological
properties of the network. This is a problem encountered
in many domains, and may be tackled using a suite of
techniques sometimes referred to as network science.
The number of edges going out of a node is called its

degree. The most important characterisation of the network
topology is the degree distribution P (k), the probability
that a randomly-chosen node has degree k. The tail of
the degree distribution at high k plays an important role
in characterizing the properties of the network. A simple
example is a random graph, also known as the Erdős-
Rényi model, which can be represented as a network with

Poisson degree distribution [15]. This distribution represents
the standard topology of a network without correlations.
Another important degree distribution is the power law
P (k) ∼ k−α. Because of the absence of a characteristic
scale (a typical degree which measures the speed of the
decay), the corresponding networks are called scale-free.
Scale-free networks constitute one of the most common
topologies in many real networks [16], [15].
In epidemiology, such network topologies are used to

study the spread of disease infections through a population,
with nodes representing people and edges representing social
contact. This is clearly similar to the propagation of in-
formation through gossiping in a communications network,
so similar methods can be used to analyse the critical
parameters and how they affect the information flow [6].
Two of the simplest models describing such processes are
the SIR and the SIS model [15].
The SIR model is the simplest model of an epidemic

disease such as influenza in society or a virus in a computer
network. At any time each node is in one of three possible
states: susceptible (S), meaning they are healthy, but they
can catch the disease if exposed to it; infective (I), meaning
they have the disease and can pass it on and recovered
(R), meaning they have caught the disease but have become
immune, so that they can neither catch it nor pass it on. The
disease spreads from an infective (I) node to the adjacent
susceptible nodes with probability β and each infective node
has a probability to become immune (R) equal to some
constant γ. Without loss of generality, one can set γ = 1
and define λ = β/γ as infection rate. The general question
about the SIR model is whether the network will end up
with a large major fraction of recovered nodes, or most of
them will remain susceptible. The SIS model is the simplest
model for endemic disease, in which nodes transition from
susceptible, to infective, and then become susceptible again
instead of achieving immunity. Here the disease can either
vanish or persist in the network.

III. THE MRO MODEL

Information flow in a WSN is quite similar to these two
models, but in the case of WSNs there are clearly some
complications. On one hand, we wish to consider different
pieces of information (e.g. different sensor observations)
propagating through the network simultaneously. This is an
important practical issue that traditional models do not ad-
dress and we believe that a thorough theoretical investigation
can be of great assistance in improving existing algorithms.
On the other hand, differently from epidemic models, we
seek complete infection of the network rather than seeking
to avoid it. For the purposes of autonomic management, we
wish to identify the impact of different parameters on the
ways in which information spreads. We refer to spreading
information as a rumour, and consider single and multiple
rumour systems.



We represent a WSN in a very simplified way: every
sensor constitutes a node in a network and the edges between
nodes connect sensors which are within their communication
range. As a further simplification, we assume that sensor
movement is not an important issue. This second require-
ment can also be regarded as the hypothesis that sensors
move much slower than data and messages, and network
topology does not change qualitatively. Now the goal is not
to understand the spreading of a disease, nor to elaborate
strategies of preventing an outbreak; on the contrary, the aim
is to obtain a high fraction of recovered nodes at the end of
the process, possibly with a minimum amount of traffic.
Rumour spreading has been studied by a number of

theoretical approaches. A possible approach is to modify
the SIR model as in Moreno et al. [9], where infective
nodes remain infective until they attempt to communicate
with another infective or recovered node: such a node then
recovers with a rate γ. Otherwise an infective node continues
to spread the rumour indefinitely.
In this context, reliability is defined as the final fraction

of recovered nodes: a network is more reliable if it has a
higher fraction of nodes that hold the information.
We propose a different approach, which aims to be more

realistically close to the behaviour of WSNs. Our model is
a modification of the SIS model, where the infection rate λ
represents the probability that at each time step a node sends
a rumour to one of its neighbours. This cannot be generally
set to one, since we consider the possibility of fluctuations
of the coverage range, due to temporary or permanent
obstacles, intermittent battery power, etc. Differently from
the SIS model, though, nodes do not get back to a susceptible
state (becoming similar to the SI model). This can be
considered a problem for practical implementations, because
in real WSNs sensed information has not infinite validity, but
there is a maximum time beyond which it becomes surely
unreliable. However, we will see later that this issue is taken
care of by an overwriting procedure.
The main novelty of the model is the fact that we do

not consider a single rumour, but a set of them generated
by the same node with period ∆τ . Moreover, as soon as
a rumour touches a node infected by a different rumour,
the newer overwrites the older. This characteristic describes
a scenario quite common in sensor networks, where we
want more recent data to overwrite older data that may still
be propagating. An example may be periodic updating of
firmware running on the sensor nodes, where every sensor
needs just the latest update, and not all the old updates
inserted in the network.
The advantages of the model are:
1) Information is fresher on average than with a single
rumour.

2) There is no overhead due to checking the statuses of
the neighbouring nodes to decide on further spreading
of the rumour.

We refer to this model as the Multi-Rumour Overwriting
(MRO) model. The MRO model was implemented in Java
and experiments were conducted using the Peersim [17]
discrete event simulator.

IV. RESULTS
A. Dissemination characteristics
As an initial step, we have tested the behaviour of the

MRO model on uncorrelated networks, taking into consid-
eration Erdős-Rényi and scale-free topologies.
In the case of scale-free networks, we define the degree

distribution as P (k) = (α − 1)mα−1/kα, where m = 2 is
the minimum degree and α is the power law exponent. The
networks have been generated by implementing an algorithm
to obtain uncorrelated networks without multiple edges and
self-connections [18] – fairly obvious properties for WSNs.
For this reason, the maximum degree M has always been
set M ! N1/2, where N is the number of nodes.
At the beginning of each simulation, a random node is

chosen as a starting point of the generated rumours. Rumours
are created sequentially with a period ∆τ . In Figure 1,
we compare the time evolution of the fraction is(t) of
infected nodes by a single rumour with the one produced
by several rumours i(t) =

∑n
r=1

ir(t), generated every
∆τ = 12. We consider a network of scale-free topology
with α = 3 and infection rate λ = 0.1. This choice of
the parameters is only an illustrative example. It can be
seen that the model has a smooth behaviour with respect
to λ, whereas the choice of ∆τ is convenient because it
is comparable to the characteristic time of the epidemic
spreading. Accordingly, what we are interested here is to
show the qualitative behaviour of the model. Once the
general patterns are understood, this work can be useful in
designing protocols where parameters are tailored to suit the
specific problem.
In the case of single rumour, the fraction of nodes which

receive the message for the first time increases monotoni-
cally as in an avalanche-like behaviour: first the infection
propagates slowly, then it grows very rapidly, and finally
slowly saturates. In the multi-rumour case, we also observe
a three step growth of the global fraction of infected nodes.
The time required to sweep the whole network is roughly the
same as in the case of single rumour, and the discrepancy
appears to be a random fluctuation. This similar behaviour
coexists with the fact that the fraction of sites containing a
given type of rumour never gets close to 1. The reason is that
every infective node spreads randomly any information with
the same infection rate, and every rumour originates from
the same node. On the other hand, rumour overlapping does
not increase the traffic per unit time, because the overwriting
rule eliminates every duplicate. Indeed, it is quite clear from
Fig. 1 that it is not necessary to impose an explicit maximum
age for rumours, because when rumour frequency is high
enough, a spontaneous overwriting of old rumours occurs.
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Figure 1. Time evolution of the fraction of infected nodes i in a scale free
network with exponent α = 3, total number of nodes N = 103 , and infec-
tion rate λ = 0.1. Results are averaged on 10 different simulations, with a
different randomly chosen injection node. The red diamonds represent the
fraction of infected nodes in a single rumour scenario. The blue crosses
represent the total fraction of infected nodes in the network, in simulations
where the rumours are generated with period ∆τ = 12. The other curves
represent the fraction of nodes infected by a particular rumour.

We define the overhead of the dissemination by counting
the number of “useless contacts”, i.e. the contacts between
an infective node and another node infected by the same
rumour or a newer one. In figure 2(a) we show the compari-
son of overheads. The one with multiple rumours has lower
overhead per unit time than the case with single rumour. The
overhead is significantly reduced by the fact that in a large
number of contacts a newer rumour replaces an older one. In
fact, the mean message age grows initially up to a constant
value, which depends on the rumour frequency (1/∆τ ) and
the infection rate λ (figure 2(b)).
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Figure 2. Comparison between the single- and many-rumour scenario.
Parameters are as in Fig. 1. (a) Overhead per unit time versus time. (b)
Time evolution of the mean age of rumours stored on the nodes.

The inflection point on the curve i(t) can be considered
a measure of the characteristic time of the dissemination
(Fig. 1). In order to improve effectiveness, it may be
desirable to choose the node where to start the dissemination
from. We consider the degree k as a criterion to choose
this injection node. Fig. 3 shows how the characteristic time
depends on the degree of the injection node. We observe
that the characteristic time decreases with the degree, as
expected. It is interesting to note, however, that the im-

provement of choosing a higher degree initial node is less
and less important for increasing k, so that there is not a
substantial difference, in the given example, between k = 20
and k = 40. This trade-off should be taken into account to
improve the protocol efficiency.
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Figure 3. Characteristic time of a λ = 0.1 dissemination (calculated as
the inflection point of i(t)) versus degree of the injection node. Scale-free
network with α = 3 and N = 104.

B. Control of message freshness

We have seen that each node in the network, after a
transient period, receives a new message which overwrites
the older ones within a range of time intervals which
oscillates around a mean value. We can express this concept
by defining the mean age of messages stored on the nodes
in the network. This characteristic of the network can be
fully controlled by tuning the parameters λ and ∆τ . In
Fig. 4 we show the dependence of the mean rumour age
on the message generation period ∆τ , for different values
of infection rate λ. The simple linear behaviour allows to
easily determine the rumour frequency necessary to obtain
a desired mean message age. We can also observe two
interesting properties. First, the slope of the curve does not
appear to depend on the topology, and even the absolute
values of the mean age are very similar. Second, the protocol
is perfectly scalable with network size. In fact, comparing
the plots for two different orders of magnitude in network
size (Figures 4(a) and 4(b)), it is evident that this char-
acteristic line remains very stable both in terms of slope
and actual age values. This striking scalability is due to the
fact that, generally speaking, rumour age on a given node
does not depend on the distance (e.g. shortest path) from
the injection point (and thus the network size), but only on
the delay between two different “waves” of rumour copies.
Moreover, the mean time spent by a rumour on a node
essentially depends only on λ and the shortest path between
two successive infected regions, which is fairly independent
from the topology. Hence, the low influence of topology on
the characteristic curve.



0

100

200

300

0 100 200 300 400

〈
a
g
e
〉

∆τ

λ = 0.1
λ = 0.3
λ = 0.5
λ = 0.7
λ = 0.9

(a)

0

100

200

300

0 100 200 300 400

〈
a
g
e
〉

∆τ

λ = 0.1
λ = 0.3
λ = 0.5
λ = 0.7
λ = 0.9

(b)

Figure 4. Mean rumour age versus ∆τ for different infection rates λ.
Scale-free network with α = 3 and size N = 103 (a) and N = 104 (b),
respectively.

C. Topology comparison
We have compared the behaviour of the model with

different network topologies. In figure 5, i(t) is plotted for
a single rumour for scale-free networks with α = 2.5, 3, 3.5
and an Erdős-Rényi network, characterized by a Poissonian
distribution P (k) = exp(−z)zk/k!, where we choose the
parameter z roughly close to the mean degree of the scale-
free networks (to be able to check the sole effect of the
standard deviation). Decreasing the value of α, information
dissemination becomes easier, and the rapidity of the infec-
tion increases, as expected. Quite interestingly, the behaviour
of the evolution of i in an Erdős-Rényi graph is in between
the ones of the scale free networks. One would rather expect
a slightly slower growth [19]. The reason is due to the small
size of the considered networks (N = 103), which magnifies
the importance of finite-size effects. Indeed, simulations of
larger networks (as in Fig. 6 for N = 104) show that the
avalanche shifts to lower times for α = 3 and α = 2.5.
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Figure 5. Time evolution of infective nodes for networks with different
topologies (〈k〉 is the measured mean degree). Single rumour scenario,
λ = 0.1, and N = 103. The inset shows the overhead per unit time for
the same topologies.

A wireless sensor network rarely involves more than
1000 components, meaning that it is not always advis-
able to assume the validity of properties which have been
demonstrated for infinite network sizes. Topology affects
the characteristic time of the infection in a complex way.
Dissemination is very fast in large scale-free networks with
α ≤ 3, but for α > 3 Erdős-Rényi graphs may be more

effective. Also, epidemic spreading is more effective in
Erdős-Rényi networks with higher average degree, because
there is a greater fraction of highly connected nodes, which
enhances the dissemination.
It is also interesting to look at the overhead per unit

time plotted in the inset of Fig. 5. Consistently with the
behaviour of i(t), the overhead is characterized by a three
step behaviour. In the second stage of the evolution, the
slope of the overhead per unit time of the scale-free networks
decreases by increasing the exponent α. The reason is that
the dissemination becomes less and less rapid because the
“hubs” of the network have lower connectivity on average.
The Erdős-Rényi network takes on average more time to
exhibit significant overhead, because of the smaller amount
of highly connected nodes. Then, the overhead per unit time
gets quickly to saturation, at a constant which equals λ〈k〉,
the mean number of infected nodes per unit time in the
steady state.
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Figure 6. As in Fig. 5, but for N = 104.

It is tempting to conclude that, quite surprisingly, a rela-
tively sizeable network of 1000 nodes still does not show an
extremely strong dependence of dynamical properties from
topology issues. Indeed, from our simulations it emerges
that topology influences the characteristic time of gossiping
with a factor around 2, which can be easily compensated
by an improvement of the infection rate. This underlines the
generality of this approach, that can be applied to a number
of different problems in sensor and computer networks.

V. CONCLUSIONS
In this paper we have presented simulation studies of the

way in which an information base with frequent updating of
sensed data can be maintained using gossiping in a WSN.
The proposed model is an attempt to find a novel strategy to
optimise data dissemination in WSNs. This strategy consists
in multiple overwriting rumours which are randomly spread
from a node to its adjacent neighbours. This scheme does not
affect the reliability of the dissemination or the global traffic,
but improves the average freshness of information stored
in the nodes. Moreover, it allows us to control the novelty



of distributed information, efficiently managing the traffic
and limiting the diffusion of old messages. As a further
advantage, the model allows us to simply control the amount
of old information without forcing it explicitly.
Whilst most work on gossiping has occurred in the do-

main of overlay networks (for example [5]), such techniques
may be inefficient in case of a very different physical
network. In fact, it may be impossible to deploy a WSN
according to a scale-free or a Poissonian topology, even
though it may be desirable for rapid dissemination. However,
it should be observed that a random deployment of identical
sensors constitutes an Erdős-Rényi network by definition,
provided the communication range is large enough to ensure
the formation of a large connected cluster. Investigating the
topology of typical deployments, and links between topology
and behaviour form a key challenge for the future. A natural
direction of further research is also to focus on node failure.
Finally, we have observed that the model deals with static

networks: some degree of local movement does not affect the
basic results, as long as the time scale is much larger than the
time of sweeping the whole network and the topology is not
completely changed. Moreover, localized movements may
also be represented by a lower infection rate λ. In a more
thorough study of this problem, the mobility of nodes must
be taken into account, allowing some degree of rewiring
of the network over time: if sensors can move, they may
leave the coverage area of some sensors and get connected
with others. Apart from such improvements, the MRO
model appears to be a general, efficient approach to data
dissemination in WSNs with periodic sensed information.
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