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Introduction

* Complex and adaptive systems

* Microscale interactions give rise to difficult-to-predict
macroscale behaviours

* Disease epidemics, protein interactions, metal fatigue, ...

* Lots of numerical simulation of stochastic processes

* Challenges and opportunities in moving to the cloud

* Architectural flexibility
* Autoscaling interactive code

_* Performance tuning
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epydemic

* Process simulation on networks and other structures

* Epidemics, synchronisation, percolation, ...
* Networks and (soon) simplicial complexes -

* Maths helpers, network generation, ...

* Gillespie simulation

 Simulating stochastic processes . &

* Large networks, lots of repetitions
(all independent) éf

* Each individual experiment takes
from <5s to >20mins
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Why move to the cloud?

* Scalability

* Tackle larger, higher-resolution simulations

* (Possibly) work with significantly larger networks (using
ograph databases’ query optimisation)

* Modern virtual infrastructure
* Run on someone else’s computers (a.k.a., the cloud)
* Easier sharing and deployment

* Spin-up instances of the entire infrastructure

v

We’re grateful for support from Oracle for Research ORACLE
in the form of cloud credits and expertise to call on for Research
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Issue 1: Maintaining flexibility

* Originally tried to replicate our “classical” cluster
« 1pyparallel for comms, redis for synchronisation
* Not the right model for modern platforms

e Embrace virtual infrastructure
kubernetes

* Containerised implementation of our scientific code
(unchanged apart from a small web API)

 Gateway API as a single point of CONtact  pupos wiin cver sracures

* RabbitMQ co-ordinates all the work requests and results

* Works with (rather than fighting against) the model

__* Deploy locally for debugging, same intertaces
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Architecture

Can add extra steps in the message
processing inside a synchronous API

@ DT
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I Messages are consumed to generate v \
synchronous experiments, whose - _ |
| results are returned as messages - BRabbit |
I ////////
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| — |
deploy. I
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Slide 6 of 10




Issue 2: Interaction and autoscaling

* (Horizontal) autoscaling 0o
el
 Spin-up (and -down) replicas ®0

W

Fa

e Works best when services are stateless CLJ

* Options

Put all the experimental code in the engine container
Good for reproducibility

Not good for interactive science, for example when a
scientist adds code on the fly in a notebook

All the engines need to see the same code; new engines
need to catch up
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The plan (maybe)

o
) L MaRabbit T* )

Broker journals new code

When a new replica starts,
send it the journal so it
can catch up /

=T
o=

O = ?
L.-} N

Jupytér > New code created
h within a notebook

* State lives in the broker, not the container image
* “Initialisation queue” to grab initial setup
* Turns out this might not be needed in practice

» A Python persistence mechanism (¢ Loudpickle)
handles the most common case

Slide 8 of 10



Issue 3: Performance tuning

* Performance can be hard to predict Pod

Container

* Alot of layers between code and metal

VM containerd

* Each layer has tuning parameters

VM Kernel

* How do these interact? Which takes precedence?

v
Hypervisor

* (At least) two problems

Host kernel

* Visibility of knobs and dials
* Deciding how to twiddle them

Reality

e How is the cloud itself tuned?

* Different settings if it expects transient jobs or prioritises
throughput over performance?
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Conclusion

* Getting there...

* Quite a learning curve, lots of tooling, often poor
documentation

 ...but well worth it, for the learning and for the resulting
performance and flexibility

e [.ots remains to do

* Finish the interactive science workflow
* Instrument with proper metrics-gathering
* Autoscale based on application-meaningful metrics

* New structures for different sorts of computation, re-
using the core code
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