
Slide 1 of 10

Moving a scientific computing 
system to the cloud

Simon Dobson and Peter Mann
Complex and Adaptive Systems Group
School of Computer Science, University of St Andrews UK

simon.dobson@st-andrews.ac.uk pm78@st-andrews.ac.uk 
https://simondobson.org https://peterstandrews.github.io/ 
http://mastodon.scot/@simoninireland https://twitter.com/PMannStAndrews 

mailto:simon.dobson@st-andrews.ac.uk
mailto:pm78@st-andrews.ac.uk
https://simondobson.org/
https://peterstandrews.github.io/
http://mastodon.scot/@simoninireland
https://twitter.com/PMannStAndrews


Slide 2 of 10

Introduction
● Complex and adaptive systems

● Microscale interactions give rise to difficult-to-predict 
macroscale behaviours

● Disease epidemics, protein interactions, metal fatigue, ...
● Lots of numerical simulation of stochastic processes

● Challenges and opportunities in moving to the cloud
● Architectural flexibility
● Autoscaling interactive code
● Performance tuning



Slide 3 of 10

epydemic
● Process simulation on networks and other structures

● Epidemics, synchronisation, percolation, …
● Networks and (soon) simplicial complexes
● Maths helpers, network generation, ...
● Gillespie simulation

● Simulating stochastic processes
● Large networks, lots of repetitions

(all independent)
● Each individual experiment takes

from <5s to >20mins



Slide 4 of 10

Why move to the cloud?
● Scalability

● Tackle larger, higher-resolution simulations
● (Possibly) work with significantly larger networks (using 

graph databases’ query optimisation)
● Modern virtual infrastructure

● Run on someone else’s computers (a.k.a., the cloud)
● Easier sharing and deployment

● Spin-up instances of the entire infrastructure

We’re grateful for support from Oracle for Research 
in the form of cloud credits and expertise to call on



Slide 5 of 10

Issue 1: Maintaining flexibility
● Originally tried to replicate our “classical” cluster

● ipyparallel for comms, redis for synchronisation
● Not the right model for modern platforms

● Embrace virtual infrastructure
● Containerised implementation of our scientific code 

(unchanged apart from a small web API)
● Gateway API as a single point of contact
● RabbitMQ co-ordinates all the work requests and results
● Works with (rather than fighting against) the model
● Deploy locally for debugging, same interfaces

No dependencies, so easy to re-
purpose within other structures



Slide 6 of 10

Architecture

Synchronous API call turns into a 
message that’s queued for delivery to 
some instance of the compute engine

Web API

Shim to map messages to and from API calls

Messages are consumed to generate 
synchronous experiments, whose 
results are returned as messages

Another API call collects all 
results that have been resolved

Can scale the number of compute 
engines and the broker architecture 
integrates them transparently

Can add extra steps in the message 
processing inside a synchronous API



Slide 7 of 10

Issue 2: Interaction and autoscaling
● (Horizontal) autoscaling

● Spin-up (and -down) replicas
● Works best when services are stateless

● Options
● Put all the experimental code in the engine container
● Good for reproducibility
● Not good for interactive science, for example when a 

scientist adds code on the fly in a notebook
● All the engines need to see the same code; new engines 

need to catch up



Slide 8 of 10

The plan (maybe)

● State lives in the broker, not the container image
● “Initialisation queue” to grab initial setup

● Turns out this might not be needed in practice
● A Python persistence mechanism (cloudpickle) 

handles the most common case

New code created 
within a notebook

Broker journals new codeWhen a new replica starts, 
send it the journal so it 
can catch up



Slide 9 of 10

● Performance can be hard to predict
● A lot of layers between code and metal
● Each layer has tuning parameters
● How do these interact? Which takes precedence?

● (At least) two problems
● Visibility of knobs and dials
● Deciding how to twiddle them

● How is the cloud itself tuned?
● Different settings if it expects transient jobs or prioritises 

throughput over performance?

Pod

Container

VM containerd

VM kernel

Hypervisor

Host kernel

Reality

Issue 3: Performance tuning



Slide 10 of 10

Conclusion
● Getting there…

● Quite a learning curve, lots of tooling, often poor 
documentation

● ...but well worth it, for the learning and for the resulting 
performance and flexibility

● Lots remains to do
● Finish the interactive science workflow
● Instrument with proper metrics-gathering
● Autoscale based on application-meaningful metrics
● New structures for different sorts of computation, re-

using the core code


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

