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Introduction

What this talk is about

• How is human movement in an urban setting conditioned
by the topology of the transportation networks?

• Are there any features common between large cities?
• How do quantitative results relate to the practice of urban

planning?

My aim

• Present recent results on urban transportation, joint work
with Saray Shai, Emanuele Strano, and Marc Barthélemy

• Real-world data driving a study using network science
• The limitations we hit when theory met practice
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Complex networks
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Networks and processes

Living between regularity and randomness 1

• Heterogeneous degree distribution, fragile notion of
“neighbourhood”

• Evaluate processes at each node, affecting behaviour of
neighbours, often with a stochastic component

• Canonical example is the SIR model of disease
propagation

1
A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.

URL doi://10.1126/science.286.5439.509

doi://10.1126/science.286.5439.509
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Multiplexes

A multiplex (or more correctly a
multilayer network) is a collection
of two (or more) networks 2

• Nodes in the different networks
are coupled

• Study properties of the individual
networks or of the ensemble

• One network may be “less wide”
than the other, and so offer
“shortcuts” for processes

2
M. Kivelä, A. Arenas, M. Barthélemy, J. Gleeson, Y. Moreno, and M. Porter. Multilayer networks. Journal of

Complex Networks, 2(3):203–271, 2014. URL doi://10.1093/comnet/cnu016

doi://10.1093/comnet/cnu016
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Spatial networks

Planarity limits permissible topologies 3

• Network embeds into Euclidean 2-space (R2)
• No crossings: all intersections form junctions
• (Doesn’t work precisely for all cities, e.g., Edinburgh, which

have significant 3D structure)
• Limits the possibility for long-distance connections
• Typically quite modular, with highly-connected locales

Spatial multilayer networks

• Each layer is planar, but the multiplex typically isn’t

3
M. Barthélemy. Spatial networks. Physics Reports, 499:1–101, 2011
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Urban networks
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Cities of different sizes and complexities
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The problem: Urban transportation

Coupled transport networks 4

• Street and tube/subway form a multilayer network
• How does the addition of the tube affect travel times?
• How does this change as the tube speeds up?

4
M. Batty. The new science of cities. MIT Press, 2013. ISBN 978-0-292-01952-1
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Framing the problem

Our study 5

• Simplify to treat as a purely topological problem
• Don’t model traffic congestion per se

Metrics

• Impact of tube speed on network usage, travel costs, and
shortest paths

• Study the betweenness centrality of nodes as the relative
speeds of the two networks changes

• How does outreach change?

5
E. Strano, S. Shai, S. Dobson, and M. Barthélemy. Multiplex networks in metropolitan areas: generic features

and local effects. Journal of the Royal Society Interface, 12(111), October 2015. URL
doi://10.1098/rsif.2015.0651

doi://10.1098/rsif.2015.0651
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Methodology

Topological properties

• Compute metrics between all pairs (i , j) of nodes in the
street network Vs

• Compute ratio of metrics between travel using the streets
only versus using the whole multiplex

Geographical properties

• Network is spatial, so nodes have location in space, and a
distance d(i , j) between pairs of street nodes

• Often scale distances according to network diameter, d(i,j)√
A

• Compare network metrics to geographical distances
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Setting up the study – 1

Acquired street and tube data from Open Street Map

• Street network consisting of v ∈ Vs nodes
• Tube network Vt

• Coupled at access points to form a multiplex

Ns Nt Street diameter Tube diameter
London 325K 263 89km 60km
New York 68K 454 55km 57km
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Data hygiene

Needed substantial manual cleaning

• Streets don’t meet, tubes don’t come up where they
should, . . .

Choices to be made

• Tubes sometimes emerge mid-street, not at a junction
• Add a pseudo-junction for the tube to be coupled to
• Couple to junction at one end of the street or the other
• Do these choices make a difference?
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Setting up the study – 2

Travel costs

• τs(i , j) the travel cost (in time units) between i , j ∈ Vs using
only street edges

• τm(i , j) the travel cost using the multiplex (street and tube)
• 0 ≤ β ≤ 1 the ratio of speed between street and tube (tube

is faster for smaller β)

Shortest paths

• σi,j the number of shortest paths between i , j ∈ Vs using
only the street network

• Similarly define σm
i,j the number of shortest paths using the

mulitiplex
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How much does the tube affect travel costs?

Metric

• Ratio of travel costs from a
node i ∈ Vs to all other nodes
using the multiplex vs using
the streets only

qms(i) =
1

Ns − 1

∑
j∈Vs

τm(i , j)
τs(i , j)

(ii) the local outreach and the urban horizon, and (iii) the spatial
distribution of betweenness centrality (BC). It is important to
stress that studies on urban transportation networks have
important implications for urban policies and private invest-
ment, and, in general, play an important role in the urban
planning chain. In fact, inter-modality transportation efficiency
and simulations have been extensively studied in the
transportation engineering literature [39], where the typical
supply–demand approach prevails but where the analysis of
topological properties of networks is almost wholly neglected
and where the different transportation modes are often treated
separately. One goal in this study is to shift the focus onto this
topological coupling aspect of transportation network design:
we show this to be extremely relevant, and suggest that the
multilayer network view of these systems should be integrated
into elaborated models of urban planning.

2. Data and network construction
Using data from Open Street Map (http://www.openstreetmap.
org/ (accessed on 8 December 2014)), we construct both the
street and the subway networks for London (UK) and
New York City (USA). We downloaded data on street and
underground networks in geo-referenced vectorial format
from Open Street Map, which contains detailed streets and
rail tracks networks, including train depots and double
tracks. (The rationale behind the geographical extent of these
networks is to include the full underground systems and sur-
rounding street networks.) In addition, a series of automatic
and manual topological cleaning operations were needed in
order to extract consistent and usable graphs. The size and
geography of the two cities are clearly different as we can
observe it in figure 1a,b.

We thus obtained the weighted graph Gs ¼ ðVs, EsÞ of the
connected street network in its ‘primal’ representation, with
nodes being street junctions and edges representing the street
segments connecting them, and the weights given by the
street length. Similarly, we obtained the connected under-
ground network Gu ¼ ðVu, VuÞ with nodes representing

underground stations and links connecting successive stations
on the same line, and weighted by the length of the line seg-
ment. From a theoretical point of view, the interdependent or
multilayer [31] network, Gmulti is defined as the union of
these two networks. Here, we have subway stations and road
intersections that we consider to be different nodes. Under-
ground stations are accessible from more than one access on
the street, but for the sake of simplicity we construct the multi-
layer network by connecting each underground station to its
closest street junction only (a simplification that would not
change the structure of quickest paths). In order to create the
adjacency lists, we used a combination of Python scripts, Arch-
Map geo-tools (ArchGIS 10.2) and ad hoc manual corrections.
Tools have been set to remove link redundancies, to correct
the topology of the networks and to create the proximity
matrix between street nodes (street junctions) and underground
nodes (stations). The scripts have been corroborated with a full
check of the data and corrections of the topology in editing ses-
sions in the ArchMap environment (the computation of the
various statistical measures have been done in the Python
environment using NetworkX library and the maps have
been produced using ArchGIS v. 10.2).

3. The generic nature of quickest paths
New York is composed of two large and almost disconnected
components with the underground systems covering a simi-
lar spatial extent and carving-up the different boroughs.
London instead presents—at a large scale—a typical radio-
centric urban structure with the underground systems
connecting satellite districts and peripheries to the urban
core. Differences both in size and geography between these
cities are also reflected by basic network descriptors shown
in table 1. For both cities, the (spatial) diameter of the multi-
plex is essentially dominated by the street network. We also
observe that the topological diameter of the multiplex is
lower than the street layer, thanks to the subway structure
allowing for topologically shorter paths. The efficiency of
the subway is however also due to its speed which is in
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Figure 1. (a,b) The spatial extent of the two metropolitan areas considered here. Note that the Greater London area (a) is not covered by the underground system,
in contrast to New York (b) where most areas are connected by the subway. (c) Distribution of normalized quickest path times (computed in the multilayer system)
zbðtmÞ ¼ tm $ ktml=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðtmÞ

p
: (d ) The quantity kqmsl averaged over all nodes as a function of b (the error bars indicate here the dispersion around the

average). The average ratio of travel times with and without the subway layer is typically 0.5 and does not vary much with b. (The figures a,b were created using
vectorial map extracted in ArchMap environment and assembled with Adobe Illustrator.) (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150651
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Impact

• Halving β reduces 〈qms〉 by about 20%
• Most journeys have a large street component that can’t be

removed
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Interdependence

where deði, jÞ is the Euclidean distance between i and j and
N(d ) is the number of pairs of nodes at Euclidean distance
d. In figure 2a, we show the average interdependence
among all street nodes as a function of b and the resulting
interdependence profile figure 2b.

We see from these figures that, in both cities, the existence
of the underground has a very large impact. For example, for
b ¼ 0.8 we obtain l around 0.7, meaning that even when the
underground is only 1.25 times faster than the street network,
already about 70% of the quickest paths are going through
the underground. A slight decrease in b for b close to one
thus has a large impact on the structure of the quickest
paths, while for smaller values of b, improving the subway
speed does not bring a significant improvement of the quick-
est paths. In both cities, there is a sharp increase in l for small
Euclidian distances, meaning that already for relatively short
trips, it is worth ‘hopping on’ to the underground. (Note that
we neglect here waiting, walking and connecting times which
can be significant [38].) The slope of the interdependence pro-
file at small deucl ≃ 0 is increasing as b is decreasing,
suggesting that a slight increase in the underground speed
could make the networks highly interdependent even at
very small scales.

Both cities therefore display a remarkably similar behav-
iour over all these interdependency-related quantities (in
particular, see figure 2b), suggesting here again a possible
common behaviour for multiplex transportation networks
in cities. While further studies are needed to substantiate a
claim of ‘universality’, our results point to the possible exist-
ence of some kind of statistical law of large numbers that

applies to quickest paths in multiplex urban transportation
networks.

We note that it is not trivial that the central limit theorem
applies here, and it does not mean that the network topology
is irrelevant. The fact that we can sum a large number of
quantities, which are essentially uncorrelated (a necessary
condition for the central limit theorem to apply) comes
from the specific structure of these transportation systems
(spatial constraints for example certainly play an important
role). In addition, more complex quantities (such as the inter-
dependence for example) also display a high level of
similarity for the two cities, a fact that cannot at this stage
be simply related to a central limit theorem. These different
results point to the potentially useful fact that actually
few parameters seem to govern the behaviour of these quan-
tities, which could lead to many useful simplifications in
more elaborated models that contain a large number
of parameters.

4. Local outreach and the urban spatial horizon
The presence of a transportation mode such as a subway
affects the overall performance of a city in terms of efficiency
of transport and the accessibility of certain locations, but also
has an important impact on how pairs of locations are
connected. In order to measure this effect, we define the
spatial outreach of a street node i [ Vstreet as the average Eucli-
dean distance from i to all other street nodes that are
reachable within a given travel cost, t:

LtðiÞ ¼
1

NðtÞ
X

jjtmði,jÞ,t

deði, jÞ, ð4:1Þ

where deði, jÞ is the Euclidean distance between node i and j,
and NðtÞ is the number of nodes reachable on the multilayer
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Figure 2. (a) Average interdependence, kll as a function of b. (b) Normal-
ized interdependence profile computed for different values of b. Both cities
exhibit a similar behaviour despite very different geographical structures.
Inset: zoom on the small distance range. (Online version in colour.)
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for (a) London and (b) New York. (Online version in colour.)
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Ratios of shortest paths

• Inter-modal connectivity

• λ(i , j) =
σm

i,j
σi,j

• For β = 0.8, 〈λ〉 = 0.7: 70% of
journeys use the tube

Compare to scaled distances

• Scale based on d(i,j)√
A

• Qλ(d) =
1

N(d)
∑

i,j∈Vs|d(i,j)=d λ(i , j)

• Spatially short journeys benefit
from hopping on the tube
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Outreach

• Spatial outreach of a node i is the average Euclidean
distance to all nodes reachable with a travel cost τ

• Lτ (i) = 1
N(τ)

∑
j∈{k |τm(i,k)≤τ} d(i , j)

• How “commutable” is a city
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Betweenness centrality

Metric

• Compute σm
i,j(v) the fraction of shortest paths that go

through v ∈ Vs

• bcm(v) = 1
(Ns−1)(Ns−2)

∑
i,j∈Vs

σm
i,j (v)
σm

i,j

Impact

• Shift congestion from roads to nodal points of tubes as β
decreases

• Tubes “decentralise” congestion to the ends of lines
• Betweenness centrality doesn’t move to the centre, as

happens with mesh networks
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Shifting spatial patterns

becomes more efficient (faster, decreasing b), meaning that
a larger fraction of quickest paths use it; and the BC distri-
bution is less homogeneous, making the system more
fragmented and less resilient.

Examining the BC Gini as a function of b and the interde-
pendency l in London (figure 7), we observe a non-trivial
optimal value for b for which flows are the most homoge-
neously distributed across street junctions. In New York
(figure 7b), however, there seem to be room for small b and
small congestion and the absence of a non-trivial optimum
for New York suggests (as discussed theoretically in [37])
that—surprisingly—it has a more marked monocentric
aspect than London. In other words, the congestion in central
places in New York is so large that introducing an efficient
subway system is always better, even if it creates congestion
at other points. Remarkably, these results on the BC and on
the existence of an optimal point are thus in agreement
with a recent theoretical model of coupled transportation net-
works, where—depending on the distribution of trip
targets—two regimes were observed: one in which the opti-
mal coupling is trivially the maximum, and another where
a non-trivial optimal coupling exists [37].

6. Discussion
We have considered the effect of the coupling between two
transportation layers on various quantities and we can sum-
marize our results as follows. For quantities relating to
quickest paths (interdependency, average quickest path dur-
ation), we observe a remarkable similarity between the two
cities considered, suggesting the possibility of a universal
behaviour requiring further study. This universality might
originate in the fact that the quickest path can be seen as a
sum of random variables, which inevitably leads to some
sort of central limit theorem. This seems to be the case for
the probability distribution of the quickest path time

(a)
1

b = 1

0

(b)

b = 0.1

(c) (d)

Figure 6. The spatial distribution of BC on the New York (a,b) and London (c,d ) street network for different values of b. We observe a clear crossover from
congested road locations for b ¼ 1 to ‘focal points’ of the underground system for small b. (The maps were obtained using the classical interpolation
method inverse distance weigh (IDW) on the street junctions with Z ¼ BC.) This figure was created using ESRI ArchMap 10.1 and Adobe Illustrator. (Online version
in colour.)
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Limitations
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Topology only

No congestion “agents”

• Not modelling the traffic per se
• When we suck traffic into the tube, we assume that we can
• Either roads are “sufficiently big” or traffic “sufficiently light”

– neither of which is actually the case

A more detailed model

• Make cost dependent on centrality?
• Limit capacity of edges?
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Wrong metrics

Betweenness centrality is all-to-all

• Shortest paths between all pairs i and j

A commuter model would capture which routes were
more important

• Probabilistically weight the routes that people actually use
• Drive from real data, i.e., TfL turnstile measurements
• Recent results show we can estimate route weights from

census data on living and working population densities
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Universality

Want to know that ideas work everywhere

• Our paper was originally titled “Multiplex networks in
metropolitan areas: universal features and local effects”

• . . . and the referees asked, “how do you know?”
• . . . which of course is a fair question: how could you know?
• . . . so we changed the title of the paper ,

Getting more towards universality

• Can we synthesise cities with realistic (coupled)
topologies?

• Generate plausible alternative topologies to explore
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Faking it

How do cities form and evolve?

• Villages coalesce over time, interconnections grow, . . .
• Certain topological structures seem to be very persistent

over time

Study historical events, for example the Black Death

• A combination of disease, healthcare, and social structure
• Is breaking one of these features sufficient to stop an

epidemic?
• Do network features make some modern epidemics

worse?
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Conclusion

• Realistic to study urban-scale networks computationally
using network science

• Data is publicly available, but needs care and cleaning
• Topology-driven analysis still shows useful results
• A commuter model would be useful, and seems to be

possible from observed patterns (in London at least)
• Universal results are elusive and would require significant

advances in synthetic urban network generation
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Thank you

Topology! The stratosphere of human thought! In the
twenty-fourth century it might possibly be of use to
someone. . .

Alexander Solzhenitsyn, The First Circle
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