University of | FOUNDED

St Andrews | 1413
ORACLE

for Research

Moving a scientific computing
system to the cloud

Simon Dobson and Peter Mann
Complex and Adaptive Systems Group
School of Computer Science, University of St Andrews UK

simon.dobson@st-andrews.ac.uk pm78@st-andrews.ac.uk
https://simondobson.org https://peterstandrews.github.io/
http://mastodon.scot/@simoninireland https://twitter.com/PMannStAndrews

Slide 1 of 10

mailto:simon.dobson@st-andrews.ac.uk
mailto:pm78@st-andrews.ac.uk
https://simondobson.org/
https://peterstandrews.github.io/
http://mastodon.scot/@simoninireland
https://twitter.com/PMannStAndrews

Introduction

* Complex and adaptive systems

* Microscale interactions give rise to difficult-to-predict
macroscale behaviours

* Disease epidemics, protein interactions, metal fatigue, ...

* Lots of numerical simulation of stochastic processes

* Challenges and opportunities in moving to the cloud

* Architectural flexibility
* Autoscaling interactive code

_* Performance tuning

Slide 2 of 10

epydemic

* Process simulation on networks and other structures

* Epidemics, synchronisation, percolation, ...
* Networks and (soon) simplicial complexes -

* Maths helpers, network generation, ...

* Gillespie simulation

 Simulating stochastic processes . &

* Large networks, lots of repetitions
(all independent) éf

* Each individual experiment takes
from <5s to >20mins

Slide 3 of 10

Why move to the cloud?

* Scalability

* Tackle larger, higher-resolution simulations

* (Possibly) work with significantly larger networks (using
ograph databases’ query optimisation)

* Modern virtual infrastructure
* Run on someone else’s computers (a.k.a., the cloud)
* Easier sharing and deployment

* Spin-up instances of the entire infrastructure

v

We’re grateful for support from Oracle for Research ORACLE
in the form of cloud credits and expertise to call on for Research

Slide 4 of 10

Issue 1: Maintaining flexibility

* Originally tried to replicate our “classical” cluster
« 1pyparallel for comms, redis for synchronisation
* Not the right model for modern platforms

e Embrace virtual infrastructure
kubernetes

* Containerised implementation of our scientific code
(unchanged apart from a small web API)

 Gateway API as a single point of CONtact pupos wiin cver sracures

* RabbitMQ co-ordinates all the work requests and results

* Works with (rather than fighting against) the model

__* Deploy locally for debugging, same intertaces

Slide 5 of 10

Architecture

Can add extra steps in the message
processing inside a synchronous API

@ DT

/
I Messages are consumed to generate v \
synchronous experiments, whose - _ |
| results are returned as messages - BRabbit |
I ////////
| - — T
| — |
deploy. I
I -y @ Synchronous API call turns into a
— message that’s queued for delivery to
| > some instance of the compute engine
' |
| Can scale the number of compute I
\ engines and the broker architecture - ‘
integrates them transparently /
N s

-— s - E-s - e e e S S S S D D D D S B B B B B S B Ea B e e s .. —_—

Another API call collects all
results that have been resolved

. HashiCorp y.* . .
D v Avi V¥ Terraform _—

HELM Jupyter
g

_ - Shim to map messages to and from API calls -

Slide 6 of 10

Issue 2: Interaction and autoscaling

* (Horizontal) autoscaling 0o
el
 Spin-up (and -down) replicas ®0

W

Fa

e Works best when services are stateless CLJ

* Options

Put all the experimental code in the engine container
Good for reproducibility

Not good for interactive science, for example when a
scientist adds code on the fly in a notebook

All the engines need to see the same code; new engines
need to catch up

Slide 7 of 10

The plan (maybe)

o
) L MaRabbit T*)

Broker journals new code

When a new replica starts,
send it the journal so it
can catch up /

=T
o=

O = ?
L.-} N

Jupytér > New code created
h within a notebook

* State lives in the broker, not the container image
* “Initialisation queue” to grab initial setup
* Turns out this might not be needed in practice

» A Python persistence mechanism (¢ Loudpickle)
handles the most common case

Slide 8 of 10

Issue 3: Performance tuning

* Performance can be hard to predict Pod

Container

* Alot of layers between code and metal

VM containerd

* Each layer has tuning parameters

VM Kernel

* How do these interact? Which takes precedence?

v
Hypervisor

* (At least) two problems

Host kernel

* Visibility of knobs and dials
* Deciding how to twiddle them

Reality

e How is the cloud itself tuned?

* Different settings if it expects transient jobs or prioritises
throughput over performance?

Slide 9 of 10

Conclusion

* Getting there...

* Quite a learning curve, lots of tooling, often poor
documentation

 ...but well worth it, for the learning and for the resulting
performance and flexibility

e [.ots remains to do

* Finish the interactive science workflow
* Instrument with proper metrics-gathering
* Autoscale based on application-meaningful metrics

* New structures for different sorts of computation, re-
using the core code

Slide 10 of 10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

